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Effective dielectric constant of periodic composite materials
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We presentomputer simulation data for the effective permittiviip the quasistatic limjtof a

system composed of discrete inhomogeneities of permittifiyembedded in a three-dimensional
homogeneous matrix of permittivity,. The primary purpose of this paper is to study the related
issue of the effect of the geometric shape of the components on the dielectric properties of the
medium. The secondary purpose is to analyse how the spatial arrangement in these two-phase
materials affects the effective permittivity. The structures considered are periodic lattices of
inhomogeneities. The numerical method proceeds by an algorithm based upon the resolution of
boundary integral equations. Finally, we compare the prediction of our numerical simulation with
the effective medium approach and with results of previous analytical works and numerical
experiments.

simulations which start from completely different descrip-
tions of randomness may arrive at almost identical results. A
program of investigation is currently underway, whose ulti-
mate goal is to evaluate the effective permittivity of two-
In recent years, extensive research has gone into studphase composite materials in terms of the constituent prop-
ing the dielectric properties of heterogeneous materials. Therties and the internal structure of the mixture. The purpose
reasons are not hard to find. On the one hand, it providesf this paper is to develop a computer-simulation model
fundamental problems which are not completely answeredyased on the resolution of boundary integral equations with
e.g. stochastic transport in disordered media, metal insulatiogareful attention paid to the numerical evaluation of the local
transition’~® On the other hand, industries such as aerofield. Although the method can be used to deal with arbitrary
space, electronics and others, have continuously provided thfzometric forms of the inclusions and arbitrary spatial ar-
impetus pushing the development of new materials in a widgangements, calculations are confined, in this paper, to the
variety of applications. These include fields as diverse agpecial but important case of periodic composites. It should
shielding enclosures, captive video disk units, electromagpe regarded as a first step towards the ultimate goal outlined
netic absorbing materials, to cite but a féwhe trend 10-  apove. Actually, the cross-fertilization between computa-
Ward_s a wider variety of applications is almost certain t045n41 and analytical work in this area is quickly growing.
continue. Extensive theoretical research has been focused in the study

In these materials, an accurate prediction of the MACTO5¢ the effect of microstructure on the effective permittivity in

scopic dielectric behavior must account for the detailed IN3hese material®-17

ternal structure of the composite, the dielectric and shape The remainder of the paper is oraanized as follows. In
characteristics, the volume fractions and the spatial arranges— . e pap 9 :
ection Il, we summarize the context of the problem. In Sec-

ment of the different components. The analytical solution’ i d ibe th inciple of ical Vsi
requires us to compute the local fields inside the compositgOn » We describe Ine principie of our humerical analysis.

and their distortions caused by the inhomogeneities using ghe boundfe\ry integrallequatior.\ methgd, V‘_’hiCh is, the corner-
first principle approach, i.e. Maxwell's equations. In the gen_stone of this paper, will be reviewed in this section. In Sec-

eral case of a spatially random structure, it appears as a folion IV, we present results of different simulations with com-
midable task to solve analytically this problem and theseP@rison with research reported by other authors. Our primary
difficulties have led numerous groups to study the partiaPurpose is to determine the volume fraction dependence of
differential equations for the local fields using different com-the effective dielectric constafin the quasistatic limjtof a
putational technique¥:!! This originates from the fact that composite material in which identical structures of constitu-
the effective permittivity of composite materials is basically ent, say 1, are embedded in crystalline fashion in a matrix of
an averaged property, where the average is taken over tlmnstituent 2. Our secondary purpose is to study the related
ensemble of the realisations of disorder. Somewhat surprigssue of the influence of the geometric shape of the constitu-
ingly, it should be emphasized in this context that numericaknts. We pay particular attention to the issue of how the
topological arrangement affects the effective permittivity.
Aals0 at: UPRESA CNRS 5005. Finally, conclusions of the paper will be presented in
PElectronic mail: christian.brosseau@univ-brest.fr Section V.

