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ABSTRACT

In this paper, a general method for kinematic analysis of glemgear mechanismes, including bevel gear trains
and non-collinear input and output axes, is presented. fiig approach is based on the nullspace of the kinematic
constraint matrix computed from the mechanism graph ordis@ency matrix. The novelty is that the elements of
the adjacency matrix are weighted with complex coefficialhdsving bevel gears to be taken into account and the
angular velocity of each link to be directly expressed ugialgr coordinates. This approachis illustrated on a two-
degree-of-freedom car differential and applied to an hegdier main gear box. MATLAB open source software
was developed to implement this method.

Keywords: Gear Mechanisms, Kinematic Analysis, Kinentataph, Car Differential.

1 Introduction

Gear trains are commonly used in power transmission mestmani In transportation (vehicles, helicopters,...), such
devices are quite complex mechanisms involving severakasgof-freedom (car differential) or several stages afyetic
gear trains (helicopter main gear box). They involve sdvmeel gear trains and are qualifiedspfatial-gearednechanisms
by opposition tgplanar-gearednechanims. Furthermore in such mechanisms, input and taps are not collinear.

In the field of helicopter engineering, lots of studies arediated in Health and Usage Monitoring Systems (HUMS)
[1] and more particularly on the vibration analysis of theiM&ear Box (MGB) which is the most critical part in the
transmission system. HUMS are used to detect or predidsfant prevent possible failures. Actually, each contawtéen
two links in the MGB creates an harmonic disturbance at aigeeangular frequency in the vibration signal of the whole
MGB. Some promising vibration analsysis methods are basesignal processing on angularly sampled signals [2] and
required a good knowledge of angular frequencies of allaxetbetween the various links inside the mechanism. Wish th
goal in mind, efficient kinematic analysis, able to providgalar velocities (magnitude and direction) of all the Bnk
spatial-geared devices, are required.

A lot of kinematic analysis methods have already been stiidige different kinds of mechanisms [3-10]. The tabular
method is often used but requires a lot of calculation and da¢ apply to mechanisms with non collinear input and output
axes [5]. The vector analysis method is an efficient methodhi® mechanisms with a bevel gear, but is very complicated
to compute and to implement on a computer [4]. The graph thiased method is quite generic, easy to implement [6]
and can be adapted to bevel gear. It has been usedchgd and QPRA in [8] so as to find the angular velocities of all
links in bevel epicyclic gear trains to perform power-flondagfficiency analysis. But, as regards the tabular methasl, it
not applicable to systems with non collinear input and ougxes. Furthermore, for mechanism with several degrees-of
freedom (d.o.f) i.e. various operating modes, such an argtgquires to identify which of the links are to be consédieas
inputs and so must be performed for each operating mode. Moeat kinematic analyses of gear mechanisms are based on



the block diagram representation [10] which implies thatrirechanism is also input/output oriented. Other repratent
of kinematic chains are proposed such as the unified topmbgepresentation in [9] but are restricted to planar gare
mechanisms.

The method proposed here is based on the former workeaBdNand QPRA [8]. The main contribution of this method
is an extension to mechanisms with non collinear input ardl @rtput axes. Furthermore, the method is consequently
simplified using complex number in a new adjacency matrixi@dadjacency tablgto take into account bevel gear trains.
The mechanism overall kinematic is characterized by thenfitex) kernel or nullspace of tHenematic constraint matrix
and does not require to specify the input links. The inpWdito analyse a particular operating mode are specified attlye
last step to normalize this kernel (defined up to a multipiecaby a factor). Then, the components of the kernel (named
velocity ratio matrij provide the ratios of angular velocities of all the linkspiolar coordinates (magnitude and angle) with
respect to input link(s) angular velocity(ies). Thus, thalgsis of multi d.o.f mechanisms is quite simplified.

The next section presents the kinematic analysis methoduaritlstration on a car differential, a quite complex two
d.o.f mechanism with various operating modes. In the lagi@® the interest and the generality of this method is lnjdited
on an helicopter Main Gear Box (MGB) analysis, that is a maidm with several stages of epicyclic trains and with non-
collinear input and output axes. A general tool implemeritethe MATLAB environment is available (go toat t p:
/I personnel .isae.fr/dani el - al azar d/ mat | ab- packages).

