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H I G H L I G H T S

c The biodiesel produced from sunflower oil and ethanol is of 100% renewable origin.

c The transesterification reaction was carried out in continuous microreactors.

c Kinetic data were acquired from the first seconds of the reaction.

c Reaction kinetics and mass transfer parameters were identified.

c The model was used to simulate other operating conditions (glycerol removal).
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a b s t r a c t

Transesterification reaction of vegetable oil with ethanol leads to ethyl esters, used to date for

applications principally in food and cosmetic industry. To open the application field to biofuels (to

substitute current fuels resulting from fossil resources), the process efficiency has to be developed to be

economically profitable. In this work, the sunflower oil ethanolysis was performed in a micro-scaled

continuous device, inducing better control for heat and mass transfer in comparison with batch

processes. Moreover, this device ensures kinetic data acquisition at the first seconds of the reaction,

which was not feasible in a conventional batch process. These data were used to model occurring

phenomena and to determine kinetic constants and mass transfer coefficients. A single set of these

parameters is able to represent the evolution of the reaction media composition function of time for

five ethanol to oil molar ratios (6.0, 9.0, 16.2, 22.7 and 45.4). The model was validated in reaction and

diffusion mode. Finally, it was subsequently used to simulate reactions with other operational

conditions and to propose other process implementation.

1. Introduction

Biodiesel can be produced from vegetable oils, animal fats, and

waste cooking oils by transesterification (Demirbas and Karslioglu,

2007; Encinar et al., 2007; Kouzu and Hidaka, 2012) with an alcohol

(alcoholysis) in order to substitute fossil fuels. Many works have

used methanol (Darnoko and Cheryan, 2000; Fukuda et al., 2001;

Sharma and Singh, 2008; Srivastava and Verma, 2008) as alcohol

reactant which is mainly produced by oxidation processes of

methane, a natural gas component, hence a non-renewable energy.

Ethanol, and particularly bioethanol from sugar cane, sugar beet or

corn, is preferable to methanol due to its superior dissolving power

for vegetable oils, low toxicity and its renewable origin. Various

factors such as free fatty acid (FFA) content, water content, type/

amount of catalyst, vegetable oil to alcohol molar ratio, or tempera-

ture (Freedman et al., 1984; Darnoko and Cheryan, 2000; Meher

et al., 2006; Sharma et al., 2008) can affect the process. This trans-

esterification leads to high conversion of triglycerides (TG) into ethyl

esters (Marjanović et al., 2010) with diglycerides (DG) and mono-

glycerides (MG) as reaction intermediates and glycerol as by-product.

Indeed, the overall process is a sequence of three consecutive steps,

which are reversible reactions. In the first step, diglycerides (DG) are

obtained from triglycerides (TG); monoglycerides (MG) are then

produced from diglycerides and in the last step, glycerol (G) is

obtained from monoglycerides. In all these reactions, ethyl esters

are produced (Fig. 1).

Ethanolysis is generally conducted in batch reactors (Encinar

et al., 2007; Marjanović et al., 2010; Richard et al., 2011). According

to the reaction scheme and the thermokinetic properties, the limits
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of current batch processes can be overcome by carrying out

continuous processes in order to withdraw existing obstacles of

batch processes such as numerous steps, secondary reactions, stable

equilibria and difficulties to separate the reaction products. The

studied system is complex due in particular to phase equilibrium

changes as well as simultaneous presence of various phenomena

(mixing, heat and mass transfers, principal and competitive reac-

tions) which have to be precisely controlled. Therefore, for transposi-

tion to a continuous process, microreactors which enable acquisition

of numerous data, appear as the appropriate tool. Several studies on

methanolysis using microreactors have recently been published (Sun

et al., 2008, 2009; Wen et al., 2009; Qiu et al., 2010; Xie et al., 2012).

The system is complex due to changing phase equilibria (Guan et al.,

2010): two immiscible phases are present at the beginning (vege-

table oil and methanol), then a single phase appears after a few

minutes of reaction. Finally, two phases are obtained at the end of

the reaction, majorly composed of methyl esters and glycerol. Hence,

to properly design a continuous process, numerous data have been

acquired in this study, in particular at low characteristic times. We

transferred the batch ethanolysis of high oleic sunflower oil into a

continuous microstructured device, which induces a better control of

heat and mass transfers. Various parameters were studied, notably

the initial ethanol to oil molar ratio. The experimental data obtained

by gas chromatography analyses of the reaction media as a function

of reaction time ensure the modelling of chemical kinetics and mass

transfer phenomena for the transesterification reaction. Kinetics

constants and mass transfer coefficients were then calculated in

order to match experimental data with modelling data.

