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Effective dielectric constant of periodic composite materials
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We presentcomputer simulation data for the effective permittivity~in the quasistatic limit! of a
system composed of discrete inhomogeneities of permittivitye1, embedded in a three-dimensional
homogeneous matrix of permittivitye2. The primary purpose of this paper is to study the related
issue of the effect of the geometric shape of the components on the dielectric properties of the
medium. The secondary purpose is to analyse how the spatial arrangement in these two-phase
materials affects the effective permittivity. The structures considered are periodic lattices of
inhomogeneities. The numerical method proceeds by an algorithm based upon the resolution of
boundary integral equations. Finally, we compare the prediction of our numerical simulation with
the effective medium approach and with results of previous analytical works and numerical
experiments.
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I. INTRODUCTION

In recent years, extensive research has gone into st
ing the dielectric properties of heterogeneous materials.
reasons are not hard to find. On the one hand, it provi
fundamental problems which are not completely answer
e.g. stochastic transport in disordered media, metal insula
transition.1–3 On the other hand, industries such as ae
space, electronics and others, have continuously provided
impetus pushing the development of new materials in a w
variety of applications. These include fields as diverse
shielding enclosures, captive video disk units, electrom
netic absorbing materials, to cite but a few.4 The trend to-
wards a wider variety of applications is almost certain
continue.

In these materials, an accurate prediction of the mac
scopic dielectric behavior must account for the detailed
ternal structure of the composite, the dielectric and sh
characteristics, the volume fractions and the spatial arran
ment of the different components. The analytical soluti
requires us to compute the local fields inside the compo
and their distortions caused by the inhomogeneities usin
first principle approach, i.e. Maxwell’s equations. In the ge
eral case of a spatially random structure, it appears as a
midable task to solve analytically this problem and the
difficulties have led numerous groups to study the par
differential equations for the local fields using different com
putational techniques.5–11 This originates from the fact tha
the effective permittivity of composite materials is basica
an averaged property, where the average is taken over
ensemble of the realisations of disorder. Somewhat surp
ingly, it should be emphasized in this context that numeri
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simulations which start from completely different descri
tions of randomness may arrive at almost identical results
program of investigation is currently underway, whose u
mate goal is to evaluate the effective permittivity of tw
phase composite materials in terms of the constituent p
erties and the internal structure of the mixture. The purp
of this paper is to develop a computer-simulation mo
based on the resolution of boundary integral equations w
careful attention paid to the numerical evaluation of the lo
field. Although the method can be used to deal with arbitr
geometric forms of the inclusions and arbitrary spatial
rangements, calculations are confined, in this paper, to
special but important case of periodic composites. It sho
be regarded as a first step towards the ultimate goal outl
above. Actually, the cross-fertilization between compu
tional and analytical work in this area is quickly growin
Extensive theoretical research has been focused in the s
of the effect of microstructure on the effective permittivity
these materials.13–17

The remainder of the paper is organized as follows.
Section II, we summarize the context of the problem. In S
tion III, we describe the principle of our numerical analys
The boundary integral equation method, which is the corn
stone of this paper, will be reviewed in this section. In Se
tion IV, we present results of different simulations with com
parison with research reported by other authors. Our prim
purpose is to determine the volume fraction dependenc
the effective dielectric constant~in the quasistatic limit! of a
composite material in which identical structures of consti
ent, say 1, are embedded in crystalline fashion in a matrix
constituent 2. Our secondary purpose is to study the rela
issue of the influence of the geometric shape of the cons
ents. We pay particular attention to the issue of how
topological arrangement affects the effective permittivi
Finally, conclusions of the paper will be presented
Section V.
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II. BACKGROUND

The problem of determining the effective dielectric con
stant of heterogeneous two-phase materials has a long
tory. The origins of the modern concept of effective perm
tivity can be found in the scientific literature of the lat
nineteenth and early twentieth centuries. Particularly no
worthy early and pioneering contributions were made
Maxwell and Lord Rayleigh. For detailed historical review
and discussions of the general subject of effective permitt
ity with numerous references inside, the reader may wish
consult Landauer3 and Tingaet al.14 In more recent times,
important developments are found in the work of Shivo
and Lindell.4 The medium under consideration will be cha
acterized in the static limit, i.e. the spatial variation of th
incident electric field is very large compared to the typic
size of the heterogeneities in the medium. Note that in t
paper, permittivity and dielectric constant are used synon
mously.

