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Effective dielectric constant of random composite materials
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The randomnessin the structure of two-component dense composite materials influences the scalar
effective dielectric constant, in the quasistatic limit. A numerical analysis of this property is
developed in this paper. The computer-simulation models used are based on both the finite element
method and the boundary integral equation method for two- and three-dimensional structures,
respectively. Owing to possible anisotropy the orientation of spatially fixed inhomogeneities of
permittivity «1 , embedded in a matrix of permittivity«2 , affects the effective permittivity of the
composite material sample. The primary goal of this paper is to analyze this orientation dependence.
Second, the effect of the components geometry on the dielectric properties of the medium is studied.
Third the effect of inhomogeneities randomly distributed within a matrix is investigated. Changing
these three parameters provides a diverse array of behaviors useful to understand the dielectric
properties of random composite materials. Finally, the data obtained from this numerical simulation
are compared to the results of previous analytical work.
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I. INTRODUCTION

The concept of randomness permeates much of the
rent literature on the dielectric properties of heterogene
dense materials. Understanding the transport propertie
classical waves in random media remains an unrealized
bition even if the efforts of many scientists in the last d
cades have resulted in a considerable amount of valu
information. In fact, the scientific community is only lear
ing how to deal with these complex systems now that am
and subtle data are provided to them. A considerable bod
knowledge on the electromagnetic properties of conden
matter systems has been acquired from both experime
and theoretical studies. Previous investigations have i
cated that the phenomena studied in this paper have com
ramifications. For example, in black carbon filled-polym
composites, the carbon black aggregates tend to localiz
the amorphous regions of the polymer and induce interfa
aspects. Isolating the matter crucial to the physics from
irrelevant surroundings is the central task of the subject.
polarization of these materials in an external field depends
the disorder and the intrinsic dielectric characteristics
components. The challenge in the physics of disordered
terials lies in relating the microscopic characteristics of
internal structure to the macroscopic property of intere
e.g., permittivity, conductivity. However, relating the param
eters obtained from a constantly evolving investigation a
to the geometrical details of the material is not usua
straightforward; consequently,a priori assumptions have to
be made.

a!Electronic mail: beroual@trotek.ec-lyon.fr
b!Electronic mail: christian.brosseau@univ-brest.fr
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A previous article from our team presented anab initio
treatment which, assuming periodical embedding of a c
stituent of permittivity«1 in a homogeneous three-dimen
sional matrix of permittivity«2, allows the evaluation of the
scalar effective constant of the macroscopic sample in
quasistatic limit; the electromagnetic wave cannot see
individual scattering centers.1 The effective permittivity car-
ries information about the average polarization in the hete
geneous medium. The geometrical shape and volume f
tion of each component are studied in this paper. The met
to obtain numerical data by using an algorithm based u
the solution of boundary integral equation~BIE! is also
given. The treatment put forward in Ref. 1 was limited to t
periodic lattices of inhomogeneities. The present paper
tends this treatment to three aspects of the dielectric cha
terization of two-component composite materials contain
inclusions of permittivity«1 randomly distributed within a
homogeneous matrix of permittivity«2 . The three topics
studied are:~a! the influence of inhomogeneities orientatio
~b! the effects of component geometry, and~c! the conse-
quences of the random distribution of inhomogeneit
within the matrix. As already mentioned, the compute
simulation model, based on the BIE method developed i
previous work, was applied to three-dimensional syste
Two-dimensional configurations were also considered
make the computational requirements more reasona
Within this approach, the finite elements~FE! method was
used to obtain the potential distribution in the composite m
terial and to derive the effective dielectric constant. In th
last case, it is of the utmost importance that the pres
method makes it possible to determine the domain of ap
cability of existing theories.

The paper is organized as follows. Section II of th
paper summarizes previous works dealing with the calcu
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tion of effective permittivity of random two-component com
posite materials, and the technique used to compute t
parameters. The numerical evaluation carried out on diffe
types of composite media is developed in Sec. III. Moreov
the results obtained are compared to those provided by
erature. Section IV draws conclusions and develops so
possible extensions to our approach.