Nomenclature

v—1: imaginary unit,

N: number of links in the mechanism,

L: number of gear pairs in the mechanism,
[x]:  modulus (magnitude) of complex number
rankM) : rank of the matrixv,

ker(M): kernel (or nullspace) of the matriy,
MT: transpose of matriM

Ni: number of teeth of the gear

6i: pitch angle of gear (rad),

wi: angular velocity of link (rad/s),

Ngof: number of degrees of freedom (d.o.f).

2 Kinematic AnalysisMethod
The main steps of the method are as follows:

o Build the graph and the associated adjacency taliéthe mechanism. This tabledescribes the interactions between
all the links of the system.

e Determine the reference link (carrier) associated witthegear pair.

e Compute the null space (kernel) kiet) of the kinematic constraint matridl. M is the matricial expression of the
WiLLIs Formula applied to all gear pairs. kbf) is the vector (single d.o.f case) or the set of vectors (s¢deo.f case)
of links angular velocities satisfying all kinematic cagnts.

Each of these steps is detailled in the following sectiorgsiinstrated on a 2 d.o.f car differential. A picture of tharc
differential and the corresponding kinematic sketch aes@nted in Figures 1 and 2, respectively.

2.1 Graph representation of the mechanism

The graph representation (sestdand LaMm in [6]) is quite usefull to describe mechanism kinematiceté\that for
computer implementation of the method, the associatedtadiy table (presented in the next section) in sufficienthis
graph, links are represented by vertexes, gear pairs byeddistes and turning pairs by solid lines. Each turning pdgee
can be characterized by a level which describes the locafitre rotation axis in space. When several turning pairoare
the same level, they form a multiple turning pair. The midtifurning pairs are represented by shaded polygons.

The Figure 3 shows the graph representation of the car diffi: this mechanism has seven links=£ 7), five gear
pairs L = 5) and six turning pairs with various levels. Turning paif8,11-7, and 1-4 are on the wheel axis level (level #1),
turning pairs 5-7 and 6-7 are on the radial axis (level #2)tamuing pair 1-2 is on the drive shaft level (level #3). Thilds
graph involves 2 shaded polygons: one for links # 1, 3, 4 amt/amoher one for links # 5, 6 and 7.

Remark: It is important to note that the car differential igesly interesting kinematic example since one of its links (#
7) is involved in two multi-turning pairs. It is quite raredworth to be mentioned.



Fig. 1. Picture of the car differential.
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Fig. 2. Car differential kinematic sketch.

Fig. 3. Graph representation of the car differential (gear pair edges 4-5 and 3-6 are rounded for the legibility of the graph).

2.2 Theadjacency table T
There are several definitions of the adjacency matrix aatetiwith the mechanism graph. The definition used in the

paper is quite different from the one used in [8] or [6]: for @shanism withN links, the adjacency tabl€ is aN x N
matrix. The elementi, j) of tableT describes the interaction between lin&nd link j. It is important to emphasize that
T(i,]) can be a complex number to describe bevel gears. This ertalideal with mechanisms the input and output axes of
which are not collinear.

The tableT is filled in based on these rules:

e Forgear pairsT(i,j) = Nebiv-1 andT(j,i) = Njeej\/jl, whereN; (resp.N;) is the number of teeth on the gedresp.
j). 6i (resp.8;) is the pitch angle of gear(resp. j) from the gear axis to the tooth axis in contact with linkresp.i).
6i is positive clockwise so tha6;| < 1/2 for an external gear arm> |6;| > 11/2 for an internal gear (see example on
Figure 4).

e For turning pairsT (i, j) = T(j,i) and is composed of a character stritayel =" and an integer specifing the level of
the turning paifi, j),

e The other elements af remain blank.

Thus, the elements of this table can be empty, a complex nuontzecell with a character string and an integer. That is why
this table is callecdjacency tablénstead of adjacency matrix to do the distinction with otivetl-known definitions (for



instance in [6] and [8]). Note also that the adjacency tablei more symmetric.

