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Chapter 1

Control design and gain-scheduling
using observer-based structures

Daniel Alazard
SUPAERO

10, av. Edouard Belin, 31055 Toulouse, FRANCE
alazard@supaero.fr

1.1 Introduction

Observer-based controllers (for instance Linear Quadratic Gaussian (LQG) con-
trollers) are quite interesting for different practical reasons and from the imple-
mentation point of view. Probably the key advantage of these controller structures
lies in the fact that the controller states are meaningful variables as estimates of the
physical plant states. It follows that the controller states can be used to monitor
(on-line or off-line) the performance of the system. Such a meaningful state al-
lows also to initialize the state of the controller or to update controller state during
control mode switching. Note that this simple property does not hold for general
controllers with state-space description ;

{
ẋK = AKxK +BKy
u = CKxK +DKy .

(1.1)

Another well-appreciated advantage comes from the ease of implementation of
observer-based controllers. In addition to the plant data, only two static gains (the
state-feedback gain and the state estimator gain) define the entire controller dy-
namics. In return, this facilitates the construction of gain-scheduled or interpolated
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controllers. Indeed, assuming the plant model is available in real-time, observer-
based controllers will only require the storage of these two static gains of lower
dimensions instead of the huge set of numerical data in (1.1) to update the con-
troller dynamics at each sample of time. Note that if we are using an interpolating
procedure to update the controller dynamics, the general representation in (1.1) is
highly questionable from an implementation viewpoint and in many cases will lead
to an insuperable computational effort. This was in our opinion a major impediment
for a widespread use of modern control techniques such as H∞ and µ syntheses in re-
alistic applications and particularly for problems necessitating real-time adjustment
of the controller gains. These approaches produce high-order controllers expressed
under a meaningless state-space realization. Note also that this last point is relevant
if a controller reduction has been performed after the design.

To encounter this problem a general procedure is proposed in this chapter to
compute an observer based realization for an arbitrary given controller and a given
plant (for both continuous and discrete time case). Independently of the solver
used for the control design, such a procedure allows to provide a realization with a
meaningful state vector. In [1] and [10], it is shown that observer-based realization
are also convenient to isolate high level-tuning parameters (potentiometers) in a
complex control law. As the observer-based realization exploits the model of the
plant, one can also guess that such a realization is very convenient to update the
controller to a any change in the model or to built a parameter-dependent controller
K(s, θ) from a parameter-dependent model G(s, θ).

Among other potential advantages of observer based realization, we would like
to point out the possibility to handle actuator saturation constraints by exploiting
this information into the prediction equation. Since we do not cover this matter in
this document, the reader is referred to [32] and references therein for more details.
More theoretical discussions on the implementation of gain-scheduled controllers
which exploit information on plant non-linearities are given in [21] and [20].

The practical solution to handle non-stationary problems (like launch vehicle
control design during atmospheric flight) or non-linear problems consists in designing
a family of controllers at various flight instants or various flight conditions and then
in interpolating (gain-scheduling) these various controllers. It is well know that
the non-stationary behavior of interpolated control laws depends strongly upon the
controller realizations which are interpolated. Observer-based realizations are very
attractive from the gain scheduling point of view ([29] and [26]). The main reason
is that the controller states are consistent and have physical units if the model
on which is built the observer-based realization has physical states. Then, observer-
based realizations of given controllers is a good alternative to provide gain-scheduled
controllers.



3

From the control design point of view, the observer-based realization of a con-
troller allows a simple solution to the inverse optimal control problem to be proposed.
This solution, called the Cross Standard Form (CSF), is a canonical augmented
standard plant whose unique H∞ or H2 optimal controller is a given controller.
The general idea is to apply the CSF to a given controller in order to set up a
standard problem which can be completed to handle frequency-domain H2 or H∞
specifications.

In the second section of this chapter, we present the procedure to compute the
observer-based realization of a given controller and a given model. The reader
will find more details in [3]. The application of this procedure to a very simple
missile model is proposed in the third section to illustrate the interest of observer-
based controller for gain-scheduling, controller switching and state monitoring. This
application has been chosen for its pedagogic feature: demo files can be downloaded
on a web page for the reader to run these illustrations on its own personnel computer.
In section four, the Cross Standard Form is presented and also applied to the same
academic example: a low-order controller is improved to fulfill a template on its
frequency-domain response. The extension of theses results to the discrete-time
case are gathered in section five. In section six, Cross Standard Form and gain-
scheduling using observer-based realizations are applied to the control design for
a launch vehicle on the full atmospheric flight envelope. Concluding remarks and
future works are proposed in the last section.
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Nomenclature

Following notations will be used all along this chapter.

AT A transposed
A+ Moore-Penrose pseudo-inverse of matrix A
A⊥ Orthonormal basis for the null space of A
spec(A) set of eigenvalues for a square matrix A
In n× n identity matrix
R set of real numbers
C set of complex numbers
i

√
−1

ẋ time derivation (ẋ = dx/dt)
s Laplace variable
LQG Linear Quadratic Gaussian

Fl(P,K)
lower Linear Fractional Transformation of
P and K

‖G(s)‖2 H2 norm of the stable system G(s)
‖G(s)‖∞ H∞ norm of the stable system G(s)

G(s) :=

[
A B
C D

]
Shorthand for G(s) = C(sI − A)−1B +D

1.2 Observer-based realization of a given controller

In this section, we briefly recall central ideas behind the Youla parameterization and
show how it can be used to find the state estimator-state feedback structure of an
arbitrary compensator associated with a given plant.

Consider the stabilizable and detectable nth-order system G(s) (m inputs and p
outputs) with minimal state-space realization:

{
ẋ = Ax+Bu,
y = Cx+Du

(1.2)

The so-called Youla parameterization of all stabilizing compensators built on the
general LQG controller structure is depicted in figure 1.1, where Kc, Kf and Q(s)
are respectively the state feedback gain, the state estimator gain and the Youla
parameter. The compensator associated with this structure is easily shown to have



5

D

D

−

Q(s)

+

Kf
B

+

"y

x̂

yu

State estimator

Plant

x

Youla parameter

e=0

+
+

C+

−
+ B

+
+ A

Z

+ C
A
Z

+
+

x̂

State feedback

Kc

+

Figure 1.1: Observer-based structure and Youla parameterization.

the following state-space description :





˙̂x = Ax̂+Bu+Kf(y − Cx̂−Du)
ẋQ = AQxQ +BQ(y − Cx̂−Du)
u = −Kcx̂+ CQxQ +DQ(y − Cx̂−Du)

(1.3)

where AQ, BQ, CQ and DQ are the 4 matrices of the state-space representation of
Q(s) associated with the state variable xQ. Hereafter, x̂ denotes an estimate of the
plant state x.
The Youla parameterization principle is based on the fact that the closed-loop trans-
fer function between the input e and the innovation εy = y − Cx̂−Du is null (see
[23] for instance). As a consequence, changing Q(s) leads to various compensators
but the closed-loop transfer function remains unaffected. It is readily shown that
this closed-loop transfer function can be represented by the state-space form (1.4)
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involving the estimation error εx = x− x̂ :



ẋ
ẋQ
ε̇x


 =



A− BKc BCQ BKc +BDQC

0 AQ BQC
0 0 A−KfC







x
xQ
εx


 +



B
0
0


 e

εy =
[

0 0 C
]



x
xQ
εx




(1.4)

From this representation, the separation principle appears clearly and can be stated
in the following terms :

• the closed-loop eigenvalues can be separated into n closed-loop state-feedback
poles (spec(A − BKc)), n closed-loop state-estimator poles (spec(A −KfC))
and the Youla parameter poles (spec(AQ)),

• the closed-loop state-estimator poles and the Youla parameter poles are un-
controllable by e,

• the closed-loop state-feedback poles and the Youla parameter poles are unob-
servable from εy. The transfer function from e to εy always vanishes.

Now let us consider a stabilizing nKth order controller K0(s) with minimal state-
space realization: {

˙xK = AKxK +BKy (a)
u = CKxK +DKy (b)

(1.5)

In the sequel, the following notations will be used:

Jm = (Im −DKD)−1 and Jp = (Ip −DDK)−1 , (1.6)

with the following properties:

• JmDK = DKJp, JpD = DJm,

• Im +DKDJm = Jm, Ip + JpDDK = Jp.

