
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/  

Eprints ID: 8075  

To link to this article: DOI: 10.1115/1.4005596 

URL: http://dx.doi.org/10.1115/1.4005596 

 

 

To cite this version: Penaud, Julie and Alazard, Daniel and Amiez, 

Alexandre Kinematic Analysis of Spatial Geared Mechanisms. (2012) 

Journal of Mechanical Design, vol. 134 (n° 2). pp. 21009 -21014. ISSN 

1050-0472 

Open Archive Toulouse Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 

makes it freely available over the web where possible.  

 

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@inp-toulouse.fr 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12043946?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oatao.univ-toulouse.fr/
http://dx.doi.org/10.1115/1.4005596
mailto:staff-oatao@inp-toulouse.fr


Kinematic analysis of spatial geared mechanisms

Julie Penaud
PhD Student

ISAE, Université de Toulouse
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ABSTRACT

In this paper, a general method for kinematic analysis of complex gear mechanisms, including bevel gear trains
and non-collinear input and output axes, is presented. Thisnew approach is based on the nullspace of the kinematic
constraint matrix computed from the mechanism graph or its adjacency matrix. The novelty is that the elements of
the adjacency matrix are weighted with complex coefficientsallowing bevel gears to be taken into account and the
angular velocity of each link to be directly expressed usingpolar coordinates. This approach is illustrated on a two-
degree-of-freedom car differential and applied to an helicopter main gear box. AMATLAB open source software
was developed to implement this method.

Keywords: Gear Mechanisms, Kinematic Analysis, KinematicGraph, Car Differential.

1 Introduction
Gear trains are commonly used in power transmission mechanisms. In transportation (vehicles, helicopters,...), such

devices are quite complex mechanisms involving several degrees-of-freedom (car differential) or several stages of epicyclic
gear trains (helicopter main gear box). They involve several bevel gear trains and are qualified ofspatial-gearedmechanisms
by opposition toplanar-gearedmechanims. Furthermore in such mechanisms, input and output axes are not collinear.

In the field of helicopter engineering, lots of studies are conducted in Health and Usage Monitoring Systems (HUMS)
[1] and more particularly on the vibration analysis of the Main Gear Box (MGB) which is the most critical part in the
transmission system. HUMS are used to detect or predict faults and prevent possible failures. Actually, each contact between
two links in the MGB creates an harmonic disturbance at a precise angular frequency in the vibration signal of the whole
MGB. Some promising vibration analsysis methods are based on signal processing on angularly sampled signals [2] and
required a good knowledge of angular frequencies of all contacts between the various links inside the mechanism. With this
goal in mind, efficient kinematic analysis, able to provide angular velocities (magnitude and direction) of all the links in
spatial-geared devices, are required.

A lot of kinematic analysis methods have already been studied, for different kinds of mechanisms [3–10]. The tabular
method is often used but requires a lot of calculation and does not apply to mechanisms with non collinear input and output
axes [5]. The vector analysis method is an efficient method for the mechanisms with a bevel gear, but is very complicated
to compute and to implement on a computer [4]. The graph theory based method is quite generic, easy to implement [6]
and can be adapted to bevel gear. It has been used by NELSON and CIPRA in [8] so as to find the angular velocities of all
links in bevel epicyclic gear trains to perform power-flow and efficiency analysis. But, as regards the tabular method, itis
not applicable to systems with non collinear input and output axes. Furthermore, for mechanism with several degrees-of-
freedom (d.o.f) i.e. various operating modes, such an analysis requires to identify which of the links are to be considered as
inputs and so must be performed for each operating mode. Morerecent kinematic analyses of gear mechanisms are based on



the block diagram representation [10] which implies that the mechanism is also input/output oriented. Other representations
of kinematic chains are proposed such as the unified topological representation in [9] but are restricted to planar geared
mechanisms.

The method proposed here is based on the former work of NELSONand CIPRA [8]. The main contribution of this method
is an extension to mechanisms with non collinear input and and output axes. Furthermore, the method is consequently
simplified using complex number in a new adjacency matrix (namedadjacency table) to take into account bevel gear trains.
The mechanism overall kinematic is characterized by the (complex) kernel or nullspace of thekinematic constraint matrix
and does not require to specify the input links. The input links to analyse a particular operating mode are specified at thevery
last step to normalize this kernel (defined up to a multiplication by a factor). Then, the components of the kernel (named
velocity ratio matrix) provide the ratios of angular velocities of all the links inpolar coordinates (magnitude and angle) with
respect to input link(s) angular velocity(ies). Thus, the analysis of multi d.o.f mechanisms is quite simplified.