L By=-TT4

S H]

1 : pinion

2:crown —.

Fig. 4. Angle definition example for a pinion-crown bevel gear.

The Table 1 gives the complete adjacency table of the cégrdiitial. The definition of the 7 links is detailled in Figur
2 and the numerical values for gear pairs &e= 13,N, = 65,N3 = 10,N4 = 14,6, = 0 and6, = 1/4.

Table 1. Adjacency table for the car differential with: Np = 13, Np = 65, N3 = 10, Ny = 14, 8; = O and 6, = 11/4.

1 2 3 4 5 6 7

1 level =3 level =1 level =1 level =1
2 | level =3 Nyef1v -1
3| level=1 Nye 8VT | NyePv1

4 | level=1 NgePV=1 | Nye8v-1

5 Nae®V—1 | Nae8v-1 level =2
6 Nge 8vV-1 | Ngebev-1 level =2
7 | level=1 | Npe ®:v-1 level =2 level =2

2.3 Thereferencelink

For each gear pair, the reference link (carrier) is the Imkvhich the contact point of the gear pair is motionless. It
can be determined using the graph representation of theanith or equivalently, the associated adjacency tablemFro
the graph representation of the mechanism, the referamck &ssociated with the gear péir j) can be determined in the
following way:

LetS (resp.S;) be the union set of the links connected to lirkesp. j) through a turning pair or a multi-turning pair.

Then:

k=SnS 1)

wheren stands for the intersection of s&§sands;.
Note that this intersection is:

e not empty since it is not possible to find a closed walk in theggrinvolving one gear pair and turning pairs with three
different levels,
o reduced to a singleton, otherwise this would mean that kexenulti-turning pair betwee§ ands;.

In other words, considering the graph representation ofrteehanism and the path fronto j involving only turning
pairs, the reference linkis the link where the level changes [6].
Considering Figure 3, the reference link of the gear pairi8tbe link # 7 because:

¢ the link 3 belongs to the multi-turning pajd, 3,4,7} = S3,
¢ the link 5 belongs to the multi-turnung pdi5,6,7} = Ss,
o the intersection betweell, 3,4,7} and{5,6,7} is 7.



Table 2. Gear pairs and reference links for the car differential.

Gear pair| Reference link
2-7 1
3-5 7
3-6 7
4-5 7
4-6 7

In the same way, the reference link of the gear pair 2-7 isitliefl 1 asS, = {1} andS; = {1,3,4,5,6,7}. The Table
2 sums up the list of reference links for all the gear pairs.other example is proposed in section 3 to illustrate such a
systematic search for the reference link.

Such a rule (equation (1)) is usefull to automatically idflgrthe reference link and can be easily implemented on a
computer. The only required data is the adjacency tableefriachanism. This rule is an alternative of the method used
in [6] and [8], based on the adjacency matrix.

2.4 Thekinematic constraint matrix M

Let us considef) = [wy, ty, ...,mN]T the vector of angular velocities of th¢ links in the mechanism. The kinematic
constraint matridM is the matrix such thatQ = 0.

The first row ofM must be equal to:

cC=[0--- 0 1 0 ---0],
1--f—1ff+1---N

where link f is the body frame (i.e cs=0).
Once the reference linkof each gear paifi, j) is known, it is possible to fill the kinematic constraint natvl row by
row, using the WLLIS Formula and the adjacency tafdle

T(i, ) (0 —ox) +T(j,i) (0 —ux) =0 )

From the upper triangular part ®fand for each gear pafr, j) with a reference link, a new lind is added tdM to take
into account the W.LIS constraint (2):

e M(L,i) =T(,]j),

e M(I, ) =T(j,),

e M(I,k)=—T(,j) —T(j,i),
e else 0.

Thus,M is a(L+ 1) x N complex matrix wheré is the number of gear pairs in the mechanism.
For example, the kinematic constraint matrix of the camrdéhtial depicted in Figure 2 (considering link # 1 as theybod
frame) is given in equation (3).

