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Effective dielectric constant of random composite materials
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The randomnesi® the structure of two-component dense composite materials influences the scalar
effective dielectric constant, in the quasistatic limit. A numerical analysis of this property is
developed in this paper. The computer-simulation models used are based on both the finite element
method and the boundary integral equation method for two- and three-dimensional structures,
respectively. Owing to possible anisotropy the orientation of spatially fixed inhomogeneities of
permittivity €1, embedded in a matrix of permittivity,, affects the effective permittivity of the
composite material sample. The primary goal of this paper is to analyze this orientation dependence.
Second, the effect of the components geometry on the dielectric properties of the medium is studied.
Third the effect of inhomogeneities randomly distributed within a matrix is investigated. Changing
these three parameters provides a diverse array of behaviors useful to understand the dielectric
properties of random composite materials. Finally, the data obtained from this numerical simulation
are compared to the results of previous analytical work.

I. INTRODUCTION A previous article from our team presented &l initio
treatment which, assuming periodical embedding of a con-
The concept of randomness permeates much of the custituent of permittivitye; in a homogeneous three-dimen-
rent literature on the dielectric properties of heterogeneousional matrix of permittivitys,, allows the evaluation of the
dense materials. Understanding the transport properties atalar effective constant of the macroscopic sample in the
classical waves in random media remains an unrealized anguasistatic limit; the electromagnetic wave cannot see the
bition even if the efforts of many scientists in the last de-individual scattering centefsThe effective permittivity car-
cades have resulted in a considerable amount of valuables information about the average polarization in the hetero-
information. In fact, the scientific community is only learn- geneous medium. The geometrical shape and volume frac-
ing how to deal with these complex systems now that ampldion of each component are studied in this paper. The method
and subtle data are provided to them. A considerable body df obtain numerical data by using an algorithm based upon
knowledge on the electromagnetic properties of condensedie solution of boundary integral equatidBIE) is also
matter systems has been acquired from both experiment8fven- The treatment put forward in Ref. 1 was limited to the
and theoretical studies. Previous investigations have indiP€riodic lattices of inhomogeneities. The present paper ex-
cated that the phenomena studied in this paper have complé?r?ds _thls treatment to three aspects_ of the dl_electrlc cha_rac-
ramifications. For example, in black carbon ﬁ"ed_polymertenzatmn of two-component composite materials containing

composites, the carbon black aggregates tend to localize inclusions of permittivitye, randomly distributed within a

the amorphous regions of the polymer and induce imerfaciarpomogeneous matrix of permittivity,. The three topics

. : . .. studied are(a) the influence of inhomogeneities orientation,
aspects. Isolating the matter crucial to the physics from it
. . . . b) the effects of component geometry, atal the conse-
irrelevant surroundings is the central task of the subject. Th . . .
- L X uences of the random distribution of inhomogeneities
polarization of these materials in an external field depends o

he disord 4 the intrinsic dielectric ch o fithin the matrix. As already mentioned, the computer-
the disorder and the intrinsic dielectric characteristics OlSimulation model, based on the BIE method developed in a

components. The challenge in the physics of disordered M3revious work, was applied to three-dimensional systems.
terials lies in relating the microscopic characteristics of ther,o_dimensional configurations were also considered to
internal structure to the macroscopic property of interestyake the computational requirements more reasonable.
e.g., permittivity, conductivity. However, relating the param- \jithin this approach, the finite elementSE) method was
eters obtained from a constantly evolving investigation aregsed to obtain the potential distribution in the composite ma-
to the geometrical details of the material is not usuallyterial and to derive the effective dielectric constant. In this
straightforward; consequently, priori assumptions have to last case, it is of the utmost importance that the present

be made. method makes it possible to determine the domain of appli-
cability of existing theories.
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tion of effective permittivity of random two-component com- dium, two length scales are of importance. The first scale is
posite materials, and the technique used to compute theske wavelengthn of the electromagnetic wave probing the
parameters. The numerical evaluation carried out on differemnedium. The second one is the typical scélef the inho-
types of composite media is developed in Sec. lll. Moreovermogeneities. When the two conditioksé<1 andk,&<1

the results obtained are compared to those provided by litare met, where we have set=(27/\) Ve;ui, i = 1,2, so
erature. Section IV draws conclusions and develops somthat the wave cannot discern the individual scatters im-
possible extensions to our approach. mersed in the host medium. In this quasistatic limit for which
scattering losses can be neglected, the system can be de-
scribed by an effectivéaveragedielectric constant. Mix-

ing formulas for discrete scatterers immersed in a host me-
A. Background dium in terms of the material properties of the components