The next section presents the kinematic analysis method andan illustration on a car differential, a quite complex two
d.o.f mechanism with various operating modes. In the last section, the interest and the generality of this method is highlighted
on an helicopter Main Gear Box (MGB) analysis, that is a mechanism with several stages of epicyclic trains and with non-
collinear input and output axes. A general tool implementedin the MATLAB environment is available (go to:http:
//personnel.isae.fr/daniel-alazard/matlab-packages).

Nomenclature√
−1: imaginary unit,

N: number of links in the mechanism,
L: number of gear pairs in the mechanism,
|x|: modulus (magnitude) of complex numberx,
rank(M) : rank of the matrixM,
ker(M): kernel (or nullspace) of the matrixM,
MT : transpose of matrixM
Ni : number of teeth of the geari,
θi : pitch angle of geari (rad),
ωi : angular velocity of linki (rad/s),
Ndo f: number of degrees of freedom (d.o.f).

2 Kinematic Analysis Method
The main steps of the method are as follows:

• Build the graph and the associated adjacency tableT of the mechanism. This tableT describes the interactions between
all the links of the system.

• Determine the reference link (carrier) associated with each gear pair.
• Compute the null space (kernel) ker(M) of the kinematic constraint matrixM. M is the matricial expression of the

WILLIS Formula applied to all gear pairs. ker(M) is the vector (single d.o.f case) or the set of vectors (several d.o.f case)
of links angular velocities satisfying all kinematic constraints.

Each of these steps is detailled in the following sections and illustrated on a 2 d.o.f car differential. A picture of the car
differential and the corresponding kinematic sketch are presented in Figures 1 and 2, respectively.

2.1 Graph representation of the mechanism
The graph representation (see HSU and LAM in [6]) is quite usefull to describe mechanism kinematics. Note that for

computer implementation of the method, the associated adjacency table (presented in the next section) in sufficient. Inthis
graph, links are represented by vertexes, gear pairs by dashed lines and turning pairs by solid lines. Each turning pair edge
can be characterized by a level which describes the locationof the rotation axis in space. When several turning pairs areon
the same level, they form a multiple turning pair. The multiple turning pairs are represented by shaded polygons.

The Figure 3 shows the graph representation of the car differential: this mechanism has seven links (N = 7), five gear
pairs (L = 5) and six turning pairs with various levels. Turning pairs 1-3, 1-7, and 1-4 are on the wheel axis level (level #1),
turning pairs 5-7 and 6-7 are on the radial axis (level #2) andturning pair 1-2 is on the drive shaft level (level #3). Thus,this
graph involves 2 shaded polygons: one for links # 1, 3, 4 and 7 and anoher one for links # 5, 6 and 7.

Remark: It is important to note that the car differential is avery interesting kinematic example since one of its links (#
7) is involved in two multi-turning pairs. It is quite rare and worth to be mentioned.



Fig. 1. Picture of the car differential.
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Fig. 2. Car differential kinematic sketch.
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Fig. 3. Graph representation of the car differential (gear pair edges 4-5 and 3-6 are rounded for the legibility of the graph).

2.2 The adjacency table T
There are several definitions of the adjacency matrix associated with the mechanism graph. The definition used in the

paper is quite different from the one used in [8] or [6]: for a mechanism withN links, the adjacency tableT is a N×N
matrix. The element(i, j) of tableT describes the interaction between linki and link j. It is important to emphasize that
T(i, j) can be a complex number to describe bevel gears. This enablesto deal with mechanisms the input and output axes of
which are not collinear.

The tableT is filled in based on these rules:

• For gear pairs:T(i, j) = Nieθi
√
−1 andT( j, i) = Njeθ j

√
−1, whereNi (resp.Nj ) is the number of teeth on the geari (resp.

j). θi (resp.θ j ) is the pitch angle of geari (resp. j) from the gear axis to the tooth axis in contact with linkj (resp.i).
θi is positive clockwise so that|θi | < π/2 for an external gear andπ > |θi | > π/2 for an internal gear (see example on
Figure 4).

• For turning pairs:T(i, j) = T( j, i) and is composed of a character string’level =’ and an integer specifing the level of
the turning pair(i, j),

• The other elements ofT remain blank.

Thus, the elements of this table can be empty, a complex number or a cell with a character string and an integer. That is why
this table is calledadjacency tableinstead of adjacency matrix to do the distinction with otherwell-known definitions (for



instance in [6] and [8]). Note also that the adjacency table is no more symmetric.