2. Transesterification reaction carried out in microreactors

2.1. Materials and methods

High oleic sunflower oil was obtained from ITERG (Pessac,

France). Its fatty acid composition (% by weight) is as follows:

3.5% palmitic acid, 3.0% stearic acid, 87.6% oleic acid, 4.9% linoleic

acid and 1.2% other acids. Its mean molecular weight is 882.9

g/mol and its acid value is 0.57. Hydrochloric acid (analytical

quality, 3.7% solution in water) and sodium ethoxide (analytically

pure, 21 wt% in ethanol) were purchased from Acros Organics;

absolute ethanol (99.95%) and cyclohexane (HPLC grade) were

supplied by Scharlau. N-methyl-N-trimethylsilyl-heptafluorobu-

tyramide (MSHFBA) and methylimidazole (MI) were purchased,

respectively from Macherey Nagel and Sigma-Aldrich.

The transesterification reaction was performed in circular PFA

(PerFluoroAlkoxy) tubes (1/1600 OD, 0.0200 ID). These PFA tubes

were dipped in a temperature-controlled water bath to maintain

Fig. 1. Global transesterification reaction and its three consecutive steps (where R1, R2, R3 are long chain alkyl groups).

Fig. 2. Experimental set-up of the transesterification reaction carried out in a microreactor.



the targeted microreactor temperature (65 1C, close to the boiling

point of ethanol). Transesterification of high oleic sunflower oil was

carried out by using the following procedure: liquids (oil and a

solution of EtONa in EtOH) were injected by syringe-pumps with

perfect flow control. The experimental set-up is presented in Fig. 2.

Several ethanol to oil molar ratios have been tested (6.0, 9.0, 16.2,

22.7, and 45.4) with the same amount of catalyst (1 wt% compared

to oil mass). After a coaxial introduction of the fluids through a

T-junction (inner diameter of 500 mm), the medium flows into the

PFA tube. At 65 1C, whatever the ethanol to oil molar ratio, the two

liquids form an annular flow. Fig. 3 shows an annular flow obtained

using a capillary tube (360 mm OD, 180 mm ID) inside a 1/1600 PFA

tube at 65 1C. After 2 min of reaction time, the medium is homo-

geneous. At the end of the reaction (16 min), the medium also

appears homogeneous although there are two phases in the micro-

reactor (composed of very small droplets of glycerol in ester phase).

This statement is confirmed as, after decantation in a collection vial,

two phases are distinguishable. With constant flows, each tube

length is related to a reaction time. We used a 2 m-length tube

which corresponds approximately to a reaction time of 16 min (with

a total flow rate Qtot¼1.5 mL/h, which corresponds to a global speed

Utot¼2.12 mm/s). The tube was cut successively in order to obtain

lower reaction times. Samples were collected during 15min with a

concomitant addition of a continuous HCl flow (3.7% solution in

water) in order to quench the reaction by neutralizing the alkali

catalyst.

For each sample, the medium composition at different reaction

times was determined by using gas chromatography coupled to a

flame ionization detector (GC-FID) (Perkin Elmer Instrument, USA).

Separation was carried out with a silica capillary column (CP-Sil 8 CB

lowbleed/MS, 5% phenylþ95% dimethylpolysiloxane, 15 m, 0.32mm,

0.25 mm) from Varian (USA). The chromatograph was equipped with

an automatic injector and the injections (1 mL) were performed with

an ‘‘on-column’’ injector. Ester and glycerol phases were not sepa-

rated because the amount collected for analysis was about 0.3 g,

which was not enough to enable a reliable and reproducible separa-

tion. The entire samples were silylated with a mixture of MSHFBA

and MI before analysis. The hydroxyl group silylation is intended to

increase volatility and stability of the hydroxy compounds injected,

and therefore to improve their detection. Cyclohexane was used as

solvent to prepare standard solutions and heptadecane was used as

internal standard. With this analytical procedure, molar concentra-

tions of ethyl ester, oleic acid, monoglycerides, diglycerides and

triglycerides were determined in the different phases resulting from

the reaction. The gas chromatography data was used to calculate the

total ethyl ester (more precisely ethyl oleate) content in oleic chains

mixture as defined in Eq. (1):

Ethyl Ester Content %ð Þ ¼
½EE�t

½EE�tþ½C18:1�tþ½MG�tþ2� ½DG�tþ3� ½TG�t
ð1Þ

where [EE]t, [C18:1]t, [MG]t, [DG]t and [TG]t represent, respectively the

molar concentrations (mmol/mL) of ethyl oleate, oleic acid, oleic

monoglycerides, diglycerides and triglycerides at a given time t.