Despite its effectiveness, the traditional boundary-val
approach does not provide accurate values ofe at high-
volume fraction of the inclusions because it neglects the c
relations among the conductive inhomogeneities and d
not contain information about the structure of the materi
e.g. clustering effect. Moreover, this approach is restricted
nontouching inclusions.

There have already been a number of numerical stud
which have found their way into electrostatics over the yea
These include the random-walk method introduced
Schwartz and Banavar,7 and the multipole expansion of the
field around inclusions to evaluate the local fields distortion
studied by Cukieret al.6 For completeness, we also mentio
that Felderhofet al.11 have proposed alternatives that us
virial expansions and Torquato and Lado9 have also com-
puted the effective permittivity of composite materials b
applying bounding methods. Our calculations are very mu
in the spirit of the recent investigations reviewed by Gho
and Azimi.23

III. PRINCIPLE OF THE NUMERICAL APPROACH

Let us turn to a brief presentation of the principle of ou
numerical analysis for describing the behavior of the elect
field in composite materials. It is reasonable to start with t
first principles of electrostatics, namely Laplace’s equatio
i.e.DV50 whereV is a potential distribution inside a spatia
domainV with a density of charge equal to zero everywher
The solution to this second order differential equation can
computed by applying the method of boundary integral equ
tion ~BIE!.18,19 Upon using Green’s theorem, we can writ
the local potentialV(MPV) in terms ofV(P) and of the
normal derivative]V/]n(P), with P being any point on the
boundaryS ~with no overhangs!of V:

V~M !52
4p

A E
S
SV~P!

]G

]n
2G

]V

]n
~P! Dds, ~1!

whereA stands for the solid angle under which the pointM
sees the oriented surfaceS, n is the normal unit vector ori-
ented outward toS, ds is a surface element ofS and G
denotes the Green function.
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To begin with we refer to the schematic representatio
of the configurations displayed in Fig. 1. We consider a two
component periodic composite that can be divided into e
ementary cells. The constituent of permittivitye1 occupying
the volumeV1 is embedded in the regionV2 of permittivity
e2. Absence of charge density will be tacitly assumed
through our analysis. Given these assumptions, Eq.~1! leads
to:

V52
4p

A E
S1

S V]G

]n
2G

]V

]nU
1
D ds ~2!

for domain 1, and

V52
4p

A E
S2

S V]G

]n
2G

]V

]nU
2
D ds ~3!

for domain 2. Moreover, we have

e1
]V

]nU
1

5e2
]V

]nU
2

~4!

by virtue of the conservation of the normal component of th
electric displacement at the interface. Consequently, we ha
to solve the above two integral equations~2! and ~3! to
evaluate numerically the electrostatic potential distribution
For that purpose, the implementation of the BIE method con
sists in dividing the boundaries into finite elements and fo
each finite element, the calculation is carried out by interpo
lation of V and]V/]n with the corresponding nodal values:

FIG. 1. Boundary conditions related to the configurations investigated in th
numerical computation:~a! isolated particle of permittivitye1, ~b! fused
particle of permittivitye1.
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j

l jVj

~5!
]V

]n
5(

j
l j S ]V

]n D
j

,

wherel j denote the interpolating functions. The generatio
of these functions that are suited for our computational r
quirements and the detailed methodology that we employ
this work are similar to those reported at lengt
elsewhere.19,20 Following this way, integral equations are
transformed in a matrix equation which is numericall
solved using the boundary conditions on each side of the u
cell as displayed in Figures 1a and 1b. Then, the permittiv
is obtained from the knowledge of the potential distributio
and its normal derivative. We distinguish between two typ
of configurations for specifying the structure of the compo
ite material.

In Fig. 1a, we have a single inclusion and thus, the m
dium of permittivity e1 cannot intercept the sides of the par
allelepipedic cell. In this case, the effective permittivity, i
the direction corresponding to the applied field, is calculat
using the following relation:

E
S
e2

]V

]nU
2

ds5ez
V22V1

e
S, ~6!

whereV22V1 denotes the slope of potential imposed in th
z-direction,e stands for the composite thickness in the sam
direction andS denotes the surface of the unit cell perpen
dicular to the applied field.