II. FORMULATION OF THE PROBLEM

A. Background

The main features of the analysis developed to evalu
the scalar effective permittivity of heterogeneous mater
are presented in this section. A set of relevant definition
first given to establish notation and terminology. Abunda
theoretical and computational descriptions of the effect
dielectric constant of two-component periodic materials
exist, but testing real composite data requires use of a ph
cal model. The randomness and connectedness properti
its internal structure must be characterized in detail. Hist
cally this has been a difficult task as totally different descr
tions of randomness can lead to almost identical results,
consequently to serious errors in interpreting experime
results.

Predicting the effective dielectric properties of any co
posite material is scientifically and practically of the utmo
importance, but to date there is no comprehensive and
versally accepted theory to account for its whole aspe
Quoting Hashin and Shtrikman on this point is interest
~Ref. 2, page 3130!: ‘‘The indeterminacy of the effective
permittivity is an inherent property of the physical situatio
resulting from the fact that generally nothing is known abo
spatial distribution of the components except that the m
rial is macroscopically homogeneous and isotropic.’’2 It is
worthwhile to refer to the detailed overviews of the histo
basis of dielectric mixture to Van Beck and Landauer. So
of the earliest works on the electric properties of compo
materials were performed by Clausius and Mossotti. Th
derived independently a mean-field theory for a disorde
system of polarizable spheres. Since this pioneering w
the subject has been the focus of an intense research e
and, presently various forms of ‘‘effective medium theory
exist.3–16 There are many other theoretical approaches
calculating the effective dielectric constant of two-com
ponent composite materials. These include the virial
proach, variational principles, and analytic properties of
component parameters to obtain upper and lower bounds
this parameter.2,17–19 In recent numerical studies, Felderh
et al. developed a virial approach by taking into accou
multipole corrections, e.g., cluster expansion, to obtain f
mal expressions for virial coefficients.20

Our work deals with a composite medium composed
monodisperse inhomogeneities of permittivity«1 randomly
placed within the host material. The host permittivity is«2
within a volumeV. Materials are assumed to be nonma
netic ~m15m251). Moreover, the two permittivities ar
considered to be real. The volume fraction occupied by
inclusions is denotedf . Usually, when one considers th
propagation of an electromagnetic wave in a random m
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dium, two length scales are of importance. The first scal
the wavelengthl of the electromagnetic wave probing th
medium. The second one is the typical scalej of the inho-
mogeneities. When the two conditionsk1j!1 andk2j!1
are met, where we have setki5(2p/l)A« im i , i 5 1,2, so
that the wave cannot discern the individual scatters
mersed in the host medium. In this quasistatic limit for whi
scattering losses can be neglected, the system can be
scribed by an effective~average!dielectric constant«. Mix-
ing formulas for discrete scatterers immersed in a host
dium in terms of the material properties of the compone
as well as the volume fraction and spatial arrangemen
inclusions have been proposed. A classical effective med
analysis neglects the correlations between inclusions tha
come significant as their concentration increases. Form
for two-component mixtures with homogeneous ellipsoi
needles and discs have been presented in various forms i
literature.5,8,10–13First, several equations for mixtures of ra
domly oriented ellipsoidal inclusions will be identified. I
that case, there is no preferred direction in the mixture a
the effective permittivity can be written according to Sihvo
and Kong12 as

«5«21
1

3
~«12«2! f (

i5x,y,z

«a
«a1Li~«12«a!

, ~1!

where «a is the apparent permittivity («2<«a<«) and Li
denote the depolarization factors of the ellipsoid in the th
orthogonal directions. The parameterLx in Eq. ~1! is ob-
tained from a standard result of electrostatics and can
written as

Lx5
abc

2 E
0

1` du

~u1a2!A~u1a2!~u1b2!~u1c2!
, ~2!

wherea, b, andc denote the semiaxes of the ellipsoid
the x, y, andz directions, respectively. To evaluateLy and
Lz , interchangeb anda, andc anda, respectively. Note tha
the depolarization factors verify( i5x,y,zLi51. If «a5«, Eq.
~1! is known as the Polder–Van Santen mixing formula. T
Polder–Van Santen formula has been extensively use
analyze the dielectric behavior of snow.12,16If «a5«2 Eq. ~1!
is termed the Fricke formula. Another well known mixtu
equation for randomly oriented ellipsoids has been repo
by Bohren and Battan,

«5«21
~«12«2! f u

12~12u! f
~3!

where we have set

u5
1

3 (
i5x,y,z

«2
«21Li~«12«2!