I. INTRODUCTION
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Il. BACKGROUND

The problem of determining the effective dielectric con-
stant of heterogeneous two-phase materials has a long his-
tory. The origins of the modern concept of effective permit-
tivity can be found in the scientific literature of the late 9V_g—.
nineteenth and early twentieth centuries. Particularly note- 97
worthy early and pioneering contributions were made by
Maxwell and Lord Rayleigh. For detailed historical reviews
and discussions of the general subject of effective permittiv-
ity with numerous references inside, the reader may wish to
consult Landauérand Tingaet al* In more recent times,
important developments are found in the work of Shivola
and Lindell* The medium under consideration will be char-
acterized in the static limit, i.e. the spatial variation of the
incident electric field is very large compared to the typical
size of the heterogeneities in the medium. Note that in this
paper, permittivity and dielectric constant are used synony-
mously.

Despite its effectiveness, the traditional boundary-value
approach does not provide accurate valueseddt high-
volume fraction of the inclusions because it neglects the cor-
relations among the conductive inhomogeneities and does IV_g
not contain information about the structure of the material, on
e.g. clustering effect. Moreover, this approach is restricted to (b)
nontouching inclusions.

There have aIready been a number of numerical studie@G- 1.' Boundary co.ndition's related to the configurat'iqn.s investigated in the
which have found their way into electrostatics over the yearsnum_erlcal comp_u‘ta‘tlon(a) isolated particle of permittivitye;, (b) fused

particle of permittivitye; .
These include the random-walk method introduced by
Schwartz and Banavdrand the multipole expansion of the
field around inclusions to evaluate the local fields distortions,
studied by Cukieet al® For completeness, we also mention ~ To begin with we refer to the schematic representation
that Felderhofet al!! have proposed alternatives that use©f the configurations displayed in Fig. 1. We consider a two-
virial expansions and Torquato and L&deave also com- component periodic composite that can be divided into el-
puted the effective permittivity of composite materials by ementary cells. The constituent of permittiviy occupying
applying bounding methods. Our calculations are very muclihe volume(}, is embedded in the regiof, of permittivity
in the spirit of the recent investigations reviewed by Ghoshe,. Absence of charge density will be tacitly assumed
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and Azimi?® through our analysis. Given these assumptions,(Edeads
to:
IIl. PRINCIPLE OF THE NUMERICAL APPROACH y 4 G . oV . ,
Let us turn to a brief presentation of the principle of our N S T T S @

numerical analysis for describing the behavior of the electric
field in composite materials. It is reasonable to start with thgor domain 1, and
first principles of electrostatics, namely Laplace’s equation, Ao JG N
i.e. AV=0 whereV is a potential distribution inside a spatial V=— — (

domain{) with a density of charge equal to zero everywhere. A s,

The solution to this second order differential equation can b?or domain 2. Moreover. we have
computed by applying the method of boundary integral equa- ' '
tion (BIE).*®'° Upon using Green’s theorem, we can write NV

)ds 3)
2

oV
the local potentiaM(M € Q) in terms ofV(P) and of the €15 =€ 4)
normal derivativedV/an(P), with P being any point on the 1 2
boundaryZ (with no overhangspf (): by virtue of the conservation of the normal component of the
A JG IV electric displacement at the interface. Consequently, we have
V(M) =——+ fE(V(P) “n G5, (P)]ds, (1) to solve the above two integral equatiof® and (3) to

evaluate numerically the electrostatic potential distribution.
whereA stands for the solid angle under which the pdiht  For that purpose, the implementation of the BIE method con-
sees the oriented surfage n is the normal unit vector ori- sists in dividing the boundaries into finite elements and for
ented outward ta, ds is a surface element df and G each finite element, the calculation is carried out by interpo-
denotes the Green function. lation of V and dV/dn with the corresponding nodal values:



numerical simulations and analytical equations for calculat-

VZZ AV ing the permittivity in heterogeneous media will be dis-
. (5) cussed.
IV oV The different geometries of the three-dimensional peri-
%:; M(g)_, odic composites, consisting of two lossless materials with
I