The main features of the analysis developed to evaluat@® well as the volume fraction and spatial arrangement of

the scalar effective permittivity of heterogeneous materialénCIUSIons have been proposed. A classical effective medium

are presented in this section. A set of relevant definitions ignalysi; ”?9'“‘3 the correlations be?""ee,“ inclusions that be-
first given to establish notation and terminology. Abundant®®M€ significant as the|r concgntratlon Increases. For”.‘“'as
theoretical and computational descriptions of the effectivefor two-compqnent mixtures with homogenegus elllpSO{ds,
dielectric constant of two-component periodic materials dor_leedles 22?09'15303_ have been prese_nted In various forms in the
exist, but testing real composite data requires use of a physp_terature._' ' F"fSt' s_evergl equ_atlons f or m|>_<ture_s_of ran-
cal model. The randomness and connectedness properties mly oriented glhpsmdal mclusu_)ns W'” _be |dent_|f|ed. In
its internal structure must be characterized in detail. Historii"at case, there IS no preferred d|_rect|on n the m|xtqre and
cally this has been a difficult task as totally different descrip-the eﬁectl\zle permittivity can be written according to Sihvola
tions of randomness can lead to almost identical results, an%nd Kong® as
consequently to serious errors in interpreting experimental 1 e
results. e=g,t (g1~ &)t E —a_ , Q)
Predicting the effective dielectric properties of any com- 3 ixyz gatli(ei—ea)
posne material is scientifically .and practically of Fhe UtmOStwheresa is the apparent permittivitysp<s,<¢) and L,
importance, but to date there is no comprehensive and Unya ot the depolarization factors of the ellipsoid in the three
versally accepted theory to account for its whole aSpeCtSorthogonaI directions. The parameteg in Eq. (1) is ob-

Quoting Hashin and Shtrikman on this point is interesting,ineq from a standard result of electrostatics and can be
(Ref. 2, page 3130 “The indeterminacy of the effective written as

permittivity is an inherent property of the physical situation,
resulting from the fact that generally nothing is known about abCJ,HC du

Il. FORMULATION OF THE PROBLEM

spatial distribution of the components except that the mate- L,=—/—

> @

2 2 2 2y’
rial is macroscopically homogeneous and isotroffidt’is 0 (u+a’)y(u+ad)(u+b?)(u+c?)

worthwhile to refer to the detailed overviews of the historic
basis of dielectric mixture to Van Beck and Landauer. Some[hex y, andz directions, respectively. To evaluaig and

of the earliest works on the electric properties of compositg ir;ter,changeb anda ar;dc anda, respectively. Note that
materials were performed by Clausius and Mossotti. The hzé depolarization factors veriﬁz-_’ Li=1.Ife,=e, EQ.
derived independently a mean-field theory for a disordere 1)is known as the Polder—VanI _S);yrﬁe;w mixinge}orm’ula. The

system of polarizable spheres. Since this pioneering WorlﬁDoIder—Van Santen formula has been extensively used to
the subject has been the focus of an intense research Eﬁ%{ﬁalyze the dielectric behavior of sna#t®lf &,=¢, Eq. (1)

H 1 2 H 1] . a .
and, presently various forms of "effective medium theory is termed the Fricke formula. Another well known mixture

ot 3—16 :
ex:st.l i Thfr:e arf(? rrt1.any dqtf:ertt_heorenctal tap;;rc;aches forequation for randomly oriented ellipsoids has been reported
calculating the effective dielectric constant of two-com- by Bohren and Battan,

ponent composite materials. These include the virial ap-
proach, variational principles, and analytic properties of the (e1—&,)fu
component parameters to obtain upper and lower bounds for &=¢€2*+ 1-(1-wf (©)
this paramete?}’~°In recent numerical studies, Felderhof
et al. developed a virial approach by taking into accountwhere we have set
multipole corrections, e.g., cluster expansion, to obtain for-
mal expressions for virial coefficientS. 1 &2

