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Abstract: This paper presents two off-line output error identification algorithms for linear
continuous-time systems with unknown time delay from sampled data. The proposed methods
(for open and closed loop systems) use a Nonlinear Programming algorithm and needs an
initialization step that is also proposed from a modification of the Yang algorithm. Simulations,
as illustrated by Monte-Carlo runs, show that the obtained parameters are unbiased and very

accurate.
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1. INTRODUCTION

Many industrial processes possess a time delay, such as
chemical, thermal or biological systems. It is important to
identify the value of this delay, in particular for control.
For example, the design of a Smith predictor implies a
good knowledge of the time delay because this information
is directly included in the controller.

There are several papers coping with the identification
of open loop systems with time delay. Almost all are
proposed to identify first and second order delayed systems
from step signals. Amongst the existing methods, most
of them use integrals to obtain a parameter vector that
contains the time delay. There are off-line (Liu et al.
(2007); Hwang and Lai (2004); Wang et al. (2001)) and
on-line methods (Ahmed et al. (2006); Garnier and Wang
(2008, chap. 11)). The parameters are then identified
using least-squares, or instrumental variable methods.
Other methods separate the model in two different parts:
the first one contains the linear parameters and the second
one the nonlinear parameter, i.e. the time delay. There
are also methods that use nonlinear programming (NLP)
to estimate the nonlinear parameter. Amongst these, Yang
et al. (Yang et al. (2007); Garnier and Wang (2008,
chap. 12)), proposed an interesting method which permits
to identify multiple input single output (MISO) systems
with little prior knowledge, using the least-squares, this
algorithm will be adapted and used for initialization of
the new output error identification algorithms (for open
and closed-loop systems).

This paper, propose two algorithms which permit the
identification of all the parameters of a linear continuous-
time system with unknown time delay. They can be
considered as extensions of the sensitivity based identi-
fication algorithm previously proposed in (Carrillo et al.

(2009)). These algorithms are both based on the output
error method and can identify a linear stable system of any
order with time delay in a very accurate manner. The first
algorithm was previously presented in an open loop form
in (Baysse et al. (2011)) and it will be called Continuous-
Time Output Error CTOE algorithm. The second pro-
posed algorithm will be useful for the case of closed loop
systems and it will be called Continuous-Time Closed-
Loop Output Error CTCLOE algorithm. The paper is
organized as follows. In the second section the process and
model description are presented. Then, the new output
error methods are detailed in the third section for open and
closed loop systems. Section four describes a least squares
algorithm that will be used for initialization. Simulation
results for open and closed-loop systems are described
in section 5. Finally, some conclusions are presented in
section 6.

2. PROCESS AND MODEL DESCRIPTION

When using sampled data, the system with input w(t)
and output y(t;) can be represented by (see Garnier and
Wang (2008)):

_ B)

y(ty) = A e~ Pu(ty) + w(ty) (1)

where w(ty) is assumed to be a Gaussian white noise, p is

d
the derivative operator p = T Ty is the time delay and

e~ TaP has to be understood as:

e TaPy(t) = u(t — Ty) (2)
A(p) and B(p) are polynomials with the following struc-
ture:



Ap)=1+aip+---
B(p)=bo+bip+---

+ a,p" (3)
+ by p™ m<n (4)

y (tx) is the amplitude of the continuous-time signal y(t) at
time t; = kT, with Ty the sampling period. For the rest
of the presentation, the signals are written as a function
of the time (¢). For implementation purpose, they have to
be considered at sampling intervals.

2.1 Open loop system

Let us denote y(t) the estimated output of the model,
defined as:

() = ﬁgie-ﬂpu(t) (5)

Where T} is the estimated time delay ; g(p) and E(p) are
polynomials of estimated parameters. The output can be

expressed in a regressor form as it was shown in Baysse
et al. (2011).

The proposed approach identifies at the same time the
parameters 9 and the parameter Td Thus, a vector 5)
which contains all the parameters is defined as ©7 =

(67 T,].
2.2 Closed-loop system

If the process is operating in closed loop, with a controller
C(p) defined as:

u(t)=C(p) [r(t) —y(t)]; (6)
C(p)= ];gj; (7)

where 7(t) is the reference signal.