2.2. Results and discussion

Different ethanol to oil molar ratios from 6.0 to 45.4 were

tested in microreactors. The total ethyl ester contents obtained by

GC-FID according to the reaction time are illustrated in Fig. 4.

Whatever the ethanol to oil molar ratio, the reaction is quite fast

as chemical equilibrium is reached after about 7 min. According

to Fig. 4, it is noticeable that the highest molar ratios (from 16.2 to

45.4) accelerate the initial kinetics of the reaction. This phenom-

enon can be explained by containment in microreactors: a higher

ethanol to oil molar ratio generates an increase of the surface/

volume (S/V) ratio. Indeed, with stable annular flows (as we can

see on Fig. 3), the S/V ratio can be defined by the following Eq. (2):

a¼
S

V
¼

2� p� roil � L

p� r2
oil

� L
¼

2

roil
ð2Þ

where a is the interfacial surface (m2/m3), roil the radius of oil

phase inside the tube (m) and L the length (m). Thus, an increase

of ethanol to oil molar ratio involves that roil decreases and S/V

increases. Moreover, a radial gradient of oil concentration in the
Fig. 3. Picture of the annular flow in a PFA tube where (i) is the internal fluid

(sunflower oil) and (e) the external fluid (EtONa/EtOH solution).

Fig. 4. Ethyl ester content in the reaction mixtures at 65 1C according to the reaction time for various ethanol to oil molar ratios in microreactors.



reactive ethanol phase appears for higher molar ratios. If the

ethanol phase is more abundant, the oil concentration in this

phase is initially weaker, generating a more important mass

transfer of oil. These two phenomena induce better mass and

heat fluxes, and consequently higher reactivity.

Besides, inflection points can be distinguishable between 0 and

2min, in particular for the molar ratios from 16.2 to 45.4. The

reaction may be controlled by mass transfer at the beginning and

then by the chemical kinetics for reaction time higher than 2min.

Thus, thanks to these particular data gathered at very weak char-

acteristic times, a mathematical model able to represent the behavior

of the reaction medium (evolution of the various compounds as a

function of reaction time) for various ethanol to oil molar ratios has

been built.

3. Modelling the kinetics

3.1. Hypotheses and resulting equations

To build a model able to represent the chemical kinetics and

the mass transfer phenomena, several hypotheses were formu-

lated. They are described and discussed just below:

i. first order for all compounds as results obtained for 1st and

2nd order are not significantly different (Richard et al., 2011);

ii. biphasic medium constituted by two phases (annular flows)

such as an oil phase (index O) and an ethanol phase (index E):

we suppose the transfer of oil (TG) as well as reaction

intermediates (DG and MG) from the oil phase towards the

ethanol phase (Poljanšek and Likozar, 2011);

iii. reaction in ethanol phase: the homogeneous catalyst being

soluble in ethanol phase, the reaction takes place in this phase

after the transfer of the species from oil phase to ethanol phase.

The reaction kinetics is accelerated for a high amount of catalyst,

which involves a faster conversion of triglycerides and thus an

increase of their transfer rate (Stamenković et al., 2011);

iv. first order for the catalyst soluble in ethanol phase. As long as

the reaction occurs, ethanol disappears since it is consumed

(reactant). As a result, the catalyst concentration increases

during the reaction due to its regeneration;

v. balanced reactions: as the reactions are not total, TG, DG and

MG are present at chemical equilibrium. Moreover, the

quantity of TG tending towards 0, the reversible rate constant

of the first reaction kÿ1 will be very low compared to the

other rate constants;

vi. no secondary reactions with free fatty acids (such as oleic

acid): to simplify the model, we considered that reactions of

salification of fatty acids and saponification of triglycerides

and esters in presence of water are very fast and therefore

insignificant compared to the others;

vii. as a consequence of hypothesis (vi), a pseudo-component was

created: EE concentration is the sum of ethyl oleate and oleic

acid concentrations.