10 0 0 0 0 0

-7813 0 0 0 0 65

0 01441 0o 108/4V-1 0  —ldeWAW-1_10gV4V-1

M=1 0o o 14741 0 0 10 VAT _14gV4V=1 _ 10e-TV4/-1 ®3)
0 0 0 14741 10e-V4V-1 0 148V _ 10e- AV T
0

0 0 1@71'[/4\/7_1 0 1@1‘[/4\/7_1 _14e71'[/4\/7_1 o 1%1'[/4\/7_1




2.5 Velocity Ratio Matrix

To meet all WLLIS kinematic constraint€) must be a solution df1Q = 0. It means tha® € ker(M). Such a nullspace
of a complex matrix can be easily computed using linear alytdnls (inMATLAB for instance).

The number of degrees of freeddtg,+ of the mechanism is:
Ngof = N —rankM) , (4)

that is the number of linksl minus the number of independent kinematic constraints.therovordsQg = ker(M) is the
N x Ngof matrix composed of thblyos vectors describing the relationships between link angugéocities for each d.o.f.
In most of mechanism\yot = 1, thenQg is defined up to multiplication by a scalar and can be norradlin such a way
thatQo(r) = 1 wherer is the index of the input link. This wa¥o(i) corresponds to the velocity ratio of the linkv.r.t to
link r. Note that in the general ca$k(i) is a complex number involving polar coordinates of the aaguélocity vector
(Qo(i) = |u)i|e¢im). ¢; represents the relative attitude of the angular velocigtareof link i w.r.t. the angular velocity
vector of the input link §; is positive clockwise). The use of complex nhumbers is thexmalelty of this approach which
enables to extend to any spatial geared mechanisms the&calddsematic analysis restricted to planar geared meishasn

In the multi-d.o.f. caseQq can be normalized w.r.t. angular velocities of Mig s input links. Later in the documer®g
is called thevelocity ratio matrix(or vectorin the single-d.o.f. case) and the vector of angular vales? can be determined
from Qg by:

Q = QoA 5)

whereA is the vector of thé\y,¢ input link angular velocities.
Illustration: Considering the car differentiaN(= 7), the rank of the kinematic constraint mathk (equation (3)) is

5, that is a 2 d.o.f. mechanism. Theref@g = ker(M) is a 2-dimension subspace. The velocity ratio ma@ixcan be
normalized with respect to the angular velocities of the wireels (links 3 and 4) and reads:

0 0 0 0
-25 -25 -25 -25
1 0 1 0
Qo= 0o 1 = 0 1 . (6)
0.86e%95v-1 (.8 095V-1 0.5+0.7/—1 05-0.7/—1
0.86e0-95V-1 (.86e95V-1 05-0.7/—1 05+0.7v/—1
05 05 0.5 05

Itis well known that the car differential is a 2-degree-cfddom mechanism, as long as it is made so that the two wheels
of the car can spin at different velocities. The two columh®g give the velocity ratios when one wheel is locked and the
other one is free.

Note that the complex notation is quite useful and allowsdinection of absolute and relative angular velocity to be
determined in the plane of the mechanism description (sger&i2). Indeed, considering the case where the left wheel
is locked (first column ofg), then the orientation of the absolute angular velocity lahpt pinion (# 5) is ®5rad with
respect to wheel axis. Note also thaf— w; = 0.7\/—1, that is the angular velocity of planet pinion (# 5) w.rffeliential
cage (# 7) is along the wheel normal axis (the axis of the tgrpiir 5-7). The angular velocity vectors of the links irsthi
operating mode (i.e. the left wheel is locked) are depicteBigure 5. In the following, the velocity ratio matrdy and
equation (5) are used to analyze various operation modes.

The most common behaviodiiving straight aheall corresponds when both wheels spin at the same velagity
wy = wthatis:A = [ww]" in equation (5). Hence the angular velocity vector reads:

Q:Qom] —[0-51111 1 w.