Our work deals with a composite medium composed of U=3 i=xyz€xtLi(ei—ey)’
monodisperse inhomogeneities of permittivity randomly
placed within the host material. The host permittivitysis At this point it should be noticed that the effective permit-
within a volume(). Materials are assumed to be nonmag_tivity for a mixture of randomly oriented discs can be written
netic (u,=u»,=1). Moreover, the two permittivities are as
considered to be real. The volume fraction occupied by the
inclusions is denoted. Usually, when one considers the e=eyt ,
propagation of an electromagnetic wave in a random me- 3e;

wherea, b, andc denote the semiaxes of the ellipsoid in

4)

(eat281)(e1—&)f

®)



where agaire,<g,<e¢. If g, is set equal te, Eq. (5) re- V-7,
duces to the mixture equation originally reported by Brugge-

man :
3e,+2(e1—e))f - v
e=¢g; 2 L 2 , (6) V_0— € *_57:0
3e1—f(e1—ey) an 0 |
X y W4
which has been extensively used in the literature. Wheis 2 &
set equal ta,, the Van Beek result is found again. ' > f
Finally, in the case of lamellae, the effective permittivity ar_y ="
can be expressed in the form an @
(7)
B. Princ@ple of the numerical approach for periodic oV 2
composite structures on- o
BIE and FE are numerical techniques which allow to x‘g .
compute the solution of Laplace’s equation by determining - /2 2
the electric field and potential distributions from both the oV |
. . . . ar_o V=r,
physical properties of the materials and the boundary condi- on
tions in the domain studied. Recent works have shown that (b)

the BIE method could be successfully applied to compute the _ o _ ,

effective permittivity of periodic composite materi&l&t FIG. 1. Notation and boundary conditions related to a the three-dimensional
. P y P . P . ) compositei(a) isolated particle of permittivityg 1, (b) fused particle of per-

The basic scheme of the BIE method is now briefly recalledmitivity «,.

Consider a spatial domaife with a density of charge

equals to zero everywhere. Using Green’s theorem, the local

potential V(M e (}) can be written in terms o¥(P) and of  integral Eqs.(9) and (10) have to be solved to evaluate nu-

the normal derivative {V/dn) (P), with P being any point merically the electrostatic potential distribution. For that pur-

on the boundarg, (with no overhangspf Q: pose, the implementation of the BIE method consists in di-
viding the boundaries into finite elements and for each finite
A G AY L ; ; .
V(M)=— _J (V(p)__G_(p) ds, (8)  element, the calculation is carried out by interpolatiorvof
Als an an and aV/an with the corresponding nodal values:
where A stands for the solid angle under which the point
M sees the oriented surfaég n is the normal unit vector V:Z AV
oriented outward fron®,, ds is a surface element & and '
G denotes the Green function. ﬂzz )\_(ﬂ) (12)
Referring to the schematic representation of the configu- an 5 “on

ration displayed in Fig. 1, a two-component periodic com-

posite can be considered. It can be divided into elementaryhere); denotes the interpolating functions. The generation
cells. The constituent of permittivity; occupying the vol-  of these functions, relevant to our computational require-
ume (), is embedded in the regiofd, of permittivity e,.  ments, and the detailed methodology used in this work are
Absence of charge density will be tacitly assumed throughsimilar to those reported elsewhéf&* In this way, integral

our analysis. Given these assumptions, @j.reads as: equations are transformed into a matrix equation which is
. G NV solved numerically using the boundary conditions on each
=—— ( — -G )ds (9 side of the unit cell as displayed in Figdaland 1(b). The
Az, an Nl permittivity is then obtained from the knowledge of the po-
for domain 1, and tential distribution and of its normal derivative.
Two types of configurations are distinguished for speci-
__ 4_77 ( @_Gﬂ )ds (10) fication of the structure of the composite material. In Fig.
A Js,\ " an an |, 1(a), there is a single inclusion and thus the medium of per-

mittivity e, cannot intercept the sides of the parallelipipedic

for domain 2. Moreover, the following relation is obtained cell. Consequently, the effective permittivity, in the direction

oV oV corresponding to the applied field, is calculated using the
e15- 1282% , (11)  following relation:
. . (?V V2_Vl
by virtue of the conservation of the normal component of the f g2 ds=g S, (13)
S 2

electric displacement at the interface. Consequently, the two



N 2+ ( Al dx d 15
X E x dy (15)
€, for each triangular element, whesg andS, denote the per-
mittivity and the surface of thé&th triangular element, re-
v spectively. Thus, the total energy in the entire composite can
be written by summation over thg, elements such as