Thanks to all these hypotheses, following equations of the

model Eqs. (3)–(11) represent mass transfer and 1st order reac-

tion kinetics for all the compounds:

d TG½ �E
dt

¼ÿk1 TG½ �E EtOH½ � Cata½ �þkÿ1 DG½ �E EE½ � Cata½ �

þkLaðTGÞ TG½ �Oÿ TG½ �E
ÿ �

ð3Þ

d TG½ �O
dt

¼ÿkLaðTGÞ TG½ �Oÿ TG½ �E
ÿ �

ð4Þ

d DG½ �E
dt

¼ k1 TG½ �E EtOH½ � Cata½ �ÿkÿ1 DG½ �E EE½ � Cata½ �

ÿk2 DG½ �E EtOH½ � Cata½ �þkÿ2 MG½ �E EE½ � Cata½ �

þkLaðDGÞ DG½ �Oÿ DG½ �E
ÿ �

ð5Þ

d DG½ �O
dt

¼ÿkLaðDGÞ DG½ �Oÿ DG½ �E
ÿ �

ð6Þ

d MG½ �E
dt

¼ k2 DG½ �E EtOH½ � Cata½ �ÿkÿ2 MG½ �E EE½ � Cata½ �

ÿk3 MG½ �E EtOH½ � Cata½ �þkÿ3 G½ � EE½ � Cata½ �

þkLaðMGÞ MG½ �Oÿ MG½ �E
ÿ �

ð7Þ

d MG½ �O
dt

¼ÿkLaðMGÞ MG½ �Oÿ MG½ �E
ÿ �

ð8Þ

d G½ �

dt
¼ k3 MG½ �E EtOH½ � Cata½ �ÿkÿ3 G½ � EE½ � Cata½ � ð9Þ

d EtOH½ �

dt
¼ÿk1 TG½ �E EtOH½ � Cata½ �þkÿ1 DG½ �E EE½ � Cata½ �

ÿk2 DG½ �E EtOH½ � Cata½ �þkÿ2 MG½ �E EE½ � Cata½ �

ÿk3 MG½ �E EtOH½ � Cata½ �þkÿ3 G½ � EE½ � Cata½ � ð10Þ

d EE½ �

dt
¼ k1 TG½ �E EtOH½ � Cata½ �ÿkÿ1 DG½ �E EE½ � Cata½ �

þk2 DG½ �E EtOH½ � Cata½ �ÿkÿ2 MG½ �E EE½ � Cata½ �

ÿk3 MG½ �E EtOH½ � Cata½ �ÿkÿ3 G½ � EE½ � Cata½ � ð11Þ

The model was solved using a first order discretization. One

second step time was chosen as it presents a good compromise

between calculation time and numerical errors (a sensitivity

analysis of the model was carried out for one experiment: ethanol

to oil molar ratio 9.0 in 1/1600 tubes).

3.2. Determination of theoretical interfacial area

In order to solve these latter equations, the interfacial area is

needed. Eq. (2) gives this parameter as a function of oil radius,

which can be determined with the speed profile inside the

microreactor. It is considered as an annular flow (Fig. 3) at 65 1C

and each flow verifies the Stokes equation presented in Eq. (12):

ZDu¼rP ð12Þ

where Z is the viscosity (Pa s), u the speed (m/s) and P the

pressure (Pa). The speed profile of a steady and incompressible

flow of Newtonian fluid in a microchannel with a radius of 254 mm
can be written as:

ui rð Þ ¼
1

4Zi

r2ÿr2i
ÿ �

@zPþ
1

4Ze

r2i ÿR2
� �

@zP for 0orori ð13Þ

ue rð Þ ¼
1

4Ze

r2ÿR2
� �

@zP for rioroR ð14Þ

where ui and ue are, respectively the speeds of internal and external

fluids (Fig. 3) (m/s), R the radius of the microchannel, Zi and Ze,

respectively the viscosities of internal and external fluids (Pa s) and

ri the radius of oil (mm). The flows Qi and Qe (m
3/s) of the two fluids

can be determined by integrating the speed profile on the section of

the microchannel (Eqs. (15) and (16)).

Q i ¼ÿ
p r2i
4

r2i
2Zi

þ
R2ÿr2i
Zi

 !

@zP for 0orori ð15Þ

Q e ¼ÿ
p

8Ze

R2ÿr2i

� �2
@zP for rioroR ð16Þ

For each set of flows (i.e., for each ethanol to oil molar ratio),

Eqs. (15) and (16) can be solved and thus interfacial area (a) can



be calculated with internal radius (ri) (Table 1). The highest

ethanol to oil molar ratios are related to lower internal radius.

This result is logical as ri represents the radius of internal fluid

which is oil, and the oil volume is lower when the ethanol to oil

molar ratio increases. From Table 1, the interfacial area clearly

varies from one molar ratio to another. Indeed, for example,

between a ratio 6.0 and 45.4, the interfacial area increases from

8365 to 9387 m2/m3, which represents a variation of 10.9%.