dielectric constantg; ande,, that we consider in this study
where\; denote the interpolating functions. The generationare displayed in Fig. 2. The first subsection deals with effec-
of these functions that are suited for our computational retive permittivity of periodic arrays of dielectric spheres. The
quirements and the detailed methodology that we employ igecond concerns regular systems of dispersed ellipsoid. The
this work are similar to those reported at lengththird considers inclusions with cylinder shageods and
elsewheré®?° Following this way, integral equations are discs). Finally, we examine how the effective permittivity
transformed in a matrix equation which is numerically can be affected by the type of the periodic arrangement.
solved u;ing the poundary conditions on each side of the. gnj&_ Composite with spherical inclusions
cell as displayed in Figures 1a and 1b. Then, the permittivity
is obtained from the knowledge of the potential distribution ~ Consider equal-sized spheres fixed in a simple cubic ar-
and its normal derivative. We distinguish between two typed@y, & being the radius of the spheres. Figure 2a shows a unit

of configurations for specifying the structure of the compos-Cell of the structure. For the purpose of simplicity, we as-
ite material. sume, in the following, that all the lengthk ) are dimen-

In Fig. 1a, we have a single inclusion and thus, the meSionless and that the side of the cell has the specific value
dium of permittivity e, cannot intercept the sides of the par- | =2. It is worth noting that ifa<1 the particles act like
allelepipedic cell. In this case, the effective permittivity, in iSolated ones: they will experience only the external field and
the direction corresponding to the applied field, is calculated©t the fields induced by the other particles. We call this case
using the following relation: the isolated particle regime. Then, the permittivity of the

medium can be described by the Maxwell-Garnett equation:
oV

f “Zon e - (8)

S 2 2 26— T(e1—€)

whereV,—V, denotes the slope of potential imposed in theyyheref = 7a%6 is the volume fraction of the scatterer phase
z-direction, e stands for the composite thickness in the samey, the mixture(see Fig. 2a It is a relatively simple exercise
direction andS denotes the surface of the unit cell perpen-i5 sphow that Eq(8) can be also written in the Clausius—

Vo—Vy
ds=e, S, (6) €1+ 2e,+2f(€1— €5)

dicular to the applied field. Mossoti form:

In Fig. 1b the inclusion is allowed to intercept the sides
of the parallelepipedic cell. In that case we must take into €76 . &1 )
account the electric displacement flux through the @ga €t+2e; €,+2e,

associated to the medium of permittiviey to calculate the

. e R . What occurs when increasing the concentrati@nThe
effective permittivity in the direction corresponding to the 9

e . : distance of separation between two spheres decreases and
applied field. Then Eq(6) is turned into particles will experience the local fields induced by other
oV oV V, particles. The volume fractiof,= 7/6=0.523 correspond-
szz%‘ dS+L e ds=6 —— (5 +S,), ing to the limit of touching spheresa 1) is the maximum
2 1 1 7) packing threshold. Beyond that concentration, the geometry
( can be described according to Shenal?! excluding six
whereS,; andS, are the surfaces resulting from the intersec-segments of sphere from the unit cell. In this fused particle
tion of the volumic regions of permittivitg; and e, respec- regime, the volume fraction is analytically calculated for a
tively with the upper side of the unit cell, perpendicular to value of the radius in the range Xa<v2:

Va

the applied field. nad o
It should be noted that the BIE method gives an accurate  f= —— — (a—1)3(2a—1). (10)
description of the electric potential by taking into account 6 4

edge and proximity effects even at low and high concentra- By taking into account the symmetry of the unit cell in
tions of inhomogeneities. Therefore, this numerical techthe two regimes described above, the geometry is further
nique does not suffer from the disadvantages of the tradireduced to one-eighth of the microstructure for calculations
tional boundary-value approach. by the BIE method. Our results are compared with those
derived from Eq.(8) and with numerical data obtained by
Mc Phedran et al. and Taoet al® for ¢,=3 ande,=1 (Fig-
IV. RESULTS AND DISCUSSION ure 3). In that case, it appears that the values cdmputed
by the BIE method agree satisfactorily with these previous
We turn now to a discussion of numerical results con-calculations. One might argue that the agreement of the nu-
cerning the static effective permittivity of periodic composite merical data with Eq(8), for f>f, is somewhat fortuitous.
media as a function of the permittivities and the volumeThis is confirmed by Fig. 4 which shows the limits of the
fraction of the constituent materials. Comparison with otherMaxwell-Garnett theory for volume fractiorfshigher than
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FIG. 2. The configurations investigated in the boundary element model computation. The volume fraction of maitefiala) sphere,(b) ellipsoid, (c)
cylinder, (d) disc.