. ~4!

At this point it should be noticed that the effective perm
tivity for a mixture of randomly oriented discs can be writte
as5

«5«21
~«a12«1!~«12«2! f

3«1
, ~5!
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where again«2<«a<«. If «a is set equal to«, Eq. ~5! re-
duces to the mixture equation originally reported by Brug
man

«5«1
3«212~«12«2! f

3«12 f ~«12«2!
, ~6!

which has been extensively used in the literature. When«a is
set equal to«2, the Van Beek result is found again.

Finally, in the case of lamellae, the effective permittivi
can be expressed in the form

«5Af«11~12 f !«2
f

«1
1
12 f

«2

. ~7!

B. Principle of the numerical approach for periodic
composite structures

BIE and FE are numerical techniques which allow
compute the solution of Laplace’s equation by determin
the electric field and potential distributions from both t
physical properties of the materials and the boundary co
tions in the domain studied. Recent works have shown
the BIE method could be successfully applied to compute
effective permittivity of periodic composite materials.1,21

The basic scheme of the BIE method is now briefly recall
Consider a spatial domainV with a density of charge

equals to zero everywhere. Using Green’s theorem, the l
potentialV(MPV) can be written in terms ofV(P) and of
the normal derivative (]V/]n) (P), with P being any point
on the boundaryS ~with no overhangs!of V:

V~M !52
4p

A E
S
SV~P!

]G

]n
2G

]V

]n
~P! Dds, ~8!

whereA stands for the solid angle under which the po
M sees the oriented surfaceS, n is the normal unit vector
oriented outward fromS, ds is a surface element ofS and
G denotes the Green function.

Referring to the schematic representation of the confi
ration displayed in Fig. 1, a two-component periodic co
posite can be considered. It can be divided into elemen
cells. The constituent of permittivity«1 occupying the vol-
umeV1 is embedded in the regionV2 of permittivity «2.
Absence of charge density will be tacitly assumed throu
our analysis. Given these assumptions, Eq.~8! reads as:

V52
4p

A E
S1

SV ]G

]n
2G

]V

]n U1Dds ~9!

for domain 1, and

V52
4p

A E
S2

SV ]G

]n
2G

]V

]n U2Dds ~10!

for domain 2. Moreover, the following relation is obtained

«1
]V

]nU
1

5«2
]V

]nU
2

~11!

by virtue of the conservation of the normal component of
electric displacement at the interface. Consequently, the
-
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integral Eqs.~9! and ~10! have to be solved to evaluate nu
merically the electrostatic potential distribution. For that pu
pose, the implementation of the BIE method consists in
viding the boundaries into finite elements and for each fin
element, the calculation is carried out by interpolation ofV
and]V/]n with the corresponding nodal values:

5
V5(

j
l jVj

]V

]n
5(

j
l j S ]V

]n D
j

~12!

wherel j denotes the interpolating functions. The generat
of these functions, relevant to our computational requi
ments, and the detailed methodology used in this work
similar to those reported elsewhere.22,23 In this way, integral
equations are transformed into a matrix equation which
solved numerically using the boundary conditions on ea
side of the unit cell as displayed in Figs. 1~a! and 1~b!. The
permittivity is then obtained from the knowledge of the p
tential distribution and of its normal derivative.

Two types of configurations are distinguished for spe
fication of the structure of the composite material. In F
1~a!, there is a single inclusion and thus the medium of p
mittivity «1 cannot intercept the sides of the parallelipiped
cell. Consequently, the effective permittivity, in the directio
corresponding to the applied field, is calculated using
following relation:

E
S
«2

]V

]nU
2

ds5«z
V22V1

e
S, ~13!