θ  =−3π/42

1θ  =−π/4

0 : frame

1 : pinion

2 : crown

Fig. 4. Angle definition example for a pinion-crown bevel gear.

The Table 1 gives the complete adjacency table of the car-differential. The definition of the 7 links is detailled in Figure
2 and the numerical values for gear pairs are:N1 = 13,N2 = 65,N3 = 10,N4 = 14,θ1 = 0 andθ2 = π/4.

Table 1. Adjacency table for the car differential with: N1 = 13, N2 = 65, N3 = 10, N4 = 14, θ1 = 0 and θ2 = π/4.

1 2 3 4 5 6 7

1 level = 3 level = 1 level = 1 level = 1

2 level = 3 N1eθ1
√
−1

3 level = 1 N4e−θ2
√
−1 N4eθ2

√
−1

4 level = 1 N4eθ2
√
−1 N4e−θ2

√
−1

5 N3eθ2
√
−1 N3e−θ2

√
−1 level = 2

6 N3e−θ2
√
−1 N3eθ2

√
−1 level = 2

7 level = 1 N2e−θ1
√
−1 level = 2 level = 2

2.3 The reference link
For each gear pair, the reference link (carrier) is the link in which the contact point of the gear pair is motionless. It

can be determined using the graph representation of the mechanism or equivalently, the associated adjacency table. From
the graph representation of the mechanism, the reference link k associated with the gear pair(i, j) can be determined in the
following way:

Let Si (resp.Sj ) be the union set of the links connected to linki (resp. j) through a turning pair or a multi-turning pair.
Then:

k = Si ∩Sj (1)

where∩ stands for the intersection of setsSi andSj .
Note that this intersection is:

• not empty since it is not possible to find a closed walk in the graph involving one gear pair and turning pairs with three
different levels,

• reduced to a singleton, otherwise this would mean that thereis a multi-turning pair betweenSi andSj .

In other words, considering the graph representation of themechanism and the path fromi to j involving only turning
pairs, the reference linkk is the link where the level changes [6].

Considering Figure 3, the reference link of the gear pair 3-5is the link # 7 because:

• the link 3 belongs to the multi-turning pair{1,3,4,7}= S3,
• the link 5 belongs to the multi-turnung pair{5,6,7} = S5,
• the intersection between{1,3,4,7} and{5,6,7} is 7.



Table 2. Gear pairs and reference links for the car differential.

Gear pair Reference link

2-7 1

3-5 7

3-6 7

4-5 7

4-6 7

In the same way, the reference link of the gear pair 2-7 is the link # 1 asS2 = {1} andS7 = {1,3,4,5,6,7}. The Table
2 sums up the list of reference links for all the gear pairs. Another example is proposed in section 3 to illustrate such a
systematic search for the reference link.

Such a rule (equation (1)) is usefull to automatically identify the reference link and can be easily implemented on a
computer. The only required data is the adjacency table of the mechanism. This rule is an alternative of the method used
in [6] and [8], based on the adjacency matrix.

2.4 The kinematic constraint matrix M
Let us considerΩ = [ω1,ω2, ...,ωN]T the vector of angular velocities of theN links in the mechanism. The kinematic

constraint matrixM is the matrix such that:MΩ = 0.
The first row ofM must be equal to:

C = [ 0 · · · 0 1 0 · · · 0 ] ,
1 · · · f −1 f f +1 · · · N

where link f is the body frame (i.e.:ω f =0).
Once the reference linkk of each gear pair(i, j) is known, it is possible to fill the kinematic constraint matrix M row by

row, using the WILLIS Formula and the adjacency tableT:

T(i, j)(ωi −ωk)+T( j, i)(ω j −ωk) = 0 (2)

From the upper triangular part ofT and for each gear pair(i, j) with a reference linkk, a new linel is added toM to take
into account the WILLIS constraint (2):

• M(l , i) = T(i, j),
• M(l , j) = T( j, i),
• M(l ,k) = −T(i, j)−T( j, i),
• else 0.

Thus,M is a(L+1)×N complex matrix whereL is the number of gear pairs in the mechanism.
For example, the kinematic constraint matrix of the car differential depicted in Figure 2 (considering link # 1 as the body

frame) is given in equation (3).