3.3. Determination of a set of parameters for each molar ratio

After emitting hypotheses on several parameters and calculat-

ing notably the interfacial areas, it is possible to carry out

identification of parameters on kinetic constants and mass trans-

fer coefficients. Criterion minimization was used for identifying

these kinetic parameters. The criterion is defined by the sum of

the relative squared differences between the experimental mea-

sured data and the model output for each component of the

reaction mixture (TG, DG, MG and EE) at different reaction times:

Minimizationcriterion¼
X

j

X

i

CjðiÞmodÿCjðiÞexp
CjðiÞexp

 !2

ð17Þ

where Cj(i)mod is the calculated concentration of component j at

reaction time i, Cj(i)exp is the experimental concentration (GC-FID

data) of component j at reaction time iwith j¼TG, DG, MG, EE and

i¼47, 94, 141, 189, 236, 283, 330, 401, 471, 589, 707, 825, 942 s.

The criterion chosen to work with is based on the squared sums of

relative variations and not on the squared sums of absolute varia-

tions because some concentrations such as those of TG, DG and MG

are much lower than the EE concentrations. Low differences in

concentrations of TG, DG and MG between the experimental data

and the modelling data would generate very important variations by

comparison with errors on EE. Thus, working with a criterion on

relative variations, errors on all compounds are balanced, which is

more representative of the system.

The minimization criterion on the relative squared variations

was carried out separately for each molar ratio by using the kinetic

constants and the mass transfer coefficients as variable parameters.

The corresponding curves are represented on Fig. 5. It should be

pointed out that the model enables the representation of also the

evolution of glycerol concentration as a function of reaction time, in

addition to the concentration of the other components. The results

of the parameters identification for the ethanol to oil molar ratio of

6.0 are gathered in Table 2. Results for the molar ratio 6.0 are

satisfactory visually and numerically since the model curves really

fit the experimental data for all the components and the total sum of

their relative variations (SS(j)) for all reaction times is low (equal to

5). Kinetics constants are all of the same order of magnitude

(between 1 and 10ÿ2 L2/mol2/s) except kÿ1 which is very low

(about 10ÿ10 L2/mol2/s). This confirms hypothesis (v): the first

reaction of the chemical scheme (Fig. 1) is nearly total whereas

the two other steps are balanced reactions.

Parameters identification has been lead separately for each

ethanol to oil molar ratio and results are also given in Table 2.

Although S(TG) are quite high for ethanol to oil molar ratios 16.2

and 22.7, concentrations tendencies are correctly represented.

Indeed, as concentrations of TG are very low, small variations can

generate high relative errors.

3.4. Determination of a global set of parameters

After determining the kinetic parameters (kinetics constants and

mass transfer coefficients) for each ethanol to oil molar ratio, we

chose to establish common parameters able to correctly represent

all the molar ratios used. First of all, the system was optimized using

different initialization parameters and particularly the values

Table 1

Resulting oil radius in microchannel and interfacial area for various ethanol to oil

molar ratios at 65 1C.

Molar ratioa Qi (mL/h) Qe (mL/h) Qtot
b (mL/h) ri (mm) a (m2/m3)

6.0 1.090 0.410 1.500 239.1 8365

9.0 0.967 0.533 1.500 235.9 8479

16.2 0.755 0.745 1.500 229.6 8710

22.7 0.630 0.870 1.500 225.1 8886

45.4 0.400 1.100 1.500 213.1 9387

a For all molar ratios, the amount of catalyst is constant (1 wt% compared to

oil mass).
b With Qtot¼QiþQe

Fig. 5. Evolution of the concentrations of the various oleic compounds according to the reaction time for a molar ratio of 6.0 (continuous lines are used for the model and

singular points for the experimental data).



previously determined for each molar ratio. The criterion to be

minimized is here the sum of the sums of the relative squared

variations of each component at each reaction time for all molar

ratios (SSS(ratios)).

Depending on the initializing parameters (different sets of kinetic

and mass transfer parameters established for each molar ratio), the

resulting criterion and parameters can be different. We gathered the

results showing the influence of initialization in the Table 3. The

final value of the minimization criterion (SSS(ratios)) varies between

108 and 155 depending on the initialization of the set of parameters,

values which are mathematically acceptable. However, although the

modelling curves correctly fit to the experimental concentrations for

ethyl ester whatever the molar ratio used, the representation of

other compounds are less acceptable.

Besides, we manually determined a set of parameters able to

correctly represent the evolutions of all the components of all molar

ratios used. To initialize this parameters identification, we analyzed

results of Table 2 and averaged each parameter. Kinetic parameters

are all approximately constant, except k1 for themolar ratio 6.0 which

is equal to twice the k1 for other molar ratios. Thus, we did not

consider it to calculate the constant average k1. Concerning the mass

transfer coefficients, kL(DG) and kL(MG) for an ethanol to oil molar ratio

of 16.2 are also different from others kL of other molar ratios

(Table 2). These values, consequently, have not been used to calculate

the average coefficient kL. A global parameters identification mini-

mizing criterion SSS(ratios) has been lead and the set of established

parameters gives a criterion of 108 (Table 4). But these parameters do

not allow to correctly represent the evolutions of all compounds, in

particular evolutions of monoglycerides. That is why we also decided

to play manually on the parameters in order to improve the

representation of all the reaction compounds for all molar ratios.