FIG. 1. Notation and boundary conditions related to a the three-dimensi
composite:~a! isolated particle of permittivity«1, ~b! fused particle of per-
mittivity «1.
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whereV22V1 denotes the difference of potential imposed
the z-direction,e stands for the composite thickness in t
same direction, andS denotes the surface of the unit ce
perpendicular to the applied field. In Fig. 1~b! the inclusion
is allowed to intercept the sides of the parallelipipedic c
In that case we must take into account the electric displa
ment flux through the areaS1 associated to the medium o
permittivity «1 to calculate the effective permittivity in th
direction corresponding to the applied field. Then Eq.~13! is
transformed into Eq.~14!.

E
S2

«2
]V

]n U
2

ds1E
S1

«1
]V

]n U
1

ds5«z
V22V1

e
~S11S2!,

~14!

whereS1 andS2 are the surfaces resulting from the interse
tion of the volumic regions of permittivity«1 and «2 , re-
spectively, with the upper side of the unit cell, perpendicu
to the applied field. At this point it should be emphasiz
that the BIE method gives an accurate description of
electric potential by including all order multipoles and b
taking into account edge and proximity effects even at l
and high concentration of inhomogeneities. Hence, this
merical technique does not suffer from the disadvantage
the traditional boundary-value approach.

In this paper we also study two-dimensional media, t
we characterize by FE.23 The system displayed in Fig. 2 i
considered; an arbitrarily shaped homogeneous inclu
with permittivity «1 is embedded within a homogeneous m
trix with permittivity «2. The implementation of the FE
method consists in dividing the two-dimensional domain in
triangular finite elements and interpolating the potentialV
and its normal derivative]V/]n on each finite element simi
larly to the BIE method@see Eq.~12!#. Following this analy-
sis, the solution of Laplace’s equation is obtained using
Galerkin method and by solving the resulting matrix equ
tion from the boundary conditions thanks to a standard
merical technique, i.e., Gauss procedure. Having compu
the potential and its normal derivative on each triangle of
computational mesh, the electrostatic energy can be
pressed as

FIG. 2. Notation and boundary conditions related to a two-dimensio
periodic composite.
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dWe~k!5
1

2ESk«kF S ]V

]x D 21S ]V

]y D 2G dx dy ~15!

for each triangular element, where«k andSk denote the per-
mittivity and the surface of thekth triangular element, re-
spectively. Thus, the total energy in the entire composite
be written by summation over thenk elements such as

We5 (
k51

nk

dWe~k!. ~16!

In the problem at hand, we consider a portion of the co
posite material which fills a parallel capacitor. In this mann
we obtain the effective permittivity in the corresponding d
rection of the applied electric field from the electrostatic e
ergy stored in such a capacitor, i.e.,

We5
1

2
«
S

e
~V22V1!

2 ~17!

when a given potential slope is applied across the plates~see
Fig. 2!. In this equationS5Ld stands for the surface of th
plates with side of lengthL ~for the two-dimensional struc
tures considered below, andd is set equal to 1 unit of
length!.

C. Extension of the numerical approach to random
composite structures

The effective permittivity of random composites cann
be calculated so easily. The actual simulation of the rand
geometries requires description of a considerable numbe
cells. Moreover, for three-dimensional structures, the dim
sion of the matrix systems to be solved becomes very la
Then, the resulting CPU times to obtain solutions incre
dramatically. In the case of three-dimensional random co
posites the effective permittivity is computed by consideri
the equivalent periodic material~with identical inclusions
oriented in the same direction!and taking a statistical mea
of the permittivity in the three directionsx, y, andz:

«5
1

3
~«x1«y1«z!. ~18!

This procedure may be justified by the fact that these me
are macroscopically homogeneous and isotropic as pr
ously mentioned. The effective permittivity is a scalar p
rameter that can be derived from the effective permittiv
tensor obtained for an anisotropic medium corresponding
periodic composites with oriented inclusions. In terminati
this subsection it should be mentioned that while the B
method is exact for periodic structures, its application to r
dom media through Eq.~18! constitutes an approximation. I
gets worse at high volume fractions of inclusions.