0.4, when the ratio of the constituent permittivities is higherthe sides of the parallelepipedic cell displayed in Fig. 2b. As
(we takee;=30 ande,=1). It is further interesting to note can be seen in Fig. 2b, the medium is anisotropic and the
that our results are very close to those obtained by a Fouriexffective permittivity componeng; in the directioni =x,y,z
expansion technique over the entire range of volume fractiogan be written as

f 821
Nna;
B. Composite with ellipsoidal inclusions €=yt T na (11)
We examine now a system of ellipsoidal inclusigrg. =L €

2b)which are regularly dispersed in a host medium. The unit

cell can be described using the one obtained for sphericalherel; and «; are the depolarization factor and the polar-
inclusions thanks to a tridimensional homothecy of ratioizability in the direction characterized by the indiex
(I,w,h), wherel, w andh denote respectively the lengths of A standard result of electrostatics gives
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FIG. 3. Volume fraction dependence of the effective permittivity of the . . L
three-dimensional periodic composite displayed in Fig. 2a. Inclugiperss /G- 5. Volume fraction dependence of the effective permittivity in xhe
mittivity €,=3) are spherical and of volume fractidnin a matrix of per- direction of the three-dimensional periodic composite displayed in Fig. 2b.

mittivity e,=1. The full circles are obtained by the BIE method. The solid nclusions (permittivity &=30) are ellipsoid b=c=a/4) and of volume
line is obtained from the results of Mc Phedrenal. (see Ref. 5(x) are fraction f in a matrix of permltthltyezzl. The full C|rcles_ are obtalngd by
results of Taoet al. (see Ref. 8). The dashed curve corresponds to thet® BIE method. The solid curve corresponds to €i¢) with a depolariza-

Maxwell Garnet equatiofiEq. (8)). tion factorL,=0.0754(Eg. (12)).

wherev0= 4rrabc is the volume of the ellipsoid.
_abc f*“ du (12) By substituting Eq(13) into (11), the effective permit-
0o (u+a?)J(u+ad)(u+bd)(u+cd’ tivity of the medium can be expressed as

wherea, b andc denote the semiaxes of the ellipsoid. Note c—el 14 (€1~ €x)f
thatL, andL, can be evaluated by interchangibganda, 2 e+ (e1—€)(1—T)L;

andc anda respectively. where f =nv0=3wabc/Iwh is the volume fraction of the

h .If thle s_cattjt_tla{ers arel::) su;ﬂ((:;entl()j/ ;jlstar;:]froml etgch Ofﬂ,:r? "constituent 1(See Fig. 2h To simplify further the analysis,
) telr p(l) ?r'éa ]L' yd(_:aln te' e”_uce_d rom the s_otut_lor;_old €we first choosd =c=a/4 (prolate spheroidand we take the
internal field ot a dielectric eflipsold in a quasIstatic Ield jimensions of the elementary cell ds:8 andw=h=2.

2

i=X,Y,Z, (14)

0 € ) 13) Figures 5 and 6 show a comparison of the numerical results
ai=10(e;—€)) ————, 1=X,Y,z,
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FIG. 6. Volume fraction dependence of the effective permittivity in zhe
FIG. 4. Volume fraction dependence of the effective permittivity of the direction of the three-dimensional periodic composite displayed in Fig. 2c.
three-dimensional periodic composite displayed in Fig. 2a. Inclusipers Inclusions (permittivity e;=30) are ellipsoid b=c=a/4) and of volume
mittivity ;=30) are spherical and of volume fractidnin a matrix of per- fraction f in a matrix of permittivitye,=1. The full circles are obtained by
mittivity e,=1. The full circles are obtained by the BIE method. The solid the BIE method. The solid curve corresponds to @4,) with a depolariza-
curve corresponds to the Maxwell-Garnet equatigq. (8)). tion factorL,=0.4623(Eq. (12)).
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FIG. 8. Volume fraction dependence of the effective permittivity in the
direction of the three-dimensional periodic composite displayed in Fig. 2c.
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FIG. 7. Volume fraction dependence of the effective permittivity in xhe
direction of the three-dimensional periodic composite displayed in Fig. 2¢
Inclusions(permittivity e;=3) are cylindrical and of volume fractiohin a
matrix of permittivity e,2=1. The full circles are obtained by the BIE
method. The solid curve is obtained from E5).