Using the output error approach, the estimated output of
the model y(t), is defined as:

<)
3
>

)[ (t) = y(®)] (9)

The output can be expressed in a regressor form:

g(t) =—ar g () — - — @y (1)
Fhou(t — Ta) + - -+ by @™ (t — Ty)
() =60"g(1) (10)
with:
07 =[Gy~ G by - by | » (11)
G () =[-gV() - g™ )

(12)

3. THE OFF-LINE OUTPUT ERROR METHOD

The quadratic criterion to be minimized from N sampled
data is:

(13)

N N
=Y (y(tx) - =) ()

k=1 k=1
Since this criterion is nonlinear in the parameters, one
must use a NonLinear Programming (NLP) method.
These methods are based on an iterative approach to con-
verge. At the iteration j + 1, the parameters are updated
using:

@j+1 = éj + Aéj (14)
where A(:)j is the increment of the parameters (:jj. The
three NLP methods most used are the gradient method,
the Gauss-Newton method, and the Levenberg-Marquardt
method, where the increment is respectively described as:

AB; = —pnJ () (15)

88, = [1'(®,)] @) (16)

o)

"o "o, -1 A
AB; = [J (©,) + pdiag (J (ej))} J (©;) (17)
where J'(@j) and J”(@j) are respectively the gradient
and the Hessian, p is a parameter which permits the tuning
of the algorithms. The latter algorithm (17) is the most
performant due to its tuning parameter p. For high u
values the algorithm is close to the gradient method, for
low p values the algorithm is close to the Gauss-Newton
method. The gradient and the Hessian are computefl using

the sensitivity functions. Denoting o5 (t) = ag—g) the

itivity function w.r.t. 8, ~ (1) = 20
output sensitivity function w.r.t. 6, arid o7 (t) oy
the output sensitivity function w.r.t. T, the sensitivity

vector o (t) is written in the following form:

o7 (t) = [ (1) o, (1) (18)
= [O’g (t) - o (t) o (t) - oy (t) oz, (t)}

1

The gradient and the Hessian, with the Gauss-Newton
approximation, are then respectively given by:

é 226 tr) o (tg) (19)
k=1
N
(20)

3.1 Sensitivity functions computation

Open loop system

The following computations for an open loop system
were developed in a previous paper (Baysse et al. (2011)).
Only the main results are presented here.



The sensitivities of a numerator parameter E» and of a
denominator parameter a; are respectively computed in
the following way:

e Afz;)e—ﬂpum on (1) = =)

(21)

Notice that the sensitivity functions UGI (t) can be written

in compact notation: U;;F (t) = Z(lj)a(t’ E) So the
sensitivity functions Ug: (t) is the regression vector (;AS(t, Zfﬂ\d)
filtered by ﬁ. This implicit filtering gives an optimal
estimate as shown in Garnier and Wang (2008), when
Alp) = A(p).

The sensitivity of the simulated output with respect to the
time delay T, is computed in the following manner:

_oy(t) —pA(p)e_fdpu -
= 8T\d = A\(p) (t) = py(t)

0 (22)

It must be noted that the sensitivity function oF is
realizable only if m < n.

Closed-loop system

In this case the sensitivity function of the estimated
output with respect of parameter of the numerator is given
by

2 950 _ 0 [Bpe T
O-bi (t)_ a'l';i a’gi A\(p) (t)‘| (23)

Using (9), it can be verified as in Carrillo et al. (2009)
that:

S(p)e~Tarpi

o~ (t) = — - —u(t

0 A(p)S(zi) + B(p)R(p)e~Tar (

gy = STt

5 (0=="F o) (t); (24)
Pa(p) = A(p)S(p) + B(p)R(p)e~ (25)

The sensitivity function with respect to a parameter of the
denominator is calculated in the following manner:

05 _ 9 [Bp)e T
O—ai (t) - 8az - 8az A\(p) (t)] (26)
Then, with (9) the following result is obtained:
—S(p)p' -
op (1) == = =—(t)
T Ap)S) + Be)Rp)e T
75, (1) = 2P g (27)
a(p)

With ﬁd(p) given by (25).