V=712 1
¢ 5We(k)=§f £k
Sk

oV

N

W= kzl SW(K). (16)

? In the problem at hand, we consider a portion of the com-
posite material which fills a parallel capacitor. In this manner
L we obtain the effective permittivity in the corresponding di-

rection of the applied electric field from the electrostatic en-
FIG. 2. Notation and boundary conditions related to a two—dimensionalergy stored in such a capacitor ie
periodic composite. y 1€,

A
\j

1s )
Wezzsg(vz_vl) (17)

whereV,—V; denotes the difference of potential imposed inwhen a given potential slope is applied across the piz@s
the z-direction, e stands for the composite thickness in theFig. 2). In this equatiors=Ld stands for the surface of the
same direction, ané denotes the surface of the unit cell plates with side of length (for the two-dimensional struc-
perpendicular to the applied field. In Figtb) the inclusion  tures considered below, andl is set equal to 1 unit of
is allowed to intercept the sides of the parallelipipedic cell.length).

In that case we must take into account the electric displace-

ment flux through the are§; associated to the medium of C. Extension of the numerical approach to random
permittivity £, to calculate the effective permittivity in the composite structures

direction corresponding to the applied field. Then B@®) is
transformed into Eq(14).

J NV
s con

The effective permittivity of random composites cannot
be calculated so easily. The actual simulation of the random
Vo V/ geometries requires description of a considerable number of
ds=¢, 2 1(31+ S,), cells. Moreover, for three-dimensional structures, the dimen-
1 € sion of the matrix systems to be solved becomes very large.
(14)  Then, the resulting CPU times to obtain solutions increase
. . dramatically. In the case of three-dimensional random com-
whereS, andS, are the surfaces resulting from the Ir]tersec'posites the effective permittivity is computed by considering

tion qf the vplumlc regions of permittivity: and e, e the equivalent periodic materidlvith identical inclusions
spectively, with the upper side of the unit cell, perpendicular,

h lied field. At thi int it should b hasi doriented in the same directioand taking a statistical mean
to the applied field. t.t Is point it should be emphaslz€d,s ynq permittivity in the three directions, y, andz:
that the BIE method gives an accurate description of the
electric potential by including all order multipoles and by _} . (18)
taking into account edge and proximity effects even at low &= 3(8X eytes).
and high concentration of inhomogeneities. Hence, this nu-_, . S .
merical technique does not suffer from the disadvantages 6I]:h|s procedure may be justified by the fac_t that t_hese medl_a
the traditional boundary-value approach. are macro;coplcally homogc_aneous a.m.dllso.troplc as previ-
In this paper we also study two-dimensional media thatously mentioned. The effective permittivity is a scalar pa-
we characterize by FE The system displayed in Fig 2 is rameter that can be derived from the effective permittivity
considered: an arbitra'rily shaped homogeneous iﬁclusiohensor obtained for an anisotropic medium corresponding to
with permitt’ivitys is embedded within a homogeneous ma_periodic composites with oriented inclusions. In terminating
trix with permitti\iity &,. The implementation of the FE this subsection it should be mentioned that while the BIE
2 method is exact for periodic structures, its application to ran-

method consists in dividing the two-dimensional domain into . . S
. . . . dom media through Eq18) constitutes an approximation. It
triangular finite elements and interpolating the potential . . : .
gets worse at high volume fractions of inclusions.

and its normal derivativéV/dn on each finite element simi-
larly to the BIE methodsee Eq(12)]. Following this analy-
sis, the solution of Laplace’s equation is obtained using thé”' RESULTS AND DISCUSSION