III. RESULTS AND DISCUSSION

Three series of different numerical experiments we
performed. The results of our simulations on the effect
permittivity of dielectric mixtures are compared with simp
analytical equations. The data obtained on the effects of
homogeneities orientation are given first. Then, the influe
of the scatterers geometry is assessed by computing th

l
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fective permittivity of the mixture. The effect of the compo
nents’ random distribution in space is dealt with. It should
noted that in our experiments, the background relative p
mittivity is that of free space («251). Impenetrable inclu-
sions were considered for simplicity. The materials be
non-lossy, their permittivities are real numbers.

A. Dependence on the orientation of the
inhomogeneities

It was necessary to investigate the influence of inhom
geneities orientation in the mixture for it can affect the e
tablishment of the local electric fields. The effective perm
tivity of ellipsoidal inclusions randomly oriented in th
mixture was first computed in accordance with the meth
described in the above section. To simplify the analysis
was set thatb5c5a/4. Comparing these numerical resu
with analytical ones resulting from Eqs.~1! and ~3! is quite
interesting. Two sets of permittivity components values w
studied:«153, «251 and«1530,«251. The plots of these
data for the effective permittivity are, respectively, display
in Figs. 3 and 4. Figure 3 corresponds to the case of a
permittivity contrast ratio between background and inc
sions. Effective permittivity values provided by the BI
method are in good agreement with the values predic
from the Bohren–Battan equation@Eq. ~3!#. This figure also
indicates that the predictions from the different models
very close when the volume fraction of inclusions is le
than 10%~dilute limit!. The Polder–Van Santen equatio
gives e values greater than the values obtained by the B
method whereas values from the Fricke equation are sma
over the range of volume fraction investigated. This behav
can be attributed to the small permittivity contrast betwe
the inclusion and the host matrix. As this contrast increa
the numerical values of« are different from Eqs.~1! and~3!
as one can see from Fig. 4. Therefore, the point of imp
tance is that depending on the value of the contrast ratio

FIG. 3. The effective permittivity is plotted as a function of the volum
fraction f of inhomogeneities. The results are shown for randomly orien
ellipsoidal inclusions with permittivity«153 in the background matrix with
permittivity «251. The depolarization factors of the ellipsoid a
Lx50.0754 andLy5Lz50.4623. Comparison between numerical and a
lytical evaluations: BIE results are shown as solid circles; predictions f
the Polder–Van Santen formula, Bohren–Battan formula, and Fricke
mula are displayed as dashed, dotted and solid lines, respectively.
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the volume fraction of inclusions, the results from the B
method and those given by mixture formulas can dive
significantly, reflecting the differences in the very basic a
sumptions made. For a high contrast ratio the response o
system to a potential is found from coupled multipole equ
tions which are not contained in simple dipole mixtu
rules.20 The BIE results include all multipoles while Eqs.~1!,
~3!, ~5!–~7! are dipolar formulas. Attention was also focus
on mixtures of discoidal inclusions with radiusr and thick-
nessh5r /5, randomly oriented in the host matrix. Simul
tion results are shown in Figs. 5 and 6 and compared w
analytical models@Eqs. ~4!, ~5!, ~6! and ~7!# for «153,
«251 and «1530, «251. Conclusions are similar to th
case of randomly oriented ellipsoidal inclusions. The
graphs show a good agreement between numerical and
lytical data at a low value of the permittivity contrast rati
but indicate a significant discrepancy when this parame
increases.

B. Geometric shape of the components

To investigate the effect of mixture-components geo
etry on the effective permittivity, simulations with random
oriented inclusions of different shapes, such as cube, sph
ellipsoid, rod, and disc were carried out. The results obtai
by the BIE method are presented in Figs. 7 and 8
«251 and«1530,«251, respectively. It shows first that th
two curves plotted in Fig. 7 are rather similar: only ve
slight differences can be noticed. For a low permittivity co
trast ratio between background and inclusions, the effec
permittivity is not much affected by the inhomogeneiti
shape. At a high contrast ratio, Fig. 8, this behavior chan
and the effective permittivity is higher for ellipsoid-like, o
rod-like inclusions. Moreover, Fig. 8 exhibits that the di

d

-

r-

FIG. 4. The effective permittivity is plotted as a function of the volum
fraction f of inhomogeneities. The results are shown for randomly orien
ellipsoidal inclusions with permittivity«1530 in the background matrix
with permittivity «251. The depolarization factors of the ellipsoid a
Lx50.0754 andLy5Lz50.4623. Comparison between numerical and an
lytical evaluations: BIE results are shown as solid circles; predictions fr
the Polder–Van Santen formula («a5«), Bohren–Battan formula, and
Fricke formula («a5«2) are displayed as dashed, dotted, and solid lin
respectively.
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crepancy between the different models prediction is less t
20% in the range of volume fraction investigated.