A set of parameters (kinetics constants andmass transfer coefficients)

given in Table 4 is able to correctly represent evolutions of various

compounds for each ethanol to oil molar ratio used. Even if the total

sum of the sums of the relative squared variations is much higher

(1165) than the previous value (only 108), it is essentially due to the

high value of the sum of the relative squared variations for the molar

ratio of 16.2 (9 4 5) which represents 81% of the total sum. This

important sum can be explained primarily by the relative squared

variations obtained on TG, which represents a maximum of 96% of

the total sum for molar ratio 16.2, because of the rapid progression of

TG concentrations towards values close to zero. Thus, corresponding

graphs to this set of parameters, satisfactory for the whole of molar

ratios used, are presented on Fig. 6. For all molar ratios used, we can

note that the reactions are limited by chemical kinetics. Thus, in

order to validate the model which has just been presented, we

decided to carry out a reaction where mass transfer would be more

limiting.

Table 2

Results of the parameters identification carried out on 9 parameters by minimizing separately the criterion of the relative squared variations for each ethanol to oil

molar ratio.

Parameters 6.0 9.0 16.2 22.7 45,4

Kinetics constants

k1 (L2/mol2s) 2.45�10ÿ1 1.00�10ÿ1 1.00�10ÿ1 1.45�10ÿ1 1.45�10ÿ1

kÿ1 (L2/mol2s) 8.65�10ÿ11 8.65�10ÿ11 8.65�10ÿ11 8.65�10ÿ11 8.65�10ÿ11

k2 (L2/mol2s) 1.22�10ÿ1 1.09�10ÿ1 1.70�10ÿ1 2.00�10ÿ1 2.00�10ÿ1

k ÿ2 (L2/mol2s) 3.75�10ÿ2 1.23�10ÿ2 2.45�10ÿ2 3.75�10ÿ2 3.75�10ÿ2

k3 (L2/mol2s) 5.37�10ÿ2 4.50�10ÿ2 5.37�10ÿ2 8.00�10ÿ2 8.00�10ÿ2

kÿ3 (L2/mol2s) 1.26�10ÿ2 9.21�10ÿ3 1.26�10ÿ2 3.00�10ÿ2 3.00�10ÿ2

Mass transfer coefficients

kL(TG) (m/s) 1.50�10ÿ6 1.82�10ÿ6 2.00�10ÿ6 1.00�10ÿ6 1.00�10ÿ6

kL(DG) (m/s) 1.76�10ÿ5 1.92�10ÿ5 4.69�10ÿ6 1.76�10ÿ5 1.76�10ÿ5

kL(MG) (m/s) 1.54�10ÿ6 6.33�10ÿ7 1.75�10ÿ5 1.54�10ÿ6 1.54�10ÿ6

Relative squared variations

S(EE) 0.04 0.01 1.64 2.50 1.24

S(MG) 0.16 0.51 50.20 8.21 6.52

S(DG) 0.36 1.17 6.17 11.13 0.48

S(TG) 4.29 7.22 373.28 714.68 6.11

SS(j) 5 9 431 737 14

Table 3

Influence of parameters initialization on the results for a global optimisation (for the five ethanol to oil molar ratios).