Another well-known behavior appears when there is no tréasson (v, = 0) and the car is jacked up. Then the two wheels
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Fig. 5. Angular velocity vectors of car differential links when left wheel is locked.

spin in opposite directions at the same velocity= —w4 = w. Indeed:

0
0
1
Q:Qo[_ww] - 1 . (7)
14y-1
1471
0

Numerical application: let us consider the example of a car turning a right corneralocity of 3&m/h. It can be

shown that the angular velocities of the two wheelswaye- 26rad/sandw, = 30rad/s. Hence the angular velocity vector
reads:

_ 0 i
—140
26
Q=Q [26] = 30 (rad/s) . (8)
30 28.14670‘10\/51
28.14¢010V-1
28

3 Example: helicopter Main Gear Box

In this section the Main Gear Box (MGB) of an helicopter.@UETTEIll) is considered. This mechanism is character-
ized by several stages of epicyclic trains and non-colliimgaut and output axes. The kinematic sketch is depictedgare
6 whereN; = 20,N2 = 17,N3 =20,Ng =41,Ns =51,Ng = 21,N7 = 93,Ng = 51,Ng = 21,N;9 = 93 and the angle a each
bevel gear ig+) /4 (rad). The corresponding adjacency taflés given in Table 3.

The MGB is a mechanism with 8 link&(= 8), 6 gear pairsl(= 6) and 7 turning pairs. The turning pairs 1-3, 1-5 and
1-7 are on the same level. They are represented by a shadegbpaln the graph (Figure 7). Reference links of each gear
pair can be found using the procedure proposed in sectiofs@e3Table 4).

The velocity ratio vector normalized w.r.t. the link # 2 (fih@ut link) reads:

0

1
0.4887/2V-1

0.415

Q0 = 017%ﬂ/2\/jl . (9)
—0.5922V-1
0.0616V2V-1
—0.2108V2V-1
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Fig. 6. Kinematic sketch of the Main Gear Box of Alouette IlI.

Table 3. Adjacency table of the MGB

1 2 3 4 5 6 7 8
1 level =2 level =1 level =3 level =1 —N7 level=1 —N19o
2 | level =2 Nye V4v-1
3| level=1 | NgV4V1 Npe'/4v~1 Ns
4 | level =3 Ne /4v-1
5| level=1 level =4 Ng
6 Ne Ng level =4
7 | level =1 level =5
8 Ng Ng level =5

Obviously, the reduction ratio between input shaft and:

e tail rotor shaft is ¥0.415,
e main rotor shaft is 10.0612 (and along the axis normal to the input axis).

4 Available software
This method has been implemented usingMAB . The software is available att t p: / / per sonnel . i sae. fr/
dani el - al azar d/ nat | ab- packages and computes the following:

o the reference link of all the gear pairs of the mechanism,
o the kinematic constraint matriM,
o the velocity ratio matriXg (or vector if the system is a one d.o.f. mechanism).

The input data is a stuctured variable describing the ad@ctable of the mechanism. This software can also compute
contact frequencies in all gear pairs and also in all rollalt) bearings involved in turning pairs [11]. Indeed, theut
structured variable can include a description of roll (dhlearings (that is: the mean diameter, the number andiimeater
of balls (or rolls) and the angle of contact between the Kalisolls) and the bearing rings).

The detailed instructions on how to use this software ariéadola in theread mefile contained in the software folder.



Fig. 7. Graph representation of the MGB.

Table 4. Gear pairs and reference links for the MGB.

Gear pair| Reference link

1-6 5

1-8

7

2-3 1
3-4 1
5

7

3-6
5-8

5 Conclusion

A general method for kinematic analysis of complex mecharggstems was presented in this paper. This approach
based on the null space of the kinematic constraint matnixkEa applied to multi-degree-of-freedom mechanisms with
non collinear input and output axes. The use of complex aoeffis in the adjacency table of the mechanism and the
kinematic constraint matrix enables to find directly thewlagvelocity vector expressed in polar coordinates andfitores
the main novelty and contribution of this work. The propossgthod is very simple to analyse multi-degrees-of-freedom
with various operating modes. This approach was illustratea two-degree-of-freedom car differential and the maiarg
box of an helicopter. Finally, an open-source MATLAB codeswdaveloped to implement this approach.
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