We are first going to express the compensator state equation (1.5.a) as an Luen-
berger observer of the variable z = Tx. So, we will denote:

xK = ẑ (1.7)

According to Luenberger’s formulation [23], this problem can be stated as the search
of

T ∈ RnK×n, F ∈ RnK×nK , G ∈ RnK×p
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such that

˙̂z = F ẑ +G(y −Du) + TBu (1.8)

is an (asymptotic) observer of the variable z, that is z − ẑ vanishes as t goes to
infinity. Luenberger has shown that the constraints :

TA− FT = GC, and F stable , (1.9)

ensure that this holds true. Then, with the output equation (1.5.b), the state space
representation of the compensator reads :

{
˙̂z =

(
F + (TB −GD)CK

)
ẑ +

(
G(Ip −DDK) + TBDK

)
y

u = CK ẑ +DKy
(1.10)

With (1.7), the identification of (1.10) and (1.5) leads to the algebraic relations:

G = (BK − TBDK)Jp (1.11)

F = AK + (BKD − TB)JmCK (1.12)

These equations with (1.9) guarantee that we are dealing with an observer-based
controller. Note that the stability of F (equation (1.9)) is secured whenever the
original controller (1.5) is stabilizing. Indeed from (1.2) and (1.10), a closed-loop
state space realization reads :

[
ẋ
˙̂z

]
=

[
A+BJmDKC BJmCK

GC + TBJmDKC F + TBJmCK

] [
x
ẑ

]
(1.13)

Let us consider the change of state coordinates involving the estimation error εz =
z − ẑ :

[
x
ẑ

]
=M

[
x
εz

]
with M =

[
In 0
T −InK

]
and M−1 =M, (1.14)

The new state space realization highlights the separation principle :

[
ẋ
ε̇z

]
=

[
A+BJm(DKC + CKT ) −BJmCK

0 F

] [
x
εz

]
. (1.15)

So the set of n+nK closed-loop eigenvalues include the nK eigenvalues of F . There-
fore F is stable is the initial controller is stabilizing.
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Substituting (1.12) and (1.11) in the first relation in (1.9), we get :

(AK +BKDJmCK)T − T (A+BJmDKC)− TBJmCKT +BKJpC = 0 . (1.16)

So, the problem is reduced to solve in T the generalized non-symmetric and rect-
angular Riccati equation (1.16) and next to compute F and G using (1.12) and
(1.11) respectively.
Equation (1.16) can also be reformulated as :

[−T I]Acl

[
I
T

]
= 0 (1.17)

where the characteristic matrix Acl associated with the Riccati equation (1.16) is
nothing else than the closed-loop system matrix :

Acl :=

[
A +BJmDKC BJmCK

BKJpC AK +BKDJmCK

]
. (1.18)

The Riccati equation (1.16) can then be solved by standard invariant subspace
techniques which consist in :

• finding a n-dimensional invariant subspace S := Range(U) of the closed-loop
system matrix Acl, that is,

AclU = UΛ (1.19)

This subspace is associated with a set of n eigenvalues, spec(Λ), among the
n + nK eigenvalues of Acl. Such subspaces are easily computed using Schur

factorizations or eigenvalue decompositions of the matrix Acl. See [15] for more
details.

• partitioning the vectors U which span this subspace conformably to the par-
titioning in (1.18).

U =

[
U1

U2

]
, U1 ∈ Rn×n. (1.20)

• computing the solution :

T = U2U
−1
1 . (1.21)

Narasimhamurthi and Wu have shown in [25] that the existence of a solution T
satisfying (1.16) is guaranteed whenever the eigenvalues of the Hamiltonian matrix
Acl are distinct. In proposition 1.2.3, a necessary condition is given for the existence
of a solution T . In the general case, however, there are finitely many admissible
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subspaces S and thus many solutions. Each solution corresponds to a particular
choice of n eigenvalues among the set of closed-loop eigenvalues of Acl.

Then, given a nth-order plant and a nKth-order compensator, one can com-
pute the linear combination TnK×nx of the plant states which is estimated by the
compensator state. An analogous result is also discussed by Fowell and al in [8].

The reader will find in
http://personnel.supaero.fr/alazard-daniel/demos/demo obr.html. an in-
teractive Matlab function cor2tfg to compute the matrices T , F and G from a
given controller K0 and a given plant G.

1.2.1 Augmented-order compensators

In this section, we consider the problem where nK ≥ n and our aim is to find a
state-feedback gain Kc, a state-estimator gain Kf and a dynamic Youla parameter
Q(s) with order nK − n, such that the observer-based compensator structure in
figure 1.1 is equivalent to the original controller (1.5). We will assume that T has
been computed by the previous technique according to an admissible choice of n
poles among the n + nK closed-loop poles. Next, F and G can be computed from
(1.12) and (1.11).

Let us consider the Schur decomposition of Acl used to solve in T the Riccati

equation (1.16):

Acl =

[
U1 U3

U2 U4

] [
Λ ∗
0 ΛF

] [
U∗

1 U∗
2

U∗
3 U∗

4

]
(1.22)

[
U1 U3

U2 U4

]
is a unitary (n+ nK)× (n+ nK)) matrix with U1 ∈ Cn×n, U2 ∈ CnK×n,

U3 ∈ Cn×nK and U4 ∈ CnK×nK .

From equations (1.13) and (1.15), we can write:
[
A +BJm(DKC + CKT ) −BJmCK

0 F

]
=

[
In 0
T −InK

]
Acl

[
In 0
T −InK

]
.

(1.23)
As T = U2U

−1
1 , substituting (1.22) in (1.23) one can derive 1:

F = V ΛFV −1 with: V = U2U
−1
1 U3 − U4 . (1.24)

1Because

[
U1 U3

U2 U4

]
is a unitary, it can be shown that U∗

4
= U4 − U2U

−1

1
U3 and U∗

3
+

U∗

4
U2U

−1

1
= 0
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ΛF is a nK × nK upper triangular matrix which can de decomposed by blocks with
block sizes nK−n and n. The adequate decomposition of V and V −1 allows to write

F = [V1 V2]

[
ΛF

11 ΛF
12

0 ΛF
22

] [
W1

W2

]
(1.25)

with:

V = [ V1︸︷︷︸
nK−n

V2︸︷︷︸
n

] and V −1 =

[
W1

W2

]
}nK − n
}n . (1.26)

Let us perform the change of variable :

ẑ =
[
V1 V2

] [
w1

w2

]
(1.27)

in equations (1.8) and (1.9) and introduce the notations :

[
G̃1

G̃2

]
=

[
W1

W2

]
G;

[
T̃1

T̃2

]
=

[
W1

W2

]
T. (1.28)

Equations (1.8) and (1.9) then become :

{
ẇ1 = F̃11w1 + F̃12w2 +G̃1(y −Du) +T̃1Bu (a)

ẇ2 = F̃22w2 +G̃2(y −Du) +T̃2Bu (b)
(1.29)

and {
T̃1A −F̃11T̃1 − F̃12T̃2 = G̃1C (a)

T̃2A −F̃22T̃2 = G̃2C (b)
(1.30)

Now, we will assume that the Schur decomposition has been performed in such a
way that T̃2 = W2T is non singular (in proposition 1.2.4, a necessary condition for
T to be full column rank is given) and we perform the second change of variable :

w2 = T̃2x̂ (1.31)

From equations (1.29.b) and (1.30.b), one can derive :

˙̂x = Ax̂+Bu+ T̃2

−1
G̃2(y − Cx̂−Du) (1.32)

Using now (1.30.a) and (1.31) to substitute F̃12w2 into equation (1.29.a), we get :

ẇ1 = F̃11(w1 − T̃1x̂) + G̃1(y − Cx̂−Du) + T̃1(Ax̂+Bu) (1.33)
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Pre-multiplying equation (1.32) by T̃1, subtracting it from equation (1.33) and using
the last change of variable :

w1 − T̃1x̂ = xQ (1.34)

we obtain :
ẋQ = F̃11xQ + (G̃1 − T̃1T̃2

−1
G̃2)(y − Cx̂−Du) (1.35)

From (1.7), (1.27), (1.31) and (1.34), one can easily derive the global linear trans-
formation between the compensator original state xK and the new states x̂ and
xQ :

xK = ẑ = [V1 T ]

[
xQ
x̂

]
(1.36)

Then, the compensator output equation (1.5.b) can be expressed as ;

u = CKT x̂+ CKV1xQ +DKy (1.37)

or :
u = Jm [(CKT +DKC)x̂+ CKV1xQ +DK(y − Cx̂−Du)] (1.38)

The identification of the set of equations (1.32), (1.35) and (1.38) with equation
(1.3) provides all the parameters for the observer-based controller structure shown
in figure 1.1 :

Kf = T̃2

−1
G̃2 = (W2T )−1W2G (1.39)

Kc = −Jm(CKT +DKC) (1.40)

AQ = F̃11 = W1FV1 (1.41)

BQ = G̃1 − T̃1T̃2

−1
G̃2 = W1[InK×nK − T (W2T )−1W2]G (1.42)

CQ = JmCKV1 (1.43)

DQ = JmDK (1.44)

Remark 1.2.1 If nK = n , then T is square and the decomposition (1.25) of F is
such that V2 = In×n and V1 is empty. Then equations (1.39)-(1.44) become :

Kf = T−1G = (T−1BK − BDK)Jp (1.45)

Kc = −Jm(CKT +DKC) (1.46)

Q(s) = DQ = JmDK (1.47)

This result then specializes to those of [7].
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1.2.2 Discussion

There is a combinatoric of solutions according to the choice of the partition of the
closed-loop eigenvalues, first, in the computation of matrix T , and secondly, in the
decomposition of matrix F . Hereafter some rules are proposed to reduce the number
of admissible choices.