M =



















1 0 0 0 0 0 0
−78 13 0 0 0 0 65

0 0 14e−π/4
√
−1 0 10eπ/4

√
−1 0 −14e−π/4

√
−1−10eπ/4

√
−1

0 0 14eπ/4
√
−1 0 0 10e−π/4

√
−1 −14eπ/4

√
−1−10e−π/4

√
−1

0 0 0 14eπ/4
√
−1 10e−π/4

√
−1 0 −14eπ/4

√
−1−10e−π/4

√
−1

0 0 0 14e−π/4
√
−1 0 10eπ/4

√
−1 −14e−π/4

√
−1−10eπ/4

√
−1



















(3)



2.5 Velocity Ratio Matrix
To meet all WILLIS kinematic constraints,Ω must be a solution ofMΩ = 0. It means thatΩ ∈ ker(M). Such a nullspace

of a complex matrix can be easily computed using linear algebra tools (inMATLAB for instance).

The number of degrees of freedomNdo f of the mechanism is:

Ndo f = N− rank(M) , (4)

that is the number of linksN minus the number of independent kinematic constraints. In other wordsΩ0 = ker(M) is the
N × Ndo f matrix composed of theNdo f vectors describing the relationships between link angularvelocities for each d.o.f.
In most of mechanism,Ndo f = 1, thenΩ0 is defined up to multiplication by a scalar and can be normalized in such a way
thatΩ0(r) = 1 wherer is the index of the input link. This way,Ω0(i) corresponds to the velocity ratio of the linki w.r.t to
link r. Note that in the general caseΩ0(i) is a complex number involving polar coordinates of the angular velocity vector
(Ω0(i) = |ωi |eϕi

√
−1). ϕi represents the relative attitude of the angular velocity vector of link i w.r.t. the angular velocity

vector of the input link (ϕi is positive clockwise). The use of complex numbers is the main novelty of this approach which
enables to extend to any spatial geared mechanisms the classical kinematic analysis restricted to planar geared mechanisms.

In the multi-d.o.f. case,Ω0 can be normalized w.r.t. angular velocities of theNdo f input links. Later in the document,Ω0

is called thevelocity ratio matrix(or vectorin the single-d.o.f. case) and the vector of angular velocitiesΩ can be determined
from Ω0 by:

Ω = Ω0Λ (5)

whereΛ is the vector of theNdo f input link angular velocities.

Illustration: Considering the car differential (N = 7), the rank of the kinematic constraint matrixM (equation (3)) is
5, that is a 2 d.o.f. mechanism. ThereforeΩ0 = ker(M) is a 2-dimension subspace. The velocity ratio matrixΩ0 can be
normalized with respect to the angular velocities of the twowheels (links 3 and 4) and reads:

Ω0 =



















0 0
−2.5 −2.5

1 0
0 1

0.86e0.95
√
−1 0.86e−0.95

√
−1

0.86e−0.95
√
−1 0.86e0.95

√
−1

0.5 0.5



















=



















0 0
−2.5 −2.5

1 0
0 1

0.5+0.7
√
−1 0.5−0.7

√
−1

0.5−0.7
√
−1 0.5+0.7

√
−1

0.5 0.5



















. (6)

It is well known that the car differential is a 2-degree-of-freedommechanism, as long as it is made so that the two wheels
of the car can spin at different velocities. The two columns of Ω0 give the velocity ratios when one wheel is locked and the
other one is free.

Note that the complex notation is quite useful and allows thedirection of absolute and relative angular velocity to be
determined in the plane of the mechanism description (see Figure 2). Indeed, considering the case where the left wheel
is locked (first column ofΩ0), then the orientation of the absolute angular velocity of planet pinion (# 5) is 0.95rad with
respect to wheel axis. Note also thatω5−ω7 = 0.7

√
−1, that is the angular velocity of planet pinion (# 5) w.r.t differential

cage (# 7) is along the wheel normal axis (the axis of the turning pair 5-7). The angular velocity vectors of the links in this
operating mode (i.e. the left wheel is locked) are depicted in Figure 5. In the following, the velocity ratio matrixΩ0 and
equation (5) are used to analyze various operation modes.

The most common behavior (driving straight ahead) corresponds when both wheels spin at the same velocityω3 =
ω4 = ω that is:Λ = [ω ω]T in equation (5). Hence the angular velocity vector reads:

Ω = Ω0

[

ω
ω

]

= [0 −5 1 1 1 1 1]Tω .