The sensitivity functions o5 can be written in the compact
notation:

S(p)
oy(t) = =
Pa(p)

So the sensitivity function can be seen as a filtering (by
%) of the regression vector. This implicit filtering is the
same that Landau Landau and Karimi (1997) obtained in
the discrete-time case for the F-CLOE algorithm which is
well known to have excellent convergence properties.

é(t)

(28)

Finally, the output sensitivity function with respect to the
time delay is computed by:

0
Ty Ty

O’i:d (t)

Using (9), this gives:

o7 (t) = —=———"¢ u(t)

With Py(p) given by (25).

Because the time delay is contained in the denominator
of all the sensitivities functions (24), (27), (30) it is not
obvious how they can be implemented. To cope with,
the three implementable structures shown in the figure
1 are proposed. For example, it can be easily verified
(from standard properties of the first proposed closed-loop
structure) that:

7,1 = /TIE T )ja )T et
i p) R(») T,
p)1 + mme P
== P'5() T (31
A(p)S(p) + B(p)R(p)e~Tar
o- (1) = PSD) T (32)
’ Pa(p)

This will be also the case for all the others sensitivities
functions.
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Figure 1. Sensitivity functions realization



3.2 Algorithm description of the proposed CTOE and
CTCLOE methods

The algorithm is the same for the open loop or closed
loop system. For the open loop system, the algorithm
was previously presented in Baysse et al. (2011). Here the
algorithm is presented for the closed loop system.

(1) Let j—0. Use an initial value of (:jo, 1o and Jy.

(2) Simulate the model using (8) to obtain ().

(3) Compute the sensitivity function o7 (t;) using (24),
(27) and (30).

(4) Compute the gradient and the Hessian with (19) and

(20).
(5) Perform the following:
Compute
~ ~ ARy . "o, -1 A
©j11=0; - [J (©;) + pdiag (J (@-))] J(©;).

(a) Simulate the model (8) to obtain the new esti-
mated output y(¢).

() Compte J(8y:2) = 5 (y(1x) = 7(00)"
/(©
)

(¢c) Check if J(©,41) < J(©;). If not, do ;1 =

10p; and go back to (a
(d) Do Hij+1 = 4:U‘J
(6) Terminate the algorithm if the convergence condition
is satisfied. Otherwise, let j = j + 1 and go back to
step 2.

4. LEAST SQUARES ALGORITHM USED FOR
INITTALIZATION

The proposed output error method needs an initialization
step for the estimated model (5) or (8). This task can be
done by an adaptation of the method proposed by Yang
et al. (2007). This method, based on the separable least-
squares method, identify firstly the nonlinear parameter
with a NLP algorithm, and then the linear parameters
with the classical linear least-squares algorithm. This algo-
rithm is called GSEPNLS for Global Separable Nonlinear
Least-Squares.

The nonlinear parameter, i.e. the time delay, is identified
using a Gauss Newton algorithm. It is well-known that
this NLP algorithm can only insures local convergence.
Thus, to avoid local minima, Yang et al. (2007) propose
to use a random variable added to the gradient. The
algorithm permits then to obtain a better convergence.

It is proposed in the following an adaptation of the
GSEPNLS algorithm. The main differences come from
its use in a SISO system, the use of a continuous-time
filter to compute the derivatives, and the use of the filtered
derivative as output.

When using the least-squares algorithm, the model (8) can
be written in regressor form as:

(33)

where
GT—[ 1 @ .. @1 bo ... bw
PR Rk SR G
o' (t,Ta) = [ —y(t) —yD(t) -+ —y™=V(t)

)
e~ Tary(t) ...e—poum)(t)} (35)

But, because of the time delay, (33) is a nonlinear model.
To make the vector ¢7 (¢, T,) realizable, it is necessary to
compute the derivatives of the signals u(t) and y(¢). This
is achieved using a low-pass filter, defined as:

Flp) 1 1 1
P Alp) (1 +Ap)" 1+ p+...+ A"
where \ is a constant which determines the pass band
of the filter, and Aq,...,\, are polynomial coefficient of
the filter. The choice of this parameter implies prior
knowledge of the system band pass.