Galerkin method and by solving the resulting matrix equa-  Three series of different numerical experiments were
tion from the boundary conditions thanks to a standard nuperformed. The results of our simulations on the effective
merical technique, i.e., Gauss procedure. Having computegdermittivity of dielectric mixtures are compared with simple
the potential and its normal derivative on each triangle of theanalytical equations. The data obtained on the effects of in-
computational mesh, the electrostatic energy can be exXtomogeneities orientation are given first. Then, the influence
pressed as of the scatterers geometry is assessed by computing the ef-
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FIG. 3. The effective permittivity is plotted as a function of the volume FIG. 4. The effective permittivity is plotted as a function of the volume
fraction f of inhomogeneities. The results are shown for randomly orientedfraction f of inhomogeneities. The results are shown for randomly oriented
ellipsoidal inclusions with permittivity ; =3 in the background matrix with  ellipsoidal inclusions with permittivitye;=30 in the background matrix
permittivity e,=1. The depolarization factors of the ellipsoid are with permittivity e,=1. The depolarization factors of the ellipsoid are
L,=0.0754 and.,=L,=0.4623. Comparison between numerical and ana-L,=0.0754 and.,=L,=0.4623. Comparison between numerical and ana-
lytical evaluations: BIE results are shown as solid circles; predictions fromlytical evaluations: BIE results are shown as solid circles; predictions from
the Polder—Van Santen formula, Bohren—Battan formula, and Fricke forthe Polder—van Santen formula=¢), Bohren—Battan formula, and
mula are displayed as dashed, dotted and solid lines, respectively. Fricke formula ¢,=¢,) are displayed as dashed, dotted, and solid lines
respectively.

fective permittivity of the mixture. The effect of the compo-

nents’ random distribution in space is dealt with. It should bethe volume fraction of inclusions, the results from the BIE

”0.‘90‘. thfit in our experiments, the background relqtlve Pelethod and those given by mixture formulas can diverge
mittivity is that of free spaceg,=1). Impenetrable inclu-

. ) e . ._significantly, reflecting the differences in the very basic as-
slons were can|der<.ad. fqr simplicity. The materials bemgsumptions made. For a high contrast ratio the response of the
non-lossy, their permittivities are real numbers. system to a potential is found from coupled multipole equa-
tions which are not contained in simple dipole mixture
rules?® The BIE results include all multipoles while Ed4),

(3), (5)—(7) are dipolar formulas. Attention was also focused
on mixtures of discoidal inclusions with radiusand thick-
nessh=r/5, randomly oriented in the host matrix. Simula-
tion results are shown in Figs. 5 and 6 and compared with

A. Dependence on the orientation of the
inhomogeneities

It was necessary to investigate the influence of inhomo
geneities orientation in the mixture for it can affect the es-
tablishment of the local electric fields. The effective permit-
tivity of ellipsoidal inclusions randomly oriented in the . -
mixture was first computed in accordance with the methodam‘lyt'ca1| modelsEgs. (4), (5), (6) and (7)] for &;=3,

described in the above section. To simplify the analysis, if2=1 ande; =30, e,=1. Conclusions are similar to the
was set thab=c=a/4. Comparing these numerical results case of randomly oriented ellipsoidal inclusions. These

with analytical ones resulting from Eq&l) and (3) is quite graphs show a good agreement between numerical and ana-

interesting. Two sets of permittivity components values wer yticgl qata ata !OW. yalue O.f the permittivity contrast ratio,
studied:s,=3, £,=1 ande; =30, z,= 1. The plots of these | ut indicate a significant discrepancy when this parameter
data for the effective permittivity are, respectively, displayedmcreases'

in Figs. 3 and 4. Figure 3 corresponds to the case of a low

permittivity contrast ratio between background and inclu-
sions. Effective permittivity values provided by the BIE
method are in good agreement with the values predicted To investigate the effect of mixture-components geom-
from the Bohren—Battan equati¢kg. (3)]. This figure also etry on the effective permittivity, simulations with randomly
indicates that the predictions from the different models areoriented inclusions of different shapes, such as cube, sphere,
very close when the volume fraction of inclusions is lessellipsoid, rod, and disc were carried out. The results obtained
than 10%((dilute limit). The Polder—Van Santen equation by the BIE method are presented in Figs. 7 and 8 for
gives e values greater than the values obtained by the BlIE,=1 ande,;=30, e,=1, respectively. It shows first that the
method whereas values from the Fricke equation are smalletwo curves plotted in Fig. 7 are rather similar: only very
over the range of volume fraction investigated. This behavioslight differences can be noticed. For a low permittivity con-
can be attributed to the small permittivity contrast betweertrast ratio between background and inclusions, the effective
the inclusion and the host matrix. As this contrast increaseqermittivity is not much affected by the inhomogeneities
the numerical values of are different from Eqgs(1) and(3) shape. At a high contrast ratio, Fig. 8, this behavior changes
as one can see from Fig. 4. Therefore, the point of imporand the effective permittivity is higher for ellipsoid-like, or
tance is that depending on the value of the contrast ratio anabd-like inclusions. Moreover, Fig. 8 exhibits that the dis-