Parameters Initialization with values of each molar ratio

6.0 9.0 16.2 22.7 45.4

k1 (mol-2L2s-1) 1.04�10ÿ1 1.12�10ÿ1 1.06�10ÿ1 1.10�10ÿ1 1.10�10ÿ1

kÿ1 (mol-2L2s-1) 8.65�10ÿ11 8.65�10ÿ11 3.80�10ÿ12 8.65�10ÿ11 8.65�10ÿ11

k2 (mol-2L2s-1) 1.53�10ÿ1 1.59�10ÿ1 1.58�10ÿ1 2.03�10ÿ1 2.03�10ÿ1

kÿ2 (mol-2L2s-1) 2.53�10ÿ10 1.84�10ÿ2 1.85�10ÿ2 1.15�100 1.15�100

k3 (mol-2L2s-1) 6.85�10ÿ1 6.64�10ÿ1 4.70�10ÿ1 2.88�10ÿ1 2.88�10ÿ1

kÿ3 (mol-2L2s-1) 2.17�10ÿ1 2.17�10ÿ1 1.54�10ÿ1 0.000 0.000

kL(TG) (m/s) 3.83�10ÿ6 3.55�10ÿ6 3.79�10ÿ6 3.62�10ÿ6 3.62�10ÿ6

kL(DG) (m/s) 1.00�10ÿ4 1.00�10ÿ4 1.00�10ÿ4 3.53�10ÿ5 3.53�10ÿ5

kL(MG) (m/s) 5.23�10ÿ6 4.42�10ÿ6 2.02�10ÿ6 5.29�10ÿ7 5.29�10ÿ7

SS(ratio 6.0) 15.69 11.25 11.16 20.36 20.36

SS(ratio 9.0) 12.77 9.07 9.01 17.05 17.05

SS(ratio 16.2) 38.91 33.73 33.67 48.29 48.29

SS(ratio 22.7) 37.27 34.80 35.23 46.77 46.77

SS(ratio 45.4) 19.22 19.20 18.92 22.64 22.64

SSS(ratios) 124 108 108 155 155



Table 4

Results of global parameters identification with criterion minimization (1) and manual parameters identification (2).

Parameters Initialization

(averaging values of Table 2)

(1) Global parameters

identification

(2) Global manual

adjustement

k1 (mol-2L2s-1) 1.23�10ÿ1 1.03�10ÿ1 1.20�10ÿ1

kÿ1 (mol-2L2s-1) 8.65�10ÿ11 8.82�10ÿ11 8.65�10ÿ11

k2 (mol-2L2s-1) 1.60�10ÿ1 1.59�10ÿ1 1.50�10ÿ1

kÿ2 (mol-2L2s-1) 2.98�10ÿ2 1.86�10ÿ2 3.00�10ÿ2

k3 (mol-2L2s-1) 6.25�10ÿ2 5.42�10ÿ1 5.00�10ÿ2

kÿ3 (mol-2L2s-1) 1.89�10ÿ2 1.77�10ÿ1 1.20�10ÿ2

kL(TG) (m/s) 1.47�10ÿ6 3.90�10ÿ6 1.50�10ÿ6

kL(DG) (m/s) 1.80�10ÿ5 1.24�10ÿ5 1.70�10ÿ5

kL(MG) (m/s) 1.31�10ÿ6 2.70�10ÿ6 1.50�10ÿ6

SS(ratio 6.0) 8.11 11.08 7.48

SS(ratio 9.0) 31.47 9.09 26.58

SS(ratio 16.2) 1001.89 33.08 944.76

SS(ratio 22.7) 163.95 35.54 160.96

SS(ratio 45.4) 18.30 18.73 25.63

SSS(ratios) 1224 108 1165

Fig. 6. Modelling and experimental data representing the evolution of reaction medium composition according to the reaction time with the same set of parameters

manually determined (valid for all molar ratios).



3.5. Validation of the model with an experiment in millireactor

To carry out a reaction with more mass transfer limitation, it is

necessary to increase the working scale. We thus implemented the

reaction in millireactor instead of microreactors. 1/1600 PFA tubes

(508 mm as internal diameter) were substituted by PFA tubes with

higher dimensions: 1/800 PFA tubes (3.175 mm as external diameter

and 2.362 mm as internal diameter). As we decided to work at the

same speed as in microreactors (Utot¼2.12 mm/s), flow rates had to

be increased (Qtot¼33.480 mL/h). We chose to work with an ethanol

to oil molar ratio of 9.0 with the same amount of catalyst (1 wt%

compared to oil mass) and the same temperature (65 1C) as in

microreactors. The internal radius is 1096.6 mm and the interfacial

area in this millireactor is 1823.84 m2/m3 (i.e., 5 times lower in

comparison with the interfacial area for the same ratio in

microreactor (Table 1)), which generates a more important limita-

tion due to mass transfer. The flow pattern in this millireactor was

the same as the pattern described in the microreactor, i.e., an

annular flow at the beginning of the reaction and then, the reaction

medium appears to be homogeneous with probably very small

droplets of glycerol in the ester phase at the end of the reaction.

When the parameter identification was carried out on all

experiments (1/1600 tubes and 1/800 tube) varying initialization,

results were rather satisfactory numerically but not visually, in

particular for components in low quantities in the reaction

mixture. Indeed, the maximum MG concentration after a few

minutes of reaction is not represented: MG concentration

increases gradually until reaching a plateau (corresponding to

the equilibrium of the third step of transesterification reaction),

which does not correspond to the experimental reality

Fig. 7. Modelling and experimental data representing the evolution of various components according to reaction time with the same set of parameters (valid for all molar

ratios and both tube sizes).