Proposition 1.2.2 The n eigenvalues chosen for the computation of the solution
T of the Riccati equation (1.16) using the invariant subspace approach are the n
eigenvalues of the closed-loop state feedback associated with the equivalent observer-
based controller, i.e, spec(A− BKc).

Proof : From (1.18), (1.19) and (1.20), we have :

[
A+BJmDKC BJmCK

BKJpC AK +BKDJmCK

] [
In×n
T

]
=

[
In×n
T

]
U1ΛU

−1
1 (1.48)

the first row of this matrix equality reads :

A+BJm(DKC + CKT ) = U1ΛU
−1
1 (1.49)

using (1.40), we have :
A− BKc = U1ΛU

−1
1 (1.50)

So, the eigenvalues of Λ are the eigenvalues of A−BKc. As a consequence, the nK
remaining eigenvalues are the Luenberger observer poles (i.e. spec(F ), see also equa-
tion (1.15)), which are shared, in (1.25), between the nK −n Youla parameter poles
(i.e. spec(AQ)) and the n closed-loop state estimator poles (i.e. spec(A−KfC)).�

Hereafter, we are considering the set of equations (from (1.18), (1.19) and (1.22)) :

[
A+BJmDKC BJmCK

BKJpC AK +BKDJmCK

] [
U1

U2

]
=

[
U1

U2

]
Λ (1.51)

and we shall give a necessary condition, on the choice of the subspace S, for the
existence of a solution T (that is, for U1 to be invertible).

Proposition 1.2.3 Consider U1 and U2 associated with some n-dimensional invari-
ant subspace S of Acl. Assume there is some uncontrollable plant eigenvalue which
is not in spec(Acl|S) then U1 is singular. In other words,

if ∃ λ /∈ spec(Λ) s. t. λ is (A,B) uncontrollable, then U1 is singular (1.52)
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Proof : Consider the (A,B)-pair and let λ denote an uncontrollable eigenvalue with
associated left-eigenvector u. That is,

uT [A− λI | B] = 0 (1.53)

then, pre-multiplying (1.51) by [uT 0], we get :

uT [(A+BJmDKC)U1 +BJmCKU2] = uTU1Λ (1.54)

From (1.53) and (1.54) it follows that :

uTU1(Λ− λI) = 0 (1.55)

So, if λ /∈ spec(Λ) then uTU1 = 0, that is U1 is singular. �

We also have a dual property which concerns the column rank of T (that is, for
U2 to be full column rank). It can be stated as follows.

Proposition 1.2.4 Consider U1 and U2 associated with some n-dimensional in-
variant subspace S of Acl. Assume there is some unobservable plant eigenvalue in
spec(Acl|S), then U2 is column rank deficient. In other words,

if ∃ λ ∈ spec(Λ) s. t. λ is (A,C) unobservable, then U2 is column rank deficient.
(1.56)

Proof : Omitted for brevity. See proposition 1.2.3. �

Propositions 1.2.3 and 1.2.4 are quite useful when an observer-based realization
for H∞ or µ controllers must be computed from the standard problem augmented
with input and output frequency weights (see [3] for more details).

Remark 1.2.5 Among all the admissible choices, the only restriction which can re-
duce the set of solutions is that complex conjugate pairs of poles cannot be separated
if we are seeking state-space representations with real coefficients. Note that such a
choice is not always possible. For instance, consider the plant G(s) = 1/s and the
compensator K0(s) = 2/(s + 2), then the computation of the state feedback-state
estimator form leads to Q = 0, Kc = 1 + i (or 1− i) and Kf = 1− i (resp. 1 + i).
Although the gains Kc and Kf are complex, the transfer function of the controller
has real coefficients. It can be easily shown that:

• if n (model order) is even, then a real solution always exists,
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• if n is odd, then a real solution T exits if the number of real eigenvalues in
spec(Acl) is at least equal to 1 and a real parameterization (Kc, Kf , Q(s))
exits (in the case nK > n) if the number of real eigenvalues in spec(Acl) is at
least equal to 2.

The following selection rules have proved also useful in practical applications of the
method:

• affect the fastest poles to spec(AQ) in such a way that the Youla parameter
acts as a direct feedthrough in the compensator,

• assign to spec(A−BKc) the n closed-loop poles which are the “nearest” from
the n plant poles in order to respect the dynamic behavior of the physical
plant and reduce the state-feedback gains,

• assign fast closed-loop poles to spec(A−KfC) to have an efficient state esti-
mator.

1.2.3 In brief

The procedure to compute the observer-based form and the dynamic Youla param-
eter of a given nKth-order compensator associated with a nth-order plant (nK ≥ n)
can be summarized as follows:

• compute the closed-loop matrix Acl (equations (1.18) and (1.6)) and split up
the n+ nK eigenvalues of Acl into 3 auto-conjugate sets :

– n eigenvalues to be assigned to state feedback dynamics spec(A−BKc),

– nK − n eigenvalues to be assigned to the Youla parameter dynamics
spec(AQ),

– n eigenvalues to be assigned to state estimator dynamics spec(A−KfC),

• compute a Schur or a diagonal decomposition of Acl (equation (1.22)) such
that the eigenvalues are ordered on the diagonal according to the previous
choice; that is: spec(Λ) = spec(A − BKc) and spec(ΛF ) = spec(AQ) ∪
spec(A−KfC),

• compute T , F and G with equations (1.21), (1.12), (1.11),

• compute V , V1, V2, W1, W2 with equations (1.24), (1.26),
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• compute the sought parameters Kc, Kf , AQ, BQ, CQ and DQ using (1.39)-
(1.44) and (1.6).

The reader will find a demo file (corresponding the example proposed in [3]) and an
interactive Matlab function to compute the observer based realization for a given
controller and a given plant in:
http://personnel.supaero.fr/alazard-daniel/demos/demo obr.html.

The help of this function is given below:

==========================================================

Observer-Based Realization of a given controller

==========================================================

[KC,KF,Q,T] = COR2OBR(PLANT,SYS_K) compute a real Observer

Based Realization, that is the Youla parameterization

(defined by Kc, Kf and Q), of a given continuous-time

controller SYS_K for a given continous-time plant

PLANT in the case:

NK (SYS_K order) >= N (PLANT order):

Remarks: * SYS_K, PLANT and Q are defined as SYSTEM matrices,

* a real solution may not exit,

* NQ (order of Q) = NK - N.

This function plots the map of closed-loop eigenvalues (red x)

and PLANT open-loop eigenvalues (blue +) in the complex plane.

Then, the user can choose, in a interactive procedure, the

closed-loop eigenvalue distribution between:

* state feedback dynamics [A-BKc] (blue o),

* state estimation dynamics [A-KfC] (red o),

* Youla parameter dynamics (Q) (green o).

Uncontrollable eigenvalues are automatically assigned to [A-BKc].

Unobservable eigenvalues are automatically assigned to [A-KfC].

(the controller SYS_K is assumed to be minimal).

Auto-conjugate eigenvalues are assigned together.

T is the transformation matrix between the old and the new state

space realizations of the controller:

X_k = T X_hat.
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[KC,KF,Q,T] = COR2OBR(PLANT,SYS_K,TOL) allows a tolerance TOL

(default: 10^-6) to be taken into account in the unobservable

and uncontrollable subspaces computation.

Reference: D. Alazard and P. Apkarian "Exact observer based structures

for arbitrary compensators" International Journal of Robust and

Non-Linear Control, 1999, n.9, pp 101-118

See also: OBR2COR, COR2TFG

1.2.4 Reduced-order compensators case

In the case nK < n (i.e. dim(z) < dim(x)), the observer-based structure shown in
Figure (1.1) is no more valid. But an interesting alternative can be derived using a
reduced-order estimator.

It is interesting to point out the case where [T T CT ] is a rank n matrix (i.e.
p+ nK ≥ n). Then, a reduced observer-based realization involving an estimate x̂ of
the plant state x can be obtained by a linear combination of the compensator state
ẑ and the plant output y (see Luenberger [23]) :

x̂ = H1ẑ +H2(y −Du) (1.57)

with the constraint :
H1T +H2C = In (1.58)

Then, the separation principle still holds and a Youla parameterization (with a
static parameter DQ) built on such a reduced-order estimator reads :





˙̂z = F ẑ +G(y −Du) + TBu (a)
x̂ = H1ẑ +H2(y −Du) (b)
u = −Kcx̂+DQ(y − Cx̂−Du) (c)

(1.59)

{
TA− FT = GC

H1T +H2C = In
(1.60)

As previously, it can be easily shown that the closed-loop poles, with a compen-
sator defined by equations (1.59) and (1.60), are distributed between the n closed-
loop state-feedback poles (spec(A − BKc)) and the nK estimator poles (spec(F )).
Equations (1.16), (1.12) and (1.11) which respectively provide T , F and G are still
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valid. The problem is therefore reduced to compute Kc, H1, H2 and DQ such that
(from the identification of (1.59.b) and (1.59.c) with (1.5.b)) :





JmCK = −(Kc +DQC)H1 (a)
JmDK = −(Kc +DQC)H2 +DQ (b)
H1T +H2C = In (c)

(1.61)

It is easily deduced that :

Kc = −Jm(CKT +DKC) (1.62)

This is the same equation as (1.40), established in the augmented-order compensator
case.