(36)

Denoting with the subscript f the filtered signals, the
regressor model (33) can be written:

n Z14\1 1 ZL\nfl n—1
B0 =~y 0 4= N
n n

o~

by _7 by
+A—067pouf(t) Fg 7pou(m)( )

U, A,
77 (6 =0T oy (t, T) (37)
where
OF (t,Ta) = | —ys(t) - —" (1)
e TaPyp(t) - - e*pougcm) )| (38)

Using (37), the quadratic criterion that have to be mini-
mized is written:

7 1
iz Sftk

er (tr) = y}’”( k) — 976, (t, Ty)

In the following, for the presentation of this algorithm,
it is easier to use matrix notation. Thus, the following
variables are defined:

(39)

(40)

Sr(To)=[o,(1,T0) - 6;(N, Ty)]" (41
T

Z=[y ) ey (V)] (42)

E=les(1) - e (N)])" (43)

With this notation, the quadratic criterion (39), (40) can
be written as:

J(Ty) = %ETE (44)

E=27—®(Ty)0 (45)

The principle of the separable algorithm is to firstly
identify the nonlinear parameter T, with a NLP method



then the linear parameters ¥ with the linear least squares
algorithm. To show how the gradient and the Hessian are
computed, the quadratic criterion (44) must be written

as a function of the time delay fd. The estimated vector

¥, can be replaced by its identified value using the linear
Least Squares (LS) algorithm.

0= 6] (@, 7Tz =2}z (46)

where <I>J} is the pseudo-inverse of ®;. So the quadratic

criterion (44) can be expressed only as a function of the
time delay:

J(Ty) = HZ ®(T) (T, ZH (47)
To compute the gradient and the Hessian, a notation

similar to Ngia (2001) is used:

By =98 _ 4% a0 (Ta) 5 _ 92000 g1 (7 7 (ag)
+ 4Ty dT; dT;
dE N
Fre=— = —®,(T 49
5 7(Ta) (49)

The gradient and the Hessian, with the Gauss-Newton
approximation, will have the form (as shown in Ngia
(2001)):

J(T,)=ELE (50)

Ta
J'(Ta) = BL B, — EL B {EZEA}_ ELE;  (51)
Yang et al. propose to use the Gauss-Newton NLP

method, with a stochastic term added to the gradient. De-
noting 1 a Gaussian random variable, the evolution of the
estimated time delay with the Gauss-Newton algorithm is
then written:

Tyjp1="Taj— [JN (fd)] - (Jl (Ta) - ﬂﬂ?) (52)

where 3; is the variance of the random variable n. This

variance is computed using 3; = BoJ(Ty), with By a
positive constant chosen sufficiently large. The idea is
if the quadratic criterion becomes smaller, the stochastic
perturbation ;7 becomes weaker and the algorithm tend
to be closer to the classical Gauss-Newton algorithm. The
algorithm used has the form:

(1) Letj—0. Set Sy, the initial estimate fd,o and an upper
bound of time delays T'g.

(2) Compute prefiltered signals that are part of <I>f(fd),
with the low-pass filter (36).

(3) Set B; = BoJ(T}) using (47).

(4) Perform the following
(a) Compute

~ "o, -1 e
ATq 41 = — [J (de)} (J (Taj) = 5;‘77) :
(b) Compute T, gt = =Ty N ATy, G-
(c¢) Check if 0 < ng+1 < Ty. If not, let ATdH_l =

O.SATdJH and go back to (b).

(d) Check if J(Tyj+1) < J(Tuy). If not, let
ATy 11 = 0.5AT, ;41 and go back to (b).

(5) Terminate the algorithm if the stopping condition is
satisfied. Otherwise, let j = j+1 and go back to step
3.

(6) Finally, by substituting the final value of Ty, the
linear parameter vector ) can be estimated by the
LS method given in (46).

5. SIMULATION RESULTS

Consider a third order system with a zero, defined by:

—1+2p T
G(p) = aP 53
(®) (p+2) (p? + 26wnp + w32) (53)
—bg + bip -7
G(p) = ap 54
) 1+ a1p + azp? + asp? ‘ (54)
with
£=0.2; W, = /3 rad/s;
bo = 0.167; by = 0.333; ai =0.731;  (55)
as = 0.449; az = 0.167; Ty =1.3s.