C. Type of random distribution

To investigate the influence of the component rand
arrangement in space, several simulations were carried
The unit cell of the two-dimensional composite material
presented in Fig. 9. This unit cell consists of a square d
mond of permittivity«1 inside a square of permittivity«2
and sideL52.24 The corresponding volume fraction of th

FIG. 5. The effective permittivity is plotted as a function of the volum
fraction f of inhomogeneities. The results are shown for randomly orien
discoidal inclusions with permittivity«153, thicknessh5r /5, in the back-
ground matrix with permittivity«251. The solid circles are obtained by th
BIE method. Dotted, dashed, and solid lines correspond to the Brugge
(«a5«), Van Beek («a5«2), and lamellae formulae, respectively. The op
triangles represent the solution calculated from the Bohren–Battan form
when discoidal inclusions are modeled as equivalent oblate ellipsoids
depolarization factorsLx5Ly50.070 andLz50.86.

FIG. 6. The effective permittivity is plotted as a function of the volum
fraction f of inhomogeneities. The results are shown for randomly orien
discoidal inclusions with permittivity«1530, thicknessh5r /5, in the back-
ground matrix with permittivity«251. The solid circles are obtained by th
BIE method. Dotted, dashed, and solid lines correspond to the Brugge
(«a5«), Van Beek («a5«2), and lamellae formulae, respectively. The op
triangles represent the solution calculated from the Bohren–Battan form
when discoidal inclusions are modeled as equivalent oblate ellipsoids
depolarization factorsLx5Ly50.070 andLz50.861.
n

ut.

-

inclusion phase is given byf5h2/4. To take into account the
effect of the inhomogeneities distribution on the effecti
permittivity, the domain of permittivity«2 is 100 times du-
plicated and the inclusions of permittivity«1 are arranged
randomly with concentration equals toC ~see Fig. 10!. We
define this concentration by the ratio of the number of inc
sions to the total number of unit cells of permittivity«2.
Then, the resulting volume fraction of the random compos
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FIG. 7. Influence of the shape of inhomogeneities on the effective per
tivity. Inclusions with permittivity«153 are randomly oriented in the back
ground matrix with permittivity«251. The effective permittivity is com-
puted by the BIE method for different shapes of inhomogeneities: o
circles are obtained for discoidal inclusions of radiusr and thickness
h5r /5, solid squares for cubic inclusions, dashed line describes ellipso
inclusions with semi-axesb5c5a/4, dotted line represents cylindrical in
clusions~rods!with radiusr and heighth516r, and solid line corresponds
to spherical inclusions.

FIG. 8. Influence of the shape of inhomogeneities on the effective per
tivity. Inclusions with permittivity «1530 are randomly oriented in the
background matrix with permittivity«251. The effective permittivity is
computed by the BIE method for different shapes of inhomogeneities: o
circles are for discoidal inclusions of radiusr and thicknessh5r /5, solid
square for cubic inclusions, dashed line describes ellipsoidal inclusions
semi-axesb5c5a/4, dotted line represents cylindrical inclusions~rods!
with radius r and heighth516r, and solid line corresponds to spheric
inclusions.
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is expressed byf̃5Cf . Examples of different kinds of dis
tributions are displayed in Fig. 11. The first pattern~a! con-
cerns inclusions that are regularly distributed in the host m
dium ~low disorder!. In this case, the arrangement is qua
periodic. The second pattern~b! deals with agglomerate
distribution of inhomogeneities. Inclusions aggregate to fo
isolate clusters. The last pattern~c! describes a random ar
rangement of inhomogeneities~strong disorder!. The effec
tive permittivity is computed by the FE method for the
types of distributions and for two values of the permittivi
ratio «152, «251 and«155, «251. The resulting effective
permittivities are compared with those obtained from pe
odically arranged inclusions~Figs. 12 and 13!. The effect of
the distribution on the dielectric properties of the compos
is thus observed. For a low contrast ratio between the
mittivities of the background and inclusions, the effecti
permittivity of the composite is not affected by the inhom
geneities distribution. Increasing this contrast ratio shows
influence of randomness. The deviation between the res
obtained for the three distributions investigated and th
computed in the case of a periodic arrangement is large f
strong disorder and when inclusions form isolated cluste