Another well-known behavior appears when there is no transmission (ω2 = 0) and the car is jacked up. Then the two wheels



ω   = −2.52

ω   = 13ω   = 0.57ω   = 04

e
−0.95ω   = 0.866

e
0.95ω   = 0.865

ω   = 01
√
−1
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−1

√
−1

+
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25ω   − ω   = 0.77

Fig. 5. Angular velocity vectors of car differential links when left wheel is locked.

spin in opposite directions at the same velocityω3 = −ω4 = ω. Indeed:

Ω = Ω0

[

ω
−ω

]

=





















0
0
1
−1

1.4
√
−1

−1.4
√
−1

0





















ω . (7)

Numerical application: let us consider the example of a car turning a right corner ata velocity of 30km/h. It can be
shown that the angular velocities of the two wheels areω3 = 26rad/sandω4 = 30rad/s. Hence the angular velocity vector
reads:

Ω = Ω0

[

26
30

]

=





















0
−140

26
30

28.14e−0.10
√
−1

28.14e0.10
√
−1

28





















(rad/s) . (8)

3 Example: helicopter Main Gear Box
In this section the Main Gear Box (MGB) of an helicopter (ALOUETTE III) is considered. This mechanism is character-

ized by several stages of epicyclic trains and non-collinear input and output axes. The kinematic sketch is depicted in Figure
6 whereN1 = 20,N2 = 17,N3 = 20,N4 = 41,N5 = 51,N6 = 21,N7 = 93,N8 = 51,N9 = 21,N10 = 93 and the angle a each
bevel gear is(±)π/4(rad). The corresponding adjacency tableT is given in Table 3.

The MGB is a mechanism with 8 links (N = 8), 6 gear pairs (L = 6) and 7 turning pairs. The turning pairs 1-3, 1-5 and
1-7 are on the same level. They are represented by a shaded polygon on the graph (Figure 7). Reference links of each gear
pair can be found using the procedure proposed in section 2.3(see Table 4).

The velocity ratio vector normalized w.r.t. the link # 2 (theinput link) reads:

Ω0 =



























0
1

0.488eπ/2
√
−1

0.415
0.173eπ/2

√
−1

−0.592eπ/2
√
−1

0.0612eπ/2
√
−1

−0.210eπ/2
√
−1



























. (9)
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Fig. 6. Kinematic sketch of the Main Gear Box of Alouette III.

Table 3. Adjacency table of the MGB

1 2 3 4 5 6 7 8

1 level = 2 level = 1 level = 3 level = 1 −N7 level = 1 −N10

2 level = 2 N3e−π/4
√
−1

3 level = 1 N4eπ/4
√
−1 N2eπ/4

√
−1 N5

4 level = 3 N1e−π/4
√
−1

5 level = 1 level = 4 N8

6 N6 N6 level = 4

7 level = 1 level = 5

8 N9 N9 level = 5

Obviously, the reduction ratio between input shaft and:

• tail rotor shaft is 1/0.415,
• main rotor shaft is 1/0.0612 (and along the axis normal to the input axis).

4 Available software
This method has been implemented using MATLAB . The software is available at:http://personnel.isae.fr/

daniel-alazard/matlab-packages and computes the following:

• the reference link of all the gear pairs of the mechanism,
• the kinematic constraint matrixM,
• the velocity ratio matrixΩ0 (or vector if the system is a one d.o.f. mechanism).

The input data is a stuctured variable describing the adjacency table of the mechanism. This software can also compute
contact frequencies in all gear pairs and also in all roll (orball) bearings involved in turning pairs [11]. Indeed, the input
structured variable can include a description of roll (or ball) bearings (that is: the mean diameter, the number and the diameter
of balls (or rolls) and the angle of contact between the balls(or rolls) and the bearing rings).

The detailed instructions on how to use this software are available in theread mefile contained in the software folder.



1

2

3

4

5

6

7

8

Fig. 7. Graph representation of the MGB.

Table 4. Gear pairs and reference links for the MGB.

Gear pair Reference link

1-6 5

1-8 7

2-3 1

3-4 1

3-6 5

5-8 7

5 Conclusion
A general method for kinematic analysis of complex mechanical systems was presented in this paper. This approach

based on the null space of the kinematic constraint matrix can be applied to multi-degree-of-freedom mechanisms with
non collinear input and output axes. The use of complex coefficients in the adjacency table of the mechanism and the
kinematic constraint matrix enables to find directly the angular velocity vector expressed in polar coordinates and constitutes
the main novelty and contribution of this work. The proposedmethod is very simple to analyse multi-degrees-of-freedom
with various operating modes. This approach was illustrated on a two-degree-of-freedom car differential and the main gear
box of an helicopter. Finally, an open-source MATLAB code was developed to implement this approach.
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