In Fig. 1b the inclusion is allowed to intercept the side
of the parallelepipedic cell. In that case we must take in
account the electric displacement flux through the areaS1
associated to the medium of permittivitye1 to calculate the
effective permittivity in the direction corresponding to th
applied field. Then Eq.~6! is turned into

E
S2

e2
]V

]nU
2

ds1E
S1

e1
]V

]nU
1

ds5ez
V22V1

e
~S11S2!,

~7!

whereS1 andS2 are the surfaces resulting from the interse
tion of the volumic regions of permittivitye1 ande2 respec-
tively with the upper side of the unit cell, perpendicular t
the applied field.

It should be noted that the BIE method gives an accura
description of the electric potential by taking into accou
edge and proximity effects even at low and high concent
tions of inhomogeneities. Therefore, this numerical tec
nique does not suffer from the disadvantages of the tra
tional boundary-value approach.

IV. RESULTS AND DISCUSSION

We turn now to a discussion of numerical results co
cerning the static effective permittivity of periodic composit
media as a function of the permittivities and the volum
fraction of the constituent materials. Comparison with oth
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numerical simulations and analytical equations for calcula
ing the permittivity in heterogeneous media will be dis
cussed.

The different geometries of the three-dimensional per
odic composites, consisting of two lossless materials wi
dielectric constantse1 ande2, that we consider in this study
are displayed in Fig. 2. The first subsection deals with effe
tive permittivity of periodic arrays of dielectric spheres. Th
second concerns regular systems of dispersed ellipsoid. T
third considers inclusions with cylinder shape~rods and
discs!. Finally, we examine how the effective permittivity
can be affected by the type of the periodic arrangement.

A. Composite with spherical inclusions

Consider equal-sized spheres fixed in a simple cubic a
ray,a being the radius of the spheres. Figure 2a shows a u
cell of the structure. For the purpose of simplicity, we as
sume, in the following, that all the lengths (l ,a) are dimen-
sionless and that the side of the cell has the specific va
l52. It is worth noting that ifa!1 the particles act like
isolated ones: they will experience only the external field an
not the fields induced by the other particles. We call this ca
the isolated particle regime. Then, the permittivity of th
medium can be described by the Maxwell–Garnett equatio

e5e2
e112e212 f ~e12e2!

e112e22 f ~e12e2!
, ~8!

wheref5pa3/6 is the volume fraction of the scatterer phas
in the mixture~see Fig. 2a!. It is a relatively simple exercise
to show that Eq.~8! can be also written in the Clausius–
Mossoti form:

e2e2
e12e2

5 f
e12e2

e112e2
. ~9!

What occurs when increasing the concentrationf? The
distance of separation between two spheres decreases
particles will experience the local fields induced by othe
particles. The volume fractionf p5p/6>0.523 correspond-
ing to the limit of touching spheres (a51) is the maximum
packing threshold. Beyond that concentration, the geome
can be described according to Shenet al.21 excluding six
segments of sphere from the unit cell. In this fused partic
regime, the volume fraction is analytically calculated for
value of the radiusa in the range 1<a<&:

f5
pa3

6
2

p

4
~a21!2~2a21!. ~10!

By taking into account the symmetry of the unit cell in
the two regimes described above, the geometry is furth
reduced to one-eighth of the microstructure for calculation
by the BIE method. Our results are compared with thos
derived from Eq.~8! and with numerical data obtained by
Mc Phedran5 et al. and Taoet al.8 for e153 ande251 ~Fig-
ure 3!. In that case, it appears that the values ofe computed
by the BIE method agree satisfactorily with these previou
calculations. One might argue that the agreement of the n
merical data with Eq.~8!, for f. f p , is somewhat fortuitous.
This is confirmed by Fig. 4 which shows the limits of the
Maxwell–Garnett theory for volume fractionsf higher than



FIG. 2. The configurations investigated in the boundary element model computation. The volume fraction of materiale1 is f : ~a! sphere,~b! ellipsoid, ~c!
cylinder, ~d! disc.
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0.4, when the ratio of the constituent permittivities is highe
~we takee1530 ande251!. It is further interesting to note
that our results are very close to those obtained by a Four
expansion technique over the entire range of volume fracti
f .8,21

B. Composite with ellipsoidal inclusions

We examine now a system of ellipsoidal inclusions~Fig.
2b!which are regularly dispersed in a host medium. The un
cell can be described using the one obtained for spheri
inclusions thanks to a tridimensional homothecy of rat
( l ,w,h), wherel , w andh denote respectively the lengths o
r

ier
on

it
al
o

the sides of the parallelepipedic cell displayed in Fig. 2b. A
can be seen in Fig. 2b, the medium is anisotropic and t
effective permittivity componente i in the directioni5x,y,z
can be written as

e i5e21
na i

12Li
na i

e2

, ~11!

whereLi anda i are the depolarization factor and the pola
izability in the direction characterized by the indexi .