The system is excited with a Pseudo Random Binary
Signal (PRBS). An additive white noise is added to the
output with a Signal to Noise Ratio (SNR) of 15 dB. This
SNR is defined as:

(56)

SNR = 10 loglo ( var (yO) )

var (y — yo)

where 1 is the noiseless output and y is the noisy output.
The signals used for identification are presented in figure
2.

For the closed-loop simulations, the controller is tuned us-
ing the direct method, with the parameter values obtained
with the CTOE algorithm. With this approach the desired
closed loop transfer function model Gy, is chosen to have
the following form:

“"1---input u(t)
—output y(t)

time (s) 100 ;50
a) Open loop system

---reference r(t)
—input u(t)

time (s) 100 150
b) Closed—loop system

TN

- -
%

Figure 2. Signal used for identification in a) open loop and
b) closed-loop



—6(—1+2p)
(p+2) (P2 +2x1.5xV3p+3)

e~ Tap

(57)

Ger =

Where it can be seen that G¢j have the same unstable
zero and the same time delay value (as in G(p)) but the
static gain is now equal to one and the desired closed loop
damping factor is now equal to 1.5 (well damped poles).
Then, the controller is computed using the formula:

1 [ Ger(p) }
G(p) |1 - Ger(p)

To obtain a finite dimension controller C'(p), the following
second order Padé approximation of the time delay Ty was
used:

Clp) =

(58)

1— 1Tup + & (Tup)?

—Tap _ 5
1+ 3Tup + 75 (Tap)

e (59)

With this approximation the controller becomes :

Cip) — —206 =353 — 272p? — 144p° — 43.9p* — 6p°
D)= T 936p + 57.5p2 + 66p° + 11.8p* + pp

(60)

100 Monte-Carlo simulations are conducted to analyze the
statistical properties of the CTOE and CTCLOE proposed
algorithms. The results are presented in terms of the mean
and the standard deviation. The parametric distance,

N2
. 1100 (€61, ) -
computed using D = \/Z;fler S (l@ll) is also

presented.

where 7 is the index of the Monte-Carlo simulation, and [
the index of the parameter vector ©.

The sampling period chosen is Ty = 10 ms. The initial
parameter for the proposed algorithm is p = 0.1; for the
GSEPNLS method, the initial variance of the stochastic
variable is By = 10°, as proposed in Yang et al. (2007).
The initial value of T, is 5 s and the parameter for the filter
(36) is chosen as A = 0.2 which corresponds approximately
to the bandpass of the system.

The system is firstly identified in open loop. The sim-
ulation procedure is to obtain an initial estimate of the
parameters using the GSEPNLS method. Then, the pro-
posed output error methods start with this initial estimate.
The simulation results are summarized in table 1.

With CTOE and CTCLOE the parameter estimation
quality is very similar and the estimated system are
unbiased.

6. CONCLUSION

This paper has presented two time domain output er-
ror algorithms called CTOE and CTCLOE to identify a
continuous-time linear system with time delay, in open or
closed-loop with very good statistical properties. It has
been also proposed a modified version of the GSEPNLS to
initialize them.

Table 1. Simulation results of the 100 Monte-

Carlo runs

Parameter GSEPNLS CTOE CTCLOE

b0(70.167) -0.1523 -0.1666 -0.1668

+0.0010 +0.0005 +0.0005

b1(0,333) 0.2835 0.3333 0.3333

+0.0016  +0.0007 +0.0010

a1(0.731) 0.4375  0.7309 0.7307

+0.0039 +0.0032 +0.0046

a2(0.449) 0.4360 0.4488 0.4485

+0.0012 +0.007 +0.0017

a3(0.167) 0.0718 0.1667 0.1665

+0.0020 +0.0012 +0.0021

Td(1.3) 1.3985 1.2999 1.3005

+0.0081 +0.0024 +0.0037

D 7.2 0.1 0.15

Average of 23 10 11
1terations
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