B. Geometric shape of the components
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FIG. 5. The effective permittivity is plotted as a function of the volume
fraction f of inhomogeneities. The results are shown for randomly orientedFIG. 7. Influence of the shape of inhomogeneities on the effective permit-
discoidal inclusions with permittivity ; =3, thicknessh=r/5, in the back- tivity. Inclusions with permittivitys ;=3 are randomly oriented in the back-
ground matrix with permittivitye,= 1. The solid circles are obtained by the ground matrix with permittivitys,=1. The effective permittivity is com-
BIE method. Dotted, dashed, and solid lines correspond to the Bruggemaputed by the BIE method for different shapes of inhomogeneities: open
(ea=¢), Van Beek €,=¢,), and lamellae formulae, respectively. The open circles are obtained for discoidal inclusions of radiusand thickness
triangles represent the solution calculated from the Bohren—Battan formula=r/5, solid squares for cubic inclusions, dashed line describes ellipsoidal
when discoidal inclusions are modeled as equivalent oblate ellipsoids witlhclusions with semi-axeb=c=a/4, dotted line represents cylindrical in-
depolarization factork,=L,=0.070 and.,=0.86. clusions(rods)with radiusr and heighth=16r, and solid line corresponds

to spherical inclusions.

crepancy between the different models prediction is less than

20% in the range of volume fraction investigated. inclusion phase is given b= /4. To take into account the
o effect of the inhomogeneities distribution on the effective
C. Type of random distribution permittivity, the domain of permittivitye, is 100 times du-

To investigate the influence of the component randonPlicated and the inclusions of permittivity, are arranged
arrangement in space, several simulations were carried oU@ndomly with concentration equals @ (see Fig. 10). We
The unit cell of the two-dimensional composite material isdefine this concentration by the ratio of the number of inclu-
presented in Fig. 9. This unit cell consists of a square diaSions to the total number of unit cells of permittivigy.
mond of permittivity e, inside a square of permittivity, Then, the resulting volume fraction of the random composite

and sidelL.=2.2* The corresponding volume fraction of the
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FIG. 6. The effective permittivity is plotted as a function of the volume FIG. 8. Influence of the shape of inhomogeneities on the effective permit-
fraction f of inhomogeneities. The results are shown for randomly orientedtivity. Inclusions with permittivity ¢,=30 are randomly oriented in the
discoidal inclusions with permittivity, = 30, thickness1=r/5, in the back-  background matrix with permittivite,=1. The effective permittivity is
ground matrix with permittivitye,= 1. The solid circles are obtained by the computed by the BIE method for different shapes of inhomogeneities: open
BIE method. Dotted, dashed, and solid lines correspond to the Bruggemacircles are for discoidal inclusions of radiusand thicknes$h=r/5, solid
(e,=¢), Van Beek €,=¢,), and lamellae formulae, respectively. The open square for cubic inclusions, dashed line describes ellipsoidal inclusions with
triangles represent the solution calculated from the Bohren—Battan formulaemi-axesb=c=a/4, dotted line represents cylindrical inclusiofr®ds)
when discoidal inclusions are modeled as equivalent oblate ellipsoids witlwith radiusr and heighth=16r, and solid line corresponds to spherical
depolarization factor,=L,=0.070 and_,=0.861. inclusions.
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FIG. 9. Geometry of the unit cell of the two-dimensional composite material
investigated. The unit cell consists of a square diamond of permittivity (a)
and half-diagonal; inside a square of permittivity, and side 2.