A standard result of electrostatics gives
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Lx5
abc

2 E
0

1` du

~u1a2!A~u1a2!~u1b2!~u1c2!
, ~12!

wherea, b andc denote the semiaxes of the ellipsoid. No
that Ly andLz can be evaluated by interchangingb anda,
andc anda respectively.4

If the scatterers are sufficiently distant from each oth
their polarizability can be deduced from the solution of t
internal field of a dielectric ellipsoid in a quasistatic field

a i5y0~e12e2!
e2

e21~e12e2!Li
, i5x,y,z, ~13!

FIG. 3. Volume fraction dependence of the effective permittivity of t
three-dimensional periodic composite displayed in Fig. 2a. Inclusions~per-
mittivity e153! are spherical and of volume fractionf in a matrix of per-
mittivity e251. The full circles are obtained by the BIE method. The so
line is obtained from the results of Mc Phedranet al. ~see Ref. 5! (x) are
results of Taoet al. ~see Ref. 8!. The dashed curve corresponds to
Maxwell Garnet equation~Eq. ~8!!.

FIG. 4. Volume fraction dependence of the effective permittivity of t
three-dimensional periodic composite displayed in Fig. 2a. Inclusions~per-
mittivity e1530! are spherical and of volume fractionf in a matrix of per-
mittivity e251. The full circles are obtained by the BIE method. The so
curve corresponds to the Maxwell–Garnet equation~Eq. ~8!!.
e

r,
e

wherey05 4
3pabc is the volume of the ellipsoid.4

By substituting Eq.~13! into ~11!, the effective permit-
tivity of the medium can be expressed as

e i5e2S 11
~e12e2! f

e21~e12e2!~12 f !Li
D i5x,y,z, ~14!

where f5ny05 4
3pabc/ lwh is the volume fraction of the

constituent 1~See Fig. 2b!. To simplify further the analysis,
we first chooseb5c5a/4 ~prolate spheroid!and we take the
dimensions of the elementary cell as:l58 andw5h52.
Figures 5 and 6 show a comparison of the numerical resu
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FIG. 5. Volume fraction dependence of the effective permittivity in thex
direction of the three-dimensional periodic composite displayed in Fig. 2
Inclusions ~permittivity e1530! are ellipsoid (b5c5a/4) and of volume
fraction f in a matrix of permittivitye251. The full circles are obtained by
the BIE method. The solid curve corresponds to Eq.~14!with a depolariza-
tion factorLx50.0754~Eq. ~12!!.

FIG. 6. Volume fraction dependence of the effective permittivity in thez
direction of the three-dimensional periodic composite displayed in Fig. 2
Inclusions ~permittivity e1530! are ellipsoid (b5c5a/4) and of volume
fraction f in a matrix of permittivitye251. The full circles are obtained by
the BIE method. The solid curve corresponds to Eq.~14!with a depolariza-
tion factorLz50.4623~Eq. ~12!!.
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obtained by the BIE method for the effective permittivity o
the medium in thex and z directions respectively,~e1530
and e251! and those obtained from Eq.~14!. They clearly
show the limits of the analytical model for volume fraction
f higher than 0.2 particularly; the gap being important in th
x direction for which the interaction effect is stronger.

C. Composite with cylindrical and discoidal inclusions

We first consider the periodic composite displayed
Fig. 2c. By taking into account the symmetries of the un
cell, we need only to evaluate the permittivity in thex andz
direction sinceey5ex . The dielectric constant in the perpen
dicular direction to the cylinder axes is given by the Ra
leigh’s formula

ex5e2
e11e21 f ~e12e2!

e21e22 f ~e12e2!
. ~15!