obtained. by the BIE method. for Fhe effective_permittivity of e, are well represented by E@15) for inclusions of low
the medium in thex andz_dlrecuons respectively(e;=30 permittivity (¢,=3), while for high permittivity we have
and e,=1) and those obtained from E¢l4). They clearly nteq a significant departure from E@5) at high concen-

show the limits of the analytical model for volume fractions {ation levels. As concerns, we observe that numerical data
f higher than 0.2 particularly; the gap being important in thefo inclusions of low permittivity(e,=3) are well described

x direction for which the interaction effect is stronger. by Eq. (16), taking an apparent permittivity identical to the
effective permittivity in the parallel direction to the cylinder
C. Composite with cylindrical and discoidal inclusions axis.

We first consider the periodic composite displayed in ~ We turn next to the case of discoidal inclusions embed-
Fig. 2c. By taking into account the symmetries of the unitded in the host medium. The structure of the periodic com-
cell, we need only to evaluate the permittivity in thandz ~ POSite has for unit cell the geometry of Fig. 2d.
direction sincee, = €, . The dielectric constant in the perpen- I this case, it has been suggested that the components of
dicular direction to the cylinder axes is given by the Ray-the effective permittivity can be evaluated from the Wiener’s
leigh’s formula formulae considering a periodic array of thin lameffaé;*

€, is obtained by connecting the constituents in series.

. 15 -
?ete—fler—€) (15) 1_i+1 f

€, € €2

€1t e +f(e;—e€y)

€=€

(17)

Using Eq. (14) for prolate spheroid with
L,=L,= (- 8) andL,=25 wheres<1 Van Beek®derived ~ While €, is deduced by connecting the constituents in parallel
a general expression for the effective permittivity in the di- ¢ —f¢ 4+ (1—1f)e,. (18)

rection which is parallel to the cylinder axes ] . ] ]
As in the first part of this subsection, the geometry of the

€= ot } (e1—€2)(S€at 1) (16) unit cell is characterized by a single parameter=a,

z %203 €t € ' D=10a, I=w=10, andh=1. The corresponding volume
fraction of the constituent 1 is again given by wa/4. The
values of the effective permittivity obtained by the BIE
method for inclusions of permittivitye;=3) are displayed in
Figs. 9 and 10. We can deduce from these figures that neither
Eqg. (17) nor Eq.(18) is able to correctly evaluate the permit-

tivity of these structures.

where e, denotes the apparent permittivity of the medium,
i.e. “seen” outside by an inclusion. Its value differs from the
permittivity of the host medium but must lie in the range
€)= €, €,.

To make our simulation simpler, the geometry of the
unit cell was characterized by a single paramatby taking:
H=8a, D=a, |=w=1, andh=8 (see Fig. 2c). The corre-
sponding volume fraction of the constituent 1 is given by
f=ma’/4. Figures 7 and 8 show data computed with the BIE  Up to now, we have only considered a simple culsic)
method. At this point, a number of comments are in order. Itarrangement of the inclusions in the host matrix. Here, we
is first interesting to observe that numerical data concerningliscuss the influence of other types of cubic arrangements:

D. Lattices



TABLE I. The main characteristics of the different types of cubic lattices.

2.60
The internal structure, the number of particles per unit of internal structure
ny, the volume fractiorf of the conducting spheres of radiasthe radius
€4=3 a, and the concentratiofy, corresponding to the maximum packing thresh-
220 | €,= old are function of the type of cubic lattices i.e. simple cutsc), body-
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FIG. 9. Volume fraction dependence of the effective permittivity in xhe
direction of the three-dimensional periodic composite displayed in Fig. 2d. x e w3
Inclusions (permittivity ,=3) are discoidal and of volume fractichin a s =052 0680 0740

matrix of permittivity e,=1. The full circles are obtained by the BIE
method. The solid line is obtained from Ed.9).

body centeredbcc) and face centereffcc). We shall also

effective permittivity using the BIE method, we obtain iden-
tical results to those reported by Mc Phedrast al. and

consider crystalline lattices composed of perfectly conductDoyle'® with an accuracy of 10°.