is expressed by=Cf. Examples of different kinds of dis-
tributions are displayed in Fig. 11. The first pattéa) con-
cerns inclusions that are regularly distributed in the host me-
dium (low disorder). In this case, the arrangement is quasi-
periodic. The second pattertb) deals with agglomerate
distribution of inhomogeneities. Inclusions aggregate to form
isolate clusters. The last pattefo) describes a random ar-
rangement of inhomogeneitig¢strong disorder). The effec-
tive permittivity is computed by the FE method for these ¢
types of distributions and for two values of the permittivity
ratioe;=2,e,=1 ande;=5, e,=1. The resulting effective
permittivities are compared with those obtained from peri-
odically arranged inclusiong-igs. 12 and 1B The effect of
the distribution on the dielectric properties of the composites (b)
is thus observed. For a low contrast ratio between the per-
mittivities of the background and inclusions, the effective
permittivity of the composite is not affected by the inhomo-
geneities distribution. Increasing this contrast ratio shows the ¢ ¢
influence of randomness. The deviation between the results

obtained for the three distributions investigated and those .
computed in the case of a periodic arrangement is large for a
strong disorder and when inclusions form isolated clusters. ¢
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¢ &> FIG. 11. Some of the patterns investigated by the FE mettedegular
distribution, (b) agglomerate distribution, an@) random distribution.
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IV. CONCLUSIONS

FIG. 10. Geometry of the two-dimensional composite with random distri- | NiS paper des_cribe_s ab _initio simulation approach to
bution of inclusions. evaluate the effective dielectric constant of random arrays of



lations confirm that FE and BIE methods can be applied to
high concentrations of inclusions for which mean-field ap-
proaches generally do not hold good for they are unable to
take into account interactions among inclusions. Therefore,
our numerical method can fairly determine when these
analyses are applicable. Another focus of our efforts was to
investigate high contrast ratios between the permittivity of
background and inclusions. The methodology presented here
is useful to investigate the dielectric properties of dense com-
posite materials which are of importance in many techno-
logical applications, e.g., medical applications of micro-
waves, characterization of geophysical media, and materials
1.00 science. The effectiveness and flexibility of this simulation
0.00 0.10 0.20 forf 0.30 0.40 0.50 approach enables us to generalize it to multicomponent mix-
tures of arbitrary shapes. It can be extended for a wide vari-
o , y ety of problems. For reasons of mathematical analogy, the
FIG. 12. Influence of the distribution of inhomogeneities on the effective .o 115 are also valid for the magnetic permeability and the
permittivity. Inclusions with permittivitye ;=2 are embedded in the back- . . A h
ground matrix with permittivitye,=1. The effective permittivity is com- diffusivity of such materials. We intend in the near future to
puted by the FE method for the different types of distributions investigatedpresent the results of numerical experiments beyond the qua-
The Iopen cdirdeﬁ'oﬂig tSqugﬁSb,uzggSﬂ;? igﬁz?fg '(iaf;z iEggerserlogfittisefla”gﬁgistatic approximation or when the dielectric constant has a
21?3?123 :l?rv:gge]scribes the effective permittivity gfthe eqL,JivaIgnt comil).osit@onzero imaginary part. For instance, scattering effect.s be-
with a periodic arrangement of inclusions. come important as the frequency of the electromagnetic ex-
citation is increased and the concept of effective permittivity
loses its physical significance. Clearly, we are still a long
inclusions characterized by a permittivigy; in a dielectric ~ way from developing a predictive theory to describe the di-
matrix of permittivity e, under the quasistatic assumption, electric properties of realistic composite materials but this
i.e., large scale regime. The computational results presenteghalysis shows the need for well-controlled numerical ap-
here, combined with others previously published by ourproaches in the field of dielectric mixtures. While these com-
team, show the potential interest of this method for interpreputations are useful in highlighting physical situations which
tation of experimental data. Our results are in addition, com+eproduce the qualitative features of real laboratory experi-
pared to previously published analytical analysis. Our calcuments, it is difficult to interpret the parameters appearing in
these models in terms of measurable quantities in actual sys-
tems. In order to make progress in the understanding of the
2.40 physical behavior of dielectric mixtures, new experiments

1.40

are needed to quantify as carefully as possible the geometric
220 | microstructures of materials.
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