Using Eq. ~14! for prolate spheroid with
Lx5Ly5( 122d) andLz52d whered!1 Van Beek13 derived
a general expression for the effective permittivity in the d
rection which is parallel to the cylinder axes

ez5e21
1

3

~e12e2!~5ea1e1!

ea1e2
, ~16!

whereea denotes the apparent permittivity of the medium
i.e. ‘‘seen’’ outside by an inclusion. Its value differs from th
permittivity of the host medium but must lie in the rang
e2<ea<ez .

To make our simulation simpler, the geometry of th
unit cell was characterized by a single parametera by taking:
H58a, D5a, l5w51, andh58 ~see Fig. 2c!. The corre-
sponding volume fraction of the constituent 1 is given b
f5pa3/4. Figures 7 and 8 show data computed with the B
method. At this point, a number of comments are in order
is first interesting to observe that numerical data concern

FIG. 7. Volume fraction dependence of the effective permittivity in thex
direction of the three-dimensional periodic composite displayed in Fig.
Inclusions~permittivity e153! are cylindrical and of volume fractionf in a
matrix of permittivity e251. The full circles are obtained by the BIE
method. The solid curve is obtained from Eq.~15!.
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ex are well represented by Eq.~15! for inclusions of low
permittivity ~e153!, while for high permittivity we have
noted a significant departure from Eq.~15! at high concen-
tration levels. As concernsez we observe that numerical dat
for inclusions of low permittivity~e153! are well described
by Eq. ~16!, taking an apparent permittivity identical to th
effective permittivity in the parallel direction to the cylinde
axis.

We turn next to the case of discoidal inclusions embe
ded in the host medium. The structure of the periodic co
posite has for unit cell the geometry of Fig. 2d.

In this case, it has been suggested that the componen
the effective permittivity can be evaluated from the Wiene
formulae considering a periodic array of thin lamellae;3,13,14

ez is obtained by connecting the constituents in series.

1

ez
5

f

e1
1
12 f

e2
~17!

while ex is deduced by connecting the constituents in para

ex5 f e11~12 f !e2 . ~18!

As in the first part of this subsection, the geometry of t
unit cell is characterized by a single parameter:H5a,
D510a, l5w510, andh51. The corresponding volume
fraction of the constituent 1 is again given byf5pa3/4. The
values of the effective permittivity obtained by the BI
method for inclusions of permittivity~e153! are displayed in
Figs. 9 and 10. We can deduce from these figures that nei
Eq. ~17!nor Eq.~18! is able to correctly evaluate the permi
tivity of these structures.

D. Lattices

Up to now, we have only considered a simple cubic~sc!
arrangement of the inclusions in the host matrix. Here,
discuss the influence of other types of cubic arrangeme

c.

FIG. 8. Volume fraction dependence of the effective permittivity in thez
direction of the three-dimensional periodic composite displayed in Fig.
Inclusions~permittivity e153! are cylindrical and of volume fractionf in a
matrix of permittivity e251. The full circles are obtained by the BIE
method. The dashed and the solid lines are obtained from Eq.~16!with the
apparent permittivitiesea5e2 andea5e respectively.
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body centered~bcc! and face centered~fcc!. We shall also
consider crystalline lattices composed of perfectly condu
ing spheres~s1→1`! of radius a, the permittivity of the
host medium beinge251. The volume fraction of the par-
ticles can be written as

f5n0
4

3

pa3

y0
, ~19!

wheren0 is the number of particles per unit of internal struc
ture andy0 denotes the volume of the internal structure. Th
main characteristics of the different types of cubic lattic
investigated are summarized in Table I. By computing t

FIG. 9. Volume fraction dependence of the effective permittivity in thex
direction of the three-dimensional periodic composite displayed in Fig.
Inclusions~permittivity e153! are discoidal and of volume fractionf in a
matrix of permittivity e251. The full circles are obtained by the BIE
method. The solid line is obtained from Eq.~19!.

FIG. 10. Volume fraction dependence of the effective permittivity in thez
direction of the three-dimensional periodic composite displayed in Fig.
Inclusions~permittivity e153! are discoidal and of volume fractionf in a
matrix of permittivity e251. The full circles are obtained by the BIE
method. The solid curve is obtained from Eq.~18!.
t-

-
e
s
e

effective permittivity using the BIE method, we obtain iden
tical results to those reported by Mc Phedran5 et al. and
Doyle12 with an accuracy of 1023.