ing spheres(o;—+®) of radiusa, the permittivity of the
host medium being,=1. The volume fraction of the par-
ticles can be written as

4 7ad

f:n03 ™

: (19)

wheren, is the number of particles per unit of internal struc-

ture andy, denotes the volume of the internal structure. The
main characteristics of the different types of cubic lattices

Next we turn to the case of hexagonal lattices composed
of perfectly conducting spheres of radiasembedded in a
host medium of permittivitye,=1. The geometry of the unit
cell is displayed in Fig. 11. The number of particles per unit
of internal structure i®y=1, and the volume of the internal
structure isvy=1?hv3/2. This type of composite is aniso-
tropic (e,# €,) and we observe from the Fig. 12 that the
permittivity strongly depends on the specific ratidl for
volume fractionsf higher than 0.1.

investigated are summarized in Table I. By computing the
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FIG. 10. Volume fraction dependence of the effective permittivity inzhe

direction of the three-dimensional periodic composite displayed in Fig. 2d.

Inclusions(permittivity e;,=3) are discoidal and of volume fractiohin a
matrix of permittivity e,2=1. The full circles are obtained by the BIE
method. The solid curve is obtained from E8).

E. Comparison with previous approaches

The above developments show that the BIE method can
be used at high volume fractions, even for large permittivity
contrast ratios between the background and the inclusions,
i.e. when the mean-field analytical approaches are irrelevant
to evaluate the effective permittivity of a composite material.
We also made the comparison of our results with previously
published analytical mixtures equations derived from heuris-
tic assumptions which may be adapted for some composites

FIG. 11. Hexagonal lattice structure.



4.50 The calculated results have significant implications in

,’ the modeling of natural composites such as snow or reservoir
400 - O,z / rocks. While the results presented here seem to us encourag-
ag0 | Ea=1 ,' ing, they repre_sent qnly a first step in underst_anding how tq
£, ) describe the dielectric constant of these media. The code is
3.00 | / currently being extended to treat composites with random
or / distributions of inclusions. These capabilities will allow in-
250 , vestigation of the technological problems that involve such
€, 200 €x // randomness. Although we have confined ourselves, in this
) ¢ " paper, to the static limithe spatial correlation length of the
150 L P = T - "’\’T material is smaller than the wavelength of the electric field
== €, our ultimate goal is to investigate the range of absorption
1.00 ' ' ' spectrum to provide an even finer discrimination among the
0.00 0.10 0.20 0.30 0.40 geometries of heterogeneities. The study considered here can
f be extended to the case of complex dielectric constant

(e(w)=¢€'(w)—i€"(w), wherew is the angular frequency of
FIG. 12. Volume fraction dependence of the effective permittivity inshe the electromagnetic way¢o use the angular frequency for
and z directions of a hexagonal lattice composed of perfectly conductingexploring the typical length scalé of inhomogeneities. A
Sphe(riez e“i:bEdded i”ha;f’St medium ((’iffpermit““&t’ifl- Tr;ehfesu'ts ‘f’b' complete description will be given in a forthcoming paper.
tained by the BIE method are presented for two values of the specific rati . . . .
hil: solid curve f/l=1.5) and dashed curvé{i = 2). (_Experlments dealing v_wth the electromagnetic response of
inhomogeneous materials have uncovered a varied phenom-
enology, whose interpretation presents challenging theoreti-
cal problems. It is also clear, that in order to deal with the
] issue of magnetodielectics, it is necessary to attack the full
bui do not hold generally. Wg found that, for certaln_geom'-probiem, i.es#1, m#1. In closing we also mention that
etries, ranges of volume fraction and values of the dielectrigince the differential equations for electrostatics and magne-
constants of the two components, the differences between thggiatics are identical, i.e. Laplace’s equation for the poten-

BIE results and these equations may be sr@lj., Figs. 3 g similar conclusions apply for the permeability of com-
and 7), or not smalle.g., Figs. 4 and )6 Our method of posite materials.

calculation has three advantages. First, it is based on first

principles so it can serve as a test for other approximate

methods. Second, the BIE method can be easily realized in a
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