To compute H1, H2 and DQ, the following situations can be considered :

• if

[
T
C

]−1

exists (which implies that nK + p = n) then :

[ H1︸︷︷︸
nK

H2︸︷︷︸
p

] =

[
T
C

]−1

(1.63)

and [
T
C

]
[H1 H2] =

[
TH1 TH2

CH1 CH2

]
=

[
InK 0
0 Ip

]
(1.64)

Hence, relationships (1.61) are satisfied for anyDQ and we can choose DQ = 0

without loss of generality.

• if nK > n−p, then there are several solutions (H1, H2) satisfying (1.61.c), one
can choose for example the least norm solution (in order to reduce the control
gains) using the pseudo-inverse of matrix [T T CT ] :

{
H1 = [T TT + CTC]−1T T

H2 = [T TT + CTC]−1CT (1.65)

Then, from (1.61):

DQ = (JmDK +KCH2)(Ip − CH2)
−1) .

If nK < n−p, it can only be stated that, in open-loop, the compensator state ẑ is
an estimate of the linear combination T of the plant state x, that is, the estimation
error εz = Tx− ẑ tends to 0 with the following dynamics :

ε̇z = (AK + (BKD − TB)JmCK)εz (1.66)
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In this case (nK < n−p), the only way round consists in performing a reduction
of the plant until the previous technique is applicable. The compensator is then
interpreted as an observer-based compensator associated to the reduced plant.

In the next section, the interest of observer-based realizations of given controllers
is highlighted through 3 examples: plant state monitoring, controllers switching and
smooth gain scheduling on a academic second order missile model.

1.3 Illustrations

The model of a missile between the angle of attack α and the thruster deflection δ
can be roughly approximated by the second order transfer function:

G(s) =
1

s2 − 1

associated with the state-space realization:


α̇
α̈
α


 =




0 1 0
1 0 1
1 0 0






α
α̇
δ


 . (1.67)

Let us consider the following stabilizing controller (positive feedback):

K0(s) = −s
2 + 27s+ 26

s2 + 7s+ 18
.

A state space realization (modal canonical form 2) of this controller reads:


ẋ1

ẋ2

δ


 =



−3.5 2.398 1.027
−2.398 −3.5 −1.5
−17.95 1.037 −1






x1

x2

α


 . (1.68)

In this example the closed-loop dynamics reveals multiple eigenvalues:

spec(Acl) = {−2, −2, −2, −1} .

Then, there exists 2 admissible choices to solve in T the Riccati equation (1.16).
The choice spec(A − BKc) = {−1, −2} and the application of the procedure
provides the following parameterization:

Kc = [3 3]; Kf = [4 5]T ; Q = −1 .

2Such a canonical form can be easily obtained using the MATLAB macro-function canon; version
6.5.1. For later versions, canon(SYS,’modal’) provides a different state-space realization.
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Then, the observer-based realization of K0(s) reads:




˙̂α
˙̇̂α
δ


 =



−4 1 4
−6 −3 4
−2 −3 −1






α̂
ˆ̇α
α


 (1.69)

associated with the estimated state vector x̂ = [α̂, ˆ̇α]T .

The corresponding Matlab sequence using functions cor2obr and obr2cor 3

is:

G=pck([0 1;1 0],[0;1],[1 0],0);

cor=tf([-1 -27 -26],[1 7 18]);

[a,b,c,d]=ssdata(canon(cor,’modal’));

K=pck(a,b,c,d);

[Kc,Kf,Q]=cor2obr(G,K)

Kob=obr2cor(G,Kc,Kf,Q)

A demo file for the following illustrations is also available at:
http://personnel.supaero.fr/alazard-daniel/demos/demo obr.html .

1.3.1 Illustration 1: plant state monitoring

Figures 1.2 and 1.3 plot the closed-loop state responses (missile and controller states)
to initial conditions on missile states (α(t = 0) = 1 rd and α̇(t = 0) = −1 rd/s).
Figure 1.2 is obtained when the first controller realization (equation (1.68)) is used
while Figure 1.3 is obtained with the observer-based realization (equation (1.69)).
For both simulations the missile state responses are the same because the initial con-
ditions are the same and the input-output behavior of the controller is independent
of its realization. But, one can see in Figure 1.2 that there is no straightforward
relation between controller states and missile states (α and α̇) while Figure 1.3 high-
lights that (after the transient response of the state estimator) the controller states
of the observer-based realization are good estimate of missile states and can be used
to monitor missile states for off-line or in-line analysis (for failure diagnosis purposes,
for instance). As the plant state are meaningful variables (α (rd) and α̇ (rd/s)),
one can also conclude that the state feedback gain Kc has a physical dimension:
Kc = [3. rd/rd 3. s]; while the dimension of the various components of realization
(1.68) is not defined.

3See :http://personnel.supaero.fr/alazard-daniel/demos/demo obr.html .
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Figure 1.2: Responses to initial conditions on missile states - modal canonical real-
ization of K0(s) (equation (1.68)).
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Figure 1.3: Responses to initial conditions on missile states - observer-based real-
ization of K0(s) (equation (1.69)).
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1.3.2 Illustration 2: controllers switching

Let us consider a second stabilizing controller:

K1(s) = − 1667s+ 2753

s2 + 27s+ 353

and let us assume that the control law must switch from controller K0 to controller
K1 at time t = 5 s . This new controller increases closed-loop dynamic performances
required, for instance, during the final flight phase (just before the impact). Indeed,
the closed-loop dynamics is now:

spec(Acl) = {−3, −4, −10 + 10 i, −10− 10 i} .

Note that the structure of this new controller K1 is quite different from the previous
one (the direct feed-through term is null in K1). An observer-based parametrization
for K1(s) reads 4:

Kc = [13 7]; Kf = [20 201]T ; Q = 0 .

The state vector initialization of the second controller K1 with the value of the
state vector of the first controller at the switch time (5 s) can create an undesirable
transient response (see Figure 1.4 when modal canonical realizations are used for K0

and K1). The meaningful state of the observer-based realizations of both controllers
allows to initialize correctly the second controller and so allows the transient response
on the attitude α(t) to be reduced in a significant way (see Figure 1.5).

1.3.3 Illustration 3: smooth gain scheduling

Now, let us assume that one wishes to interpolate the controller from K0 to K1

over 5 s. The linear interpolation of the 4 state-space matrices of modal canonical
realizations provides a non-stationary controller K(s, t) whose frequency response
w.r.t. time t is depicted in Figure 1.6. One can notice that this response is non-
monotonous at low frequency and one can also easily check that, at time 2 s, the
controller K(s, 2) does not stabilize the plant G(s).

The interpolation of the 4 state-space matrices of observer-based realizations of
K0 and K1 provides a smoother interpolation (see Figure 1.7). One can also check
that this new interpolated controller stabilizes G(s) for all time t ∈ [0, 5s].

4This observer-based parametrization corresponds to the choice affecting the two real closed-
loop eigenvalues (i.e. −3 and −4) to the state feedback dynamics).
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Figure 1.4: Responses to initial conditions and switch from K0(s) to K1(s) at time
t = 5 s - modal canonical realizations of Ki(s).
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t = 5 s - observer-based realizations of Ki(s).
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Figure 1.6: K(s, t): singular value w.r.t time.
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Figure 1.7: Kobserver−based(s, t): singular value w.r.t time.
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1.4 Cross standard form

In most practical applications, the control design problem can be expressed in the
following terms: is it possible to improve a given controller (often, a simple low-
order controller designed upon a particular know-how or good sense rules) to meet
additional H2 or H∞ specifications? or in other terms: is it possible to take into
account a given controller (which meets some closed-loop specifications) in a stan-
dard H2 and H∞ control problem? To address this problem, the notion of Cross
Standard Form (CSF) is introduced in this section for a given nth-order plant and
an arbitrary given stabilizing nKth-order controller. The CSF can be seen as a so-
lution for both inverse H∞ and H2 optimal control problems, that is: the CSF is
a standard augmented problem whose unique H∞ and H2 optimal controller is an
arbitrary given controller. The CSF is directly defined by the 4 state space matrices
of the plant, the 4 state space matrices of the given controller and the solution T
to the general non-symmetric Riccati equation (1.16) introduced in section 1.2 to
compute the observer-based realization of a given controller for a given plant. The
CSF can be applied to full-order, low-order or augmented-order controllers.

The interest for inverse optimal control problems motivates lots of works ([19],
[24], [13],[17],[14] [27]). The practical interest of such solutions lies in the possibility
to mix various approaches or take into account different kind of specifications ([31],
[30], [28]). In the particular case of theH∞ optimal control problem, the various con-
tributions address restrictive cases: state feedback controller in [14], single-output
single-output controller and specific sensitivity problem in [17]. But a solution for
the general case (multi input multi-output, dynamic output feedback of arbitrary or-
der) has never been stated. This general case is addressed in [27]: for a given weight
system W (s) and a given controller K(s), the problem is to find all the plants G(s)
such that ‖Fl(Fl(W,G), K)‖∞ < γ (see Figure 1.8). Note that the problem consid-
ered in this section is different since the plant G(s) (that is, the lower right-hand
transfer matrix of the standard augmented plant P = Fl(W,G)) is given and cor-
responds to the model of the plant between the control input and the measured
output.