FIG. 10. Geometry of the two-dimensional composite with random dis
bution of inclusions.

FIG. 9. Geometry of the unit cell of the two-dimensional composite mate
investigated. The unit cell consists of a square diamond of permittivity«1

and half-diagonalh inside a square of permittivity«2 and side 2.
-
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IV. CONCLUSIONS

This paper describes anab initio simulation approach to
evaluate the effective dielectric constant of random array
-

FIG. 11. Some of the patterns investigated by the FE method:~a! regular
distribution,~b! agglomerate distribution, and~c! random distribution.
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inclusions characterized by a permittivity«1 in a dielectric
matrix of permittivity «2 under the quasistatic assumptio
i.e., large scale regime. The computational results prese
here, combined with others previously published by o
team, show the potential interest of this method for interp
tation of experimental data. Our results are in addition, co
pared to previously published analytical analysis. Our cal

FIG. 12. Influence of the distribution of inhomogeneities on the effect
permittivity. Inclusions with permittivity«152 are embedded in the back
ground matrix with permittivity«251. The effective permittivity is com-
puted by the FE method for the different types of distributions investiga
The open circles, solid squares, and the dashed line correspond to ran
regular, and agglomerate distributions of inhomogeneities, respectively.
dashed curve describes the effective permittivity of the equivalent comp
with a periodic arrangement of inclusions.

FIG. 13. Influence of the distribution of inhomogeneities on the effect
permittivity. Inclusions with permittivity«155 are embedded in the back
ground matrix with permittivity«251. The effective permittivity is com-
puted by the FE method for the different types of distributions investiga
The open circles, solid squares, and the dashed line correspond to a ra
regular, and agglomerate distribution of inhomogeneities, respectively.
dashed curve describes the effective perimittivity of the equivalent com
ite with a periodic arrangement of inclusions.
ed
r
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lations confirm that FE and BIE methods can be applied
high concentrations of inclusions for which mean-field a
proaches generally do not hold good for they are unable
take into account interactions among inclusions. Therefo
our numerical method can fairly determine when the
analyses are applicable. Another focus of our efforts was
investigate high contrast ratios between the permittivity
background and inclusions. The methodology presented
is useful to investigate the dielectric properties of dense co
posite materials which are of importance in many tech
logical applications, e.g., medical applications of micr
waves, characterization of geophysical media, and mate
science. The effectiveness and flexibility of this simulati
approach enables us to generalize it to multicomponent m
tures of arbitrary shapes. It can be extended for a wide v
ety of problems. For reasons of mathematical analogy,
results are also valid for the magnetic permeability and
diffusivity of such materials. We intend in the near future
present the results of numerical experiments beyond the
sistatic approximation or when the dielectric constant ha
nonzero imaginary part. For instance, scattering effects
come important as the frequency of the electromagnetic
citation is increased and the concept of effective permittiv
loses its physical significance. Clearly, we are still a lo
way from developing a predictive theory to describe the
electric properties of realistic composite materials but t
analysis shows the need for well-controlled numerical
proaches in the field of dielectric mixtures. While these co
putations are useful in highlighting physical situations whi
reproduce the qualitative features of real laboratory exp
ments, it is difficult to interpret the parameters appearing
these models in terms of measurable quantities in actual
tems. In order to make progress in the understanding of
physical behavior of dielectric mixtures, new experimen
are needed to quantify as carefully as possible the geom
microstructures of materials.
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