Next we turn to the case of hexagonal lattices compos
of perfectly conducting spheres of radiusa embedded in a
host medium of permittivitye251. The geometry of the unit
cell is displayed in Fig. 11. The number of particles per un
of internal structure isn051, and the volume of the internal
structure isy05 l 2h)/2. This type of composite is aniso-
tropic (exÞez) and we observe from the Fig. 12 that th
permittivity strongly depends on the specific ratioh/ l for
volume fractionsf higher than 0.1.

E. Comparison with previous approaches

The above developments show that the BIE method c
be used at high volume fractions, even for large permittivi
contrast ratios between the background and the inclusio
i.e. when the mean-field analytical approaches are irrelev
to evaluate the effective permittivity of a composite materia
We also made the comparison of our results with previous
published analytical mixtures equations derived from heur
tic assumptions which may be adapted for some compos

d.

d.

TABLE I. The main characteristics of the different types of cubic lattice
The internal structure, the number of particles per unit of internal structu
n0 , the volume fractionf of the conducting spheres of radiusa, the radius
ap and the concentrationf p corresponding to the maximum packing thresh
old are function of the type of cubic lattices i.e. simple cubic~sc!, body-
centered cubic~bcc!and face-centered cubic~fcc!.

FIG. 11. Hexagonal lattice structure.
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but do not hold generally. We found that, for certain geom
etries, ranges of volume fraction and values of the dielect
constants of the two components, the differences between
BIE results and these equations may be small~e.g., Figs. 3
and 7!, or not small~e.g., Figs. 4 and 6!. Our method of
calculation has three advantages. First, it is based on fi
principles so it can serve as a test for other approxim
methods. Second, the BIE method can be easily realized
computer algorithm. We made our calculations on
Hewlett–Packard 715/80 workstation. Third, it is not com
putationally time consuming. The CPU time for calculatin
the permittivity of a composite material with a certain con
centration of inhomogeneities is about 20 minutes.

V. CONCLUSIONS

In summary, we have outlined an efficient and powerf
computer-aided solution procedure based on the bound
integral equation method for the analysis of the static effe
tive permittivity of two-constituent lossless media. Our nu
merical technique can be easily extended to multipha
structures of any shape.

Using such a framework, we have compared our resu
in the range of permittivities investigated, with those give
by mean-field approximations. Let us add that the numeri
simulations have shown the limits of standard analytic
models for high volume fractions of the dispersed pha
particularly when the ratio of the constituent permittivities
high. This is a most desirable development since in num
of technological applications, the permittivitye1 of inclu-
sions is much larger than that of the matrix, e.g. carbon-bla
filled polymer composites. In this case interactions betwe
particularly proximate neighbors cannot be neglected. Th
computations have also underlined the strong dependenc
the geometric shape of the components and their spatial
rangement on the dielectric properties of the composite.

FIG. 12. Volume fraction dependence of the effective permittivity in thex
and z directions of a hexagonal lattice composed of perfectly conducti
spheres embedded in a host medium of permittivitye251. The results ob-
tained by the BIE method are presented for two values of the specific r
h/ l : solid curve (h/ l51.5) and dashed curve (h/ l52).
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The calculated results have significant implications
the modeling of natural composites such as snow or reserv
rocks. While the results presented here seem to us encou
ing, they represent only a first step in understanding how
describe the dielectric constant of these media. The code
currently being extended to treat composites with rando
distributions of inclusions. These capabilities will allow in
vestigation of the technological problems that involve su
randomness. Although we have confined ourselves, in t
paper, to the static limit~the spatial correlation length of the
material is smaller than the wavelength of the electric field!,
our ultimate goal is to investigate the range of absorpti
spectrum to provide an even finer discrimination among t
geometries of heterogeneities. The study considered here
be extended to the case of complex dielectric consta
~e(v)5e8(v)2 i e9(v), wherev is the angular frequency of
the electromagnetic wave! to use the angular frequency fo
exploring the typical length scalej of inhomogeneities. A
complete description will be given in a forthcoming pape
Experiments dealing with the electromagnetic response
inhomogeneous materials have uncovered a varied phen
enology, whose interpretation presents challenging theor
cal problems. It is also clear, that in order to deal with th
issue of magnetodielectics, it is necessary to attack the
problem, i.e.m1Þ1, m2Þ1. In closing we also mention that
since the differential equations for electrostatics and mag
tostatics are identical, i.e. Laplace’s equation for the pote
tial, similar conclusions apply for the permeability of com
posite materials.
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