The convex closed-loop technique [9] seems also an attractive approach to take
into account a given controller and additional H2 or H∞ constraints. But such an
approach needs a Youla parameterization of the controller and so is limited to full-
order (observer-based) controllers. Furthermore, this approach leads to very high
order controller.

In section 1.4.1, the CSF is defined as a solution to H2 and H∞ inverse optimal
control problems, for an nth-order Linear Time Invariant (LTI) system and a nKth-
order stabilizing LTI controller. In section 1.4.2, an analytical expression of a CSF
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Figure 1.8: Block diagram of standard plant P , weight function W , model G and
controller K.

is proposed for low-order controllers (nK ≤ n) and the existence of such a CSF is
discussed. In section 1.12, this new CSF is extended for augmented-order controllers
and so encompasses previous results presented in [5]. Finally, the missile second
order example is used in section 1.4.4 to highlight the way to use CSF to take into
account an initial low-order compensator and a frequency-domain specification in
an augmented standard problem.

1.4.1 Definitions

The general standard plant between exogenous input w, control input u, controlled
output z and measurement output y is denoted:

P (s) =

[
Pzw(s) Pzu(s)
Pyw(s) Pyu(s)

]
,

with corresponding state space realization:

P (s) :=




Ap B1 B2

C1 D11 D12

C2 D21 D22


 . (1.70)

Let us consider again the plant G(s) defined in (1.2) and the stabilizing initial
controller K0(s) defined by (1.5).

Definition 1 (Inverse H2 optimal problem)
Find a standard plant P (s) such that:
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• Pyu(s) = G(s),

• K0 stabilizes P (s),

• K0(s) = arg minK(s) ‖Fl(P (s), K(s))‖2,

(namely: K0(s) minimizes ‖Fl(P (s), K(s))‖2).

Definition 2 (Inverse H∞ optimal problem)
Find a standard plant P (s) such that:

• Pyu(s) = G(s),

• K0 stabilizes P (s),

• K0(s) = arg minK(s) ‖Fl(P (s), K(s))‖∞.

Definition 3 (Cross Standard Form)
If the standard plant P (s) is such that the 4 conditions:

• C1: Pyu(s) = G(s),

• C2: K0 stabilizes P (s),

• C3: Fl(P (s), K0(s)) = 0,

• C4: K0 is the unique solution of the optimal H2 or H∞ problem P (s),

are met, then P (s) is called the Cross Standard Form (CSF) associated with the
system G(s) and the controller K0(s) and will be denoted PCSF (s) in the sequel.

By construction, the CSF solves the inverse H2 optimal problem and the inverse
H∞ optimal problem. Note that the uniqueness condition C4 is relevant in our
context since we are looking for an H2 or H∞ design to recopy a given controller.
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1.4.2 Low-order controller case (nK ≤ n)

The following proposition provides a general analytical characterization of the CSF.

Proposition 1.4.1 For a given stabilizable and detectable nth order system G(s)
(equation (1.2)) and a given stabilizing nKth order controller K0(s) with nK < n
(equation (1.5)), a CSF reads:

PCSF (s) :=




A T#BK − BDK B
−CKT −DKC DKDDK −DK Im −DKD

C Ip −DDK D


 (1.71)

where T is the solution of the generalized Riccati equation (1.16) and where T# is
a right inverse 5 of T (such that TT# = InK).

Proof: from (1.71), it is obvious that conditions C1 and C2 are met. A state
space realization of Fl(PCSF , K0) associated with state vector [xT , xTK ]T reads:



A+BJmDKC BJmCK T#BK

BKJpC AK +BKDJmCK BK

−CKT CK 0




where Jm and Jp are defined in (1.6). Let us consider the change of state coordinates
(already defined in equation (1.14)) :

M =M−1 =

[
In 0
T −InK

]
(1.72)

where T is a solution of (1.16) and TT# = InK . The new state space realization of
Fl(PCSF , K0) reads:



A +BJm(DKC + CKT ) −BJmCK T#BK

0 AK + (BKD − TB)JmCK 0
0 −CK 0


 (1.73)

So the n+ nK stable close-loop eigenvalues are composed of:

• n eigenvalues of A + BJm(DKC + CKT ) which are unobservable by the con-
trolled output z of PCSF ,

5see also proposition 1.4.2.
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Figure 1.9: Block-diagram of Cross Standard Form PCSF (s) (case nK ≤ n).

• nK eigenvalues of AK + (BKD − TB)JmCK which are uncontrollable by the
exogenous input w of PCSF .

Thus, condition C3 is met:

Fl(PCSF (s), K0(s)) = 0 .

In the next section it is shown that it is always possible de find a right inverse T#

of T such that the uniqueness condition C4 is met and that ends the proof.

�

The general block-diagram associated with PCSF is depicted in Figure 1.9. One
can notice that the CSF is a one block problem and can be seen as a combination of
well-known Output Estimation (OE) problem and Disturbance Feed-forward (DF)
problem [36]. So, if both cross transfers (Pzu(s) and Pyw(s)) are minimum phase
(no zero in the closed right half plane), then both H2 and H∞ syntheses converge
towards the same H∞ performance index (γ) [35]. But for the standard problem
PCSF , one can state that γ = 0 and that both syntheses are exactly equal.

Uniqueness condition

The uniqueness condition (C4) can be proven considering the H2-optimal controller
of PCSF : first of all, to vanish the direct feed-trough between exogenous inputs and
controlled outputs in PCSF , a simple change of variable (u← u−DKy) is performed
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to transform PCSF into the problem PCSF (s):



A +BJmDKC T#BK BJm
−CKT 0 Im
JpC Ip DJm


 (1.74)

and thus:

Fl(PCSF , K) = Fl(PCSF , K −DK) ,

arg min
K
‖Fl(PCSF , K)‖ = arg min

K
‖Fl(PCSF , K)‖+DK .

In [12, 36], it is demonstrated that a standard problem P has a unique H2-optimal
controller if and only if P is a regular problem. That is, in our case, if cross transfers

Pzu(s) :=

[
A + BJmDKC BJm

−CKT Im

]
and Pyw(s) :=

[
A+BJmDKC T#BK

JpC Ip

]
have

no invariant zeros on the jω axis. It is clear that the n zeros of Pzu(s) are the n
eigenvalues of φzu = A+BJm(DKC +CKT ) (φzu is the dynamic matrix of P−1

zu (s))
and, considering (1.73), belong to the set of n+nK closed-loop eigenvalues and thus,
are stable by assumption. So, Pzu(s) has no zeros on the jω axis.

The problem of the zeros of Pyw(s) is more complex: the n zeros of Pyw(s)
are the n eigenvalues of φyw = A + BJmDKC − T#BKJpC (φyw is the dynamic
matrix of P−1

yw (s)). Then, pre-multiplying φyw by N = [T# T⊥], post-multiplying
by N−1 = [T T T⊥]T and using (1.16) it comes:

N−1φywN =

[
AK + (BKD − TB)JmCK 0

? T⊥T (A+BJmDKC − T#BKJpC)T⊥

]
.

The n zeros of Pyw(s) are therefore composed of:

• nK eigenvalues of AK + (BKD − TB)JmCK . Considering (1.73), these eigen-
values belong to the set of n+nK closed-loop eigenvalues and thus, are stable
by assumption,

• n − nK eigenvalues of ϕ(T#) = T⊥T (A + BJmDKC − T#BKJpC)T⊥ whose
location in the complex plane is discussed in the following proposition.

Proposition 1.4.2 It is always possible to find a right inverse T# of T such that
all the n − nK eigenvalues of ϕ(T#) (and thus all the n zeros of the cross transfer
Pyw) are not on the jω axis.
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Proof: the set of right-inverse matrices of T can be parameterized in the following
way:

T# = T+ + T⊥X

where X is a (n− nK)× nK matrix of free parameters. Then:

ϕ(T#) = ϕ(X) = T⊥T (A+BJmDKC)T⊥ −XBKJpCT
⊥ . (1.75)

So, X allows the n − nK eigenvalues of ϕ to be assigned in the s-plane. The
computation of X is in fact an eigenvalue assignment problem by a state feedback

XT on the pair (T⊥T (A+BJmDKC)TT⊥, (BKJpCT
⊥)T ).

�

So, the proposition 1.4.2 allows to state that Pzu(s) has no zeros on the jω
axis. Thus PCSF (s) is regular and K0(s) is the unique solution of the H2-optimal
problem PCSF .

As Fl(PCSF , K0) = 0, all controllers solution of the H∞-optimal problem are also
solutions of the H2-optimal problem. Thus K0(s) is also the unique solution of the
H∞-optimal problem PCSF .

Existence of a CSF

Proposition 1.4.3 The non-existence of a full row rank matrix T solution of the
generalized non-symmetric Riccati equation (1.16) implies the non-existence of a
CSF for G(s) and K0(s).

Contrariwise prof: let us assume that a regular CSF exists for the strictly
proper stabilizing controller K0(s) − DK and for the stabilizable and detectable
modified system G(s) (such a change of variable is not restrictive):

G(s) :=

[
A+BJmDKC BJm

JpC DJm

]
.

Then it is shown in [12] that the unique solution K̂H2
of the corresponding H2-

optimal problem involves a state feedback gain Kc and a state estimator gain Kf

(according to the structure depicted in Figure 1.3 with Q(s) = 0). The n-th order
state space realization of such a controller associated with the state vector x̂ reads:

K̂H2
:=

[
A + BJmDKC −BJmKc −KfJpC + KfDJmKc Kf

−Kc 0

]
. (1.76)
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As the solution is unique: K̂H2
(s) = K0(s)−DK . Thus the state space realization

(1.76) is non-minimal if nK < n. Thus a projection matrix SnK×n (full-row rank)
exits such that: xK = Sx̂ and

S(A+BJmDKC − BJmKc −KfJpC +KfDJmKc) = AKS

SKf = BK

−Kc = CKS .

Thus S solves the following equation:

S(A + BJmDKC) + SBJmCKS −BKJpC − (AK + BKDJmCK)S = 0 . (1.77)

This equation is exactly the same as the Riccati equation (1.16) in T . Thus, If T
(or S) does not exist, then the Cross Standard Form for given G(s) and
K0(s)−DK (or G(s) and K0(s)) does not exist.

�

Remark 1.4.4 This last proposition highlights that the controller K̂(s) provided by
H2 or H∞ design on PCSF is non-minimal. It can be shown that the n − nK non-
minimal dynamics in K̂(s) are assigned to the eigenvalues of ϕ(X) (equation (1.75))
and thus can be assigned by a suitable choice of X (see example in section 1.4.4).

1.4.3 Augmented-order controller case (nK > n)

In the case nK > n, the Cross Standard Form is directly defined from the 3 param-
eters Kc, Kf and Q(s) of the observer-based realization of K0(s) (see Figure 1.10
and see [5] for the proof). These parameters can be computed using the procedure
presented in section 1.2.3.

1.4.4 Illustration

The results of this section are illustrated on the missile example G(s) presented in
section 1.3. Let us consider the system described in equation (1.67) and the initial
controller

K0(s) =
−23s− 32

s+ 12
= −23

s + 1.391

s+ 12
:=

[
−12 4
61 −23

]
.

The only real solution T of (1.16) reads :

T = [0.32787 − 0.032787] .
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Figure 1.10: Block diagram of Cross Standard Form PCSF (case nK > n).

Let us choose T# = T+, then the CSF (equation (1.71)) reads:

PCSF :=




0 1 12.079 0
1 0 21.792 1
3 26 23 1
1 0 1 0


 .

It is easy to check that the optimal H∞ controller reads:

K∞(s) = −23
(s+ 1.391)(s+ 2.079)

(s+ 12)(s+ 2.079)
.

The corresponding Matlab sequence using function cor2tfg 6 is:

a=[0 1;1 0];b=[0;1];c=[1 0];d=0;

AK=-12;BK=4;CK=61;DK=-23;

T=cor2tfg(pck(a,b,c,d),pck(AK,BK,CK,DK))

Tm1=pinv(T);

plant=pck(a,[Tm1*BK-b*DK b],[-CK*T-DK*c;c],...

[-DK+DK*d*DK,eye(size(d,2))-DK*d;eye(size(d,1))-d*DK d]);

K=hinfsyn(plant,1,1,0,1000,0.01);

[ak,bk,ck,dk]=unpck(K);

zpk(ss(ak,bk,ck,dk))

6See :http://personnel.supaero.fr/alazard-daniel/demos/demo obr.html .
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Furthermore, equation (1.75) reads:

ϕ(X) = −2.0792− 0.39801X and ϕ(246.02294) = −100 .

Then the choice:

T# = T+ + 246.0229T⊥ = [27.5 244.5]T

leads to a new PCSF and a new optimal H∞ controller:

K∞(s) = −23
(s+ 1.391)(s+ 100)

(s+ 12)(s+ 100)
.

In both designs, K∞ is not minimal and K∞ = K0.

Improving K0 with frequency domain specification

In fact, K0 has been designed to assign the dominant closed-loop eigenvalues to
−1± i. Indeed:

poles of
1

1−K0(s)G(s)
= {−1 + i, −1− i, −10}.

The magnitude of the frequency-domain response of K0(s) is plotted in Figure 1.11
(solid line). Now, let us assume we want the controller to have a roll-off behavior
beyond 10 rd/s and must fulfill the low-pass template also depicted in Figure 1.11
(grey patch). Such a specification can be formulated to attenuate missile flexible
modes which are not taken into account in the design model G(s).

This specification can be handled, in H∞ framework, in weighting the closed-
loop transfer from a disturbance on the plant output (measurement noise) to the
plant input u 7. It is obvious that, in the standard problem associated to the CSF
(see Figure 1.9), the plant input u is directly linked to the controlled output z.
Then, in order to take into this frequency-domain specification, one can augment
this standard problem with a noise w′ acting on the measurement y and weighted
by a second order high pass filter (in order to get a −40 dB/dec roll-off behavior).
The augmented CSF is then depicted in Figure 1.12. The high-pass filter W (s) is
in fact a second order derivative filter whose poles (−1000√

2
(−1 ± i)) are introduced

for properness reasons. The gain g is tuned by a try and error procedure. The
tuning g = 0.02 provides a 4th-order H∞ optimal controller K(s) whose frequency
response is depicted in Figure 1.11 (dashed line). The template is now fulfilled and

7Such a transfer reads: K(Im −KG)−1 (with positive feedback).
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one can check that the closed-loop dominant dynamics is assigned to the nominal
values −1± i. Indeed:

poles of
1

1−K(s)G(s)
= {−1± i, −9.7947, −14.272± 12.985 i, −1424.5}.
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Figure 1.11: Frequency-domain responses (magnitude) ofK0(s) (solid line) andK(s)
(dashed line) and template (grey patch).
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1.5 Discrete-time case

Techniques presented in sections 1.2 and 1.4 in the continuous-time case are now
extended to the discrete-time case (proofs are omitted for brevity).

The discrete-time plant G(z) (order n) is defined as :

{
x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k) +Du(k)

(1.78)

The discrete-time controller K0(z) (order nK) is defined as :

{
xK(k + 1) = AKxK(k) +BKy(k)
u(k) = CKxK(k) +DKu(k)

(1.79)

Two classical implementation structures of discrete-time observer-based con-
trollers can be used: the predictor and the estimator structures.
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1.5.1 Discrete-time predictor form

The predictor form is described by :




x̂(k/k) = Ax̂(k/k − 1) +Bu(k) Prediction
x̂(k + 1/k) = x̂(k/k) +Kf (y(k)− Cx̂(k/k − 1)−Du(k)) Correction
u(k + 1) = −Kcx̂(k + 1/k) Control

(1.80)
This case is analogous to the continuous-time one. The construction procedure is
therefore the same. It provides the parameters Kp

c , K
p
f , A

p
Q, Bp

Q, Cp
Q and Dp

Q of
the Youla-parameterization associated with the predictor form whose state-space
representation reads :




x̂(k + 1/k) = Ax̂(k/k − 1) +Bu(k) +Kp
f (y(k)− Cx̂(k/k − 1)−Du(k))

xQ(k + 1) = ApQxQ(k) +Bp
Q(y(k)− Cx̂(k/k − 1)−Du(k))

u(k) = −Kp
c x̂(k/k − 1) + Cp

QxQ(k) +Dp
Q(y(k)− Cx̂(k/k − 1)−Du(k))

(1.81)

1.5.2 Discrete-time estimator-form

The estimator structure of an observer-based controller is now described as :



x̂(k + 1/k) = Ax̂(k/k) +Bu(k) Prediction
x̂(k + 1/k + 1) = x̂(k + 1/k) +Kf (y(k + 1)− Cx̂(k + 1/k)−Du(k + 1)) Correction
u(k + 1) = −Kcx̂(k + 1/k + 1) Control

(1.82)
In contrast to the previous case, this discrete-time estimator controller exhibits a
direct feed-through between y(k) and u(k) but the separation principle still holds :
the closed-loop transfer function between the input reference and the innovation
y(k) − Cx̂(k/k − 1) − Du(k) is zero and the closed-loop poles can be splitted into
the closed-loop state-feedback poles (spec(A− BKc)) which are unobservable from
the innovation, and the closed-loop state-estimator poles (spec(A(I−KfC))) which
are uncontrollable by the reference input. The Youla-parameterization associated
with this structure is depicted in Figure 1.13 and reads :




x̂(k + 1/k) = Ax̂(k/k − 1) +Bu(k) + AKf (y(k)− Cx̂(k/k − 1)−Du(k))
xQ(k + 1) = AQxQ(k) +BQ(y(k)− Cx̂(k/k − 1)−Du(k))
u(k) = −Kcx̂(k/k − 1) + CQxQ(k) + (DQ −KcKf)(y(k)− Cx̂(k/k − 1)−Du(k))

(1.83)

We know from sections 1.2 and 1.5.1 how to compute all the parameters (Kp
c ,

Kp
f , A

p
Q, Bp

Q, Cp
Q and Dp

Q) of the predictor form and the corresponding Youla pa-
rameterization, from a given compensator (AK , BK , CK , DK) and a given plant
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Figure 1.13: The discrete-time Youla parameterization using state estimator struc-
ture (where x̂k = x̂(k/k − 1)).



38

(A, B, C, D). As a consequence, the parameters (Kc, Kf , AQ, BQ, CQ and DQ)
of the equivalent estimator form can be obtained by direct identification of the
representations (1.81) and (1.83). This yields :

Kc = Kp
c , Kf = A−1Kp

f ,

A′
Q = ApQ, BQ = Bp

Q, CQ = Cp
Q, DQ = Dp

Q +Kp
cK

p
f

(1.84)

1.5.3 Discrete-time Cross Standard Form

In the case of low-order controller (nK ≤ n), the general expression for the CSF
(equation 1.71) is valid for the discrete-time case.

In the case of augmented-order controller (nK ≥ n), it is possible to define the
CSF associated with an estimator form of the controller (1.83), This CSF reads :

PCSF (z) :=




A 0 AKf B
0 AQ BQ 0
Kc −CQ −DQ +KcKf Im
C 0 Ip D


 . (1.85)

The block diagram associated with this Cross Standard Form is depicted in Figure
1.14.
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Figure 1.14: Discrete-time Cross Standard Form.
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1.6 Launch vehicle control problem

CSF and gain scheduling using observer-based realization are illustrated in this
section on a control design problem for a launch vehicle (representative of a strategic
missile).

1.6.1 Description

This application considers the launch vehicle inner control loop. According to Figure

β

w

Z

X
x

ψ

i

Vr Va

G

+

Figure 1.15: Launch vehicle simplified representation.

1.15, the following notation is used:

• i : the launch vehicle angle of attack,

• ψ : the deviation angle around axis w.r.t. the guidance attitude reference,

• Va and Vr : respectively, the absolute and the relative velocity,

• w : the wind velocity,

• β : the thruster angle of deflection,



40

• ż: the lateral drift rate.

The rigid behavior is modelled by a third-order system with state vector :xr =
[ ψ ψ̇ ż ]T . This rigid model strongly depends on 2 uncertain dynamic parameters
A6 (aerodynamic efficiency) and K1 (thruster efficiency).
From Figure 1.15 and under small angle assumption, one can derive the angle of
attack equation :

i = ψ +
ż − w
V

. (1.86)

The discrete-time validation model considered in this section (that is the full-
order model Gf (z)) is characterized by the rigid dynamics, the dynamics of thrusters
(order 2), sensors (order 2) and the first 5 bending modes (order 10). The launch
vehicle is aerodynamically unstable. Finally, the characteristics of bending modes
are uncertain (4 uncertain parameters per mode).

1.6.2 Objectives

The available measurements are the attitude angle (ψ) and rate (ψ̇). The control
signal is the thruster deflection angle β. Launch vehicle control objectives for the
whole atmospheric flight phase are as follows:

• performance with respect to disturbances (wind): the angle of attack peak,
in response to the typical wind profile w(t), must stay within a narrow band
(± imax). This wind profile is plotted in Figure 1.16 (dashed plot) and corre-
sponds to a worst case wind encountered during launches with a strong gust
when aerodynamic pressure is maximal,

• closed-loop stability with sufficient stability margins. This involves constraints
on the rigid mode but also on the flexible modes. In fact, the first flexible
mode is “naturally” phase controlled (collocation between sensors and actua-
tor) while other flexible modes must be gain controlled (roll-off). So, the peaks
associated with the flexible modes (except for the first) on the frequency re-
sponse of the loop gain (L(s) = K(s)G(s)) must stay below a specified level
XdB for all parametric configurations (see Figure 1.21 as an example). From
the synthesis point of view, the flexible modes are not taken into account in
the synthesis model. But a roll-off behavior with a cut-off frequency between
the first and the second flexible modes must be specified in the synthesis,

• delay margin must be greater than one sampling period.
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All these objectives must be achieved for all configurations in the uncertain pa-
rameter space (22 uncertain parameters including aerodynamics coefficient, propul-
sion efficiency and bending modes characteristics), particularly in some identified
worst cases where the combination of parameter extremal values is particularly crit-
ical. In this paper, the robustness analysis is limited to these worst cases as the
experience has shown that they are quite representative of the robustness problem.
A more complete µ-analysis is presented in [16].

1.6.3 Launch vehicle control design

The approach proposed to satisfy all theses stationary objectives proceeds in 2 steps :
the first one aims to satisfy time-domain specification (angle of attack constraint)
and the second one is a H∞ synthesis based on the CSF allowing the frequency-
domain specifications (roll-off, stability margins) to be met.

The models used for the synthesis are discrete-time models including a zero-order
hold.

First synthesis : non conventional LQG/LTR synthesis

State feedback on the rigid model

The standard control problem is characterized by 2 controlled outputs i and ż, 2
measurements ψ and ψ̇, 1 control signal β and 1 exogenous input w (disturbance).
This standard problem reads :




ẋr

i
ż
ψ

ψ̇




=



A B1 B2

C1 D11 D12

C2 D21 D22






xr

w
β


 (1.87)

Then, the gain Kd is computed such that the discrete-time control law βk = −Kd x
r
k

minimizes the following continuous-time LQ criterium :

J =

∫ ∞

0

(
αż2 + i2 + rβ2

)
dt =

∫ ∞

0

(
xr

T

Qxr + βTRβ + 2xr
T

Nβ
)
dt. (1.88)

with:

Q = CT
1

[
1 0
0 α

]
C1, R = r, N = 03×1 .
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The model and the performance index are discretized by taking into account the
zero-order hold at the input βk:

Jd =
∞∑

k=1

(xrk
TQdx

r
k + βTk Rdβk + 2xrk

TNdβk) (1.89)

for the discrete-time model xrk+1 = Adx
r
k+B2dβk. The matrices (Ad, B2d , Qd, Nd and

Rd) involving the matrix exponential are computed using the Van Loan’s Formula
[22].
Adopting the notation :

Kd = [Kψ, Kψ̇, Kż] , (1.90)

the gain Kd can be used to built a servo-loop of the measured variable ψ, that is :

βk = Kψ(ψrefk − ψk)−Kψ̇ψ̇k −Kż żk (1.91)

where ψrefk is the input reference.

Augmented state with wind dynamic

The wind dynamics is modelled by a stable first-order filter and is then discretized
with the zero-order hold method:

wk+1 = Awwk + w̃k .

This disturbance feed-forward model introduces a new tuning parameter Aw. The
discrete-time augmented problem corresponding to the state vector xa = [xr, w]T

then reads :



xak+1

ik
żk
ψk
ψ̇k




=




Ad B1d 0 B2d

0 Aw I 0
C1 D11 0 D12

C2 D21 0 D22






xak
w̃k
βk


 =



Aad Ba

1d
Ba

2d

Ca
1 0 D12

Ca
2 0 D22






xak
w̃k
βk


 (1.92)

with: B1d =
∫ Ts

0
eAηB1 dη.

In order to compute the new state feedback gain Ka
d associated with the aug-

mented state xa, equation (1.91) is used with ψrefk such that the angle of attack due
to disturbance w is cancelled (see equation 1.86), that is :

ψrefk =
wk − żk
V

.

Then, the term żk
V

is ignored because it can introduce non-stabilizing couplings in
the lateral motion. Finally, the gain Ka

d is obtained as:

Ka
d =

[
Kd −Kψ

V

]
. (1.93)
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Following this procedure, the LQ state feedback closed-loop dynamics is stable and
satisfies:

spec(Aad −Ba
2d
Ka
d ) = spec(Ad −B2dKd) ∪ spec(Aw)

Kalman’s filter with LTR tuning

To compute the gain Ga
d of the Kalman’s filter on the augmented model (Aad,

Ba
2d

, Ca
2 , D22), an LTR tuning is proposed. It is well known that stability margins of

the LQ state feedback are degraded when the Kalman’s filter is introduced in the
control loop. The LTR procedure allows these stability margins to be recovered [6].
Thus, the state noise is composed of 2 disturbing signals: one on the wind model
input (w̃) and one on the control input β through a gain

√
ρ (LTR effect) :

W =

[
ρB2B2

T 0
0 I

]
and V = v

[
1 0
0 ω2

f

]

W and V are the covariance matrices of continuous-time noises on the state vector
(xa) and the measurement vector ([ψ, ψ̇]T ), respectively. Therefore the Kalman

filter tuning depends on 3 parameters: ρ (LTR weighting), v (measurement to state
noise ratio) and ωf (rd/s) (rate to position measurement noise ratio). ωf represents
the frequency beyond which it is better to integrate the rate measurement ψ̇ to
estimate the position ψ̂ than to use the measurement position ψ directly.

The covariance matrices, Wd and Vd, of discrete-time noises on the state vector
and the measurement vector are also discretized using Van Loan’s formulae.
This non conventional LQG/LTR design yields a 4th-order compensator K1(z) in-
volving the gains Ka

d and Gd
a, the augmented model (Aad, B

a
2d

, Ca
2 , D22) and is defined

by equation (1.83) without Youla parameter Q(z). The results obtained so far are
presented in Figures 1.16 and 1.17.

In Figure 1.16 it can be observed that the performance requirements (angle of
attack) are quite satisfied for all worst cases. In Figure 1.17, one can also note
that the template for low frequency stability margins is satisfied (this templates
is depicted in Figure 1.17 with the vertical line on the first critical point on the
right-hand side) and the first flexible mode remains between two critical points for
all worst cases (phase control). But the roll-off effect is not strong enough: the
template for gain margins on flexible modes number 2 and 3 (depicted in Figure
1.17 with the horizontal line at X dB) is not satisfied in no case. Note that Nichols
plots are obtained with discrete-time transfers: it appears that flexible modes 4 and
5 are aliasing between flexible modes 1 and 3. These modes are not significant for
the control design.
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Figure 1.16: Angle of attack i(t) (solid) obtained with K1(z) and wind profile w(t)
(dashed, normalized unit).
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Figure 1.17: K1(z)Gf(z): Nichols’s plots for worst cases.
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Second synthesis : H∞ synthesis using CSF for frequency-domain speci-
fications

In order to satisfy this last frequency domain requirement, an H∞ synthesis is per-
formed on the standard problem depicted in Figure 1.18 :

+
+

.

+
+

+
+

+

++

2q

+
+

e

yu

q1

.

.
.

. z�1IAad
D22

Kad
Ca2

F (z)

Ba2d
Gad

Figure 1.18: Pf(z) : setup for the final H∞ synthesis.

This standard problem can be described as follows:

• between inputs [e u]T and outputs [q2 y]T , one can recognize the CSF pre-
sented in section 1.4 which will inflect the solution towards the previous pure
performance compensator (LQG/LTR design),

• the output q1 is introduced to specify the roll-off behavior with a 2nd-order
filter F (z) in order to fulfil the gain margin template on flexible modes number
2 and 3.

The output q1 in fact weighs the 2nd-order derivative of the control signal u. The
frequency domain response of F (z) is depicted in Figure 1.19. This response exhibits
a wide hump centered on the flexible modes 2 and 3. This hump frames peak
variations of flexible modes 2 and 3 for all worst cases.

Then, the H∞ synthesis provides a 6th-order compensator K2(z). Analysis re-
sults are displayed in Figures 1.20 and 1.21. The time-domain performance specifi-
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Figure 1.19: Singular values: F (z) (black) and Gf(z) (grey).

cation is still met (Figure 1.20). Figure 1.21 shows that stability margins are good
enough for all worst cases and the roll-off behavior is now quite satisfactory.

Ti Tf

−i_max

0

+i_max

Figure 1.20: Angle of attack i(t) (solid) obtained with K2(z) and wind profile w(t)
(dashed).
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Figure 1.21: K2(z)Gf(z): Nichols’s plots for worst cases.

1.6.4 Gain-scheduling

The previous stationary design has been applied for various instants ti along the
flight envelope. The H∞ solver which has been used is the Matlab macro-function
dhinfric because it provides the best index γ among the various algorithms pro-
posed in the various Matlab toolboxes. The drawback of this algorithm lies in the
fact that the solution Ki

2(z) is not the central DGKF solution. Because of multiple
variable changes performed to increase numerical conditioning in Riccati equations,
the realization of the solution has no physical meaning. The linear interpolation of
the 4 matrices (AiK , Bi

K , Ci
K and Di

K) provides a non-stationary compensator noted
K2(z, t) with a awkward behavior as can be seen from the evolution of the singular
value of K2(z, t) as a function of time t during the atmospheric flight (Figure 1.22).

This problem can be easily mastered using observer-based realizations. Thus,
an observer-based realization of each compensator Ki

2(z) is computed using the
approach presented in 1.2. The model used in this realization is the transfer between
u and y of the standard problem Pf(z) (see Figure 1.18). The main difficulty with
this approach is that the observer-based realization is not unique and depends on the
way the closed-loop dynamics Fl(P

i
f(z), K

i
2(z)) is split between the state feedback

dynamics and the state estimation dynamics. Considering the particular structure
of the standard problem Pf(z), this difficulty is easily overcame:
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Let

[
AF BF

CF DF

]
be a realization of the weighting filter F (z), then the realization

of the augmented plant Pf(z) depicted in Figure 1.18 is given as:

Pf (z) :=




Aad 0 AadG
a
d Ba

2d

0 AF 0 BF

0 CF 0 DF

Ka
d 0 Ka

dG
a
d 1

Ca
2 0 I2×2 D22




=



A B1 B2

C1 D11 D12

C2 I2×2 D22


 .

One can also derive:

spec(A− B1C2) = spec(Aad(I −Ga
dC

a
2 )) ∪ spec(AF ) .

The first term (spec(Aad(I−Ga
dC

a
2 ))) represents the stable dynamics of the Kalman

filter previously designed. The second term (spec(AF )) stands for the roll-off filter
dynamics which must be chosen stable. It can be shown that our standard problem
Pf(z) is a pure Disturbance Feed-forward (DF) problem (see [18] and appendix in
[34]) and that half of the closed-loop dynamics of Fl(Pf (z), K2(z)) will be assigned
to spec(A−B1C2) for any value of the final index γ. This dynamics must be assigned
to the state estimation dynamics when one wants to find the equivalent observer-
based of the compensator K2(z) using the procedure proposed in section 1.2. Then,
the observer-based realization becomes unique.

Let us note

[
AiLQG Bi

LQG

Ci
LQG Di

LQG

]
=

[
Ai − Bi2Kic −KifCi2 +KifDi22Kic Kif

Kic DQ

]
the

observer-based realization of each compensator Ki
2(z). The linear interpolation of

the 4 new matrices (AiLQG, Bi
LQG, Ci

LQG and Di
LQG) provides a new non-stationary

compensator noted KLQG(z, t). The evolution of the singular value of KLQG(z, t)
w.r.t. time t is presented in Figure 1.23. This response is significantly smother than
the one of Figure 1.22.

Figure 1.24 depicts the evolution of the stability margins during the whole at-
mospheric flight for all worst cases. Obtained margin to desired margin ratios (in
percent) are plotted w.r.t time for the low frequency gain margin (LF margin: above
the right-hand critical point in the Nichols chart), the high frequency gain mar-
gin (HF margin: under the right-hand critical point in the Nichols chart), the
attenuation of the flexible modes below XdB (corresponding to horizontal line in the
Nichols chart) and the delay margin. One can notice that the specifications are
met at each instant of the flight (ratios must be positive to fulfil specifications).
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Figure 1.22: K2(z, t): singular value w.r.t time.
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Figure 1.23: KLQG(z, t): singular value w.r.t time.
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Figure 1.24: Obtained margin to desired margin ratios w.r.t. time.

1.7 Conclusions

In this chapter, a procedure to compute observer-based structures for arbitrary con-
trollers was proposed. This technique is based upon the resolution of a generalized
non-symmetric Riccati equation. Necessary conditions were given for the solv-
ability of this equation in terms of observability and controllability properties of
the plant. The interest of observer-based realization for gain scheduling, controller
switching and state monitoring was highlighted on a very simple example. Demo
files are available for readers who wish to practice.

Further work is still needed to exploit the multiplicity of choices in the distri-
bution of the closed-loop poles between the closed-loop state-feedback poles, the
closed-loop state-estimator poles and the Youla parameter poles. This problem
is particularly important to smoothly interpolate or schedule a family of state-
feedback gains and state-estimator gains for practical problems requiring some gain-
scheduling strategy. The usefulness of these controller structures to handle input
saturation constraints is also deserves investigation.

The CSF was presented here as a particular solution of the inverse optimal
control problem. The CSF can be used to mix various synthesis techniques in order
to satisfy a multi-objective problem. Indeed, the general idea is to design a first
controller to meet some specifications, mainly performance specification. Then, the
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CSF is applied on this first solution to initialize a standard problem which will be
completed to handle frequency-domain or parametric robustness specifications. This
heuristic approach is very interesting when the control law designer wants to:

• take into account a first controller based on a priori know-how and physical
considerations,

• access to modern optimal control framework to manage frequency-domain ro-
bustness specifications and the trade-offs between these various specifications.

A multi-objective control design procedure based on the CSF is proposed in [5] and
illustrated on a academic mixed-sensibility (2 channels) control problem. Realistic
applications of this approach in the field of Aeronautics (Flight control law design)
are described in [2] and [4] and, in this chapter, in launch vehicle control design.
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