(Figs. 6 and 7). Parameters were thus manually adjusted in order

to correctly represent the evolution of the concentration of all

compounds during reaction (Table 5).

This last model enables representation of general tendencies

of the concentrations evolution of various oleic species present

in the reaction medium. Experimental data points obtained by

GC-FID are quite well represented by modelled tendencies with

small uncertainties. These uncertainties may come from GC-FID

measures (thus from material balance) and from the hypotheses

emitted to build this model. Indeed, hypothesis concerning the

absence of secondary reactions is debatable because oleic acid

concentration can vary during reaction. However, this point was

corrected by creating a pseudo-component for the model (see

hypothesis (vii)). Moreover, although the mixture is biphasic only

at the beginning of the reaction, the term of mass transfer was kept

in all model equations throughout the reaction. The phenomenon of

mixture is probably substituted by a diffusion phenomenon when

the medium becomes monophasic. As the same model was kept

throughout the reaction, that means diffusion is approximated by

mass transfer.

Despite simplifying hypotheses, the model is satisfactory in

the sense that it is able to predict all components concentrations

under various experimental conditions (several ethanol to oil

molar ratios and in diffusion or reaction mode).

The set of parameters obtained was compared with parameters

of other works involving a transesterification reaction of vegetable

oil with an alcohol homogeneously catalyzed (Poljanšek and Likozar,

2011). Table 6 and Table 7 show, respectively different mass transfer

Table 5

Validation of the model considering experiments in microreactor (limited by chemical kinetics) and millireactor (more limited by

mass transfer).

Parameters Numerical parameters identification

for the experiment in millireactor

Manual parameters determination

for the experiment in millireactor

Manual adjustement

for all experimentsa

k1 (mol-2L2s-1) 2.14�10ÿ1 1.00�10ÿ1 5.00�10ÿ2

kÿ1 (mol-2L2s-1) 8.65�10ÿ11 8.65�10ÿ11 1.00�10ÿ10

k2 (mol-2L2s-1) 2.49�10ÿ1 1.50�10ÿ1 1.50�10ÿ1

kÿ2 (mol-2L2s-1) 1.48�10ÿ1 1.00�10ÿ1 7.00�10ÿ2

k3 (mol-2L2s-1) 3.02�10ÿ1 5.00�10ÿ2 5.00�10ÿ2

kÿ3 (mol-2L2s-1) 1.96�10ÿ1 2.00�10ÿ2 1.50�10ÿ2

kL(TG) (m/s) 3.96�10ÿ6 1.00�10ÿ5 1.00�10ÿ5

kL(DG) (m/s) 6.23�10ÿ6 1.00�10ÿ5 1.00�10ÿ5

kL(MG) (m/s) 9.42�10ÿ7 1.00�10ÿ5 1.00�10ÿ5

SS(ratio 6.0) (1/16
00) – – 8

SS(ratio 9.0) (1/16
00) – – 108

SS(ratio 16.2) (1/16
00) – – 348

SS(ratio 22.7) (1/16
00) – – 100

SS(ratio 45.4) (1/16
00) – – 34

SS(ratio 9,0) (1/8
00) 6 45 25

SSS(ratios) – – 623

a ‘‘all experiments’’ means the 5 experiments in microreactorþ1 experiment in millireactor

Table 6

Comparison of different mass transfer coefficients obtained from literature and from this work.

Parameters Stamenković et al., 2008 Frascari et al., 2009 Klofutar et al., 2010 Our work

Oil Sunflower Sunflower Sunflower Sunflower

Alcohol Methanol Methanol Methanol Ethanol

Catalyst type KOH KOH KOH EtONa

Catalyst amount 1 wt% 0.8 wt% 1 wt% 1 wt%

Temperature 30 1C 60 1C 50 1C 65 1C

Stirring 200 rpm 200 rpm 500 rpm –

kL (m/s) 7.80�10ÿ5 1.40�10ÿ4 1.46–1.93�10ÿ7 1.00�10ÿ5

Table 7

Comparison of different sets of kinetics parameters obtained from literature and from this work.

Parameters Noureddini and Zhu, 1997 Vicente et al., 2005 Bambase et al., 2007 Klofutar et al., 2010 Our work

Oil Soybean Sunflower Sunflower Sunflower Sunflower

Alcohol Methanol Methanol Methanol Methanol Ethanol

Catalyst type NaOH KOH NaOH KOH EtONa

Catalyst amount 0.2 wt% 1 wt% 1 wt% 1 wt% 1 wt%

Temperature 50 1C 65 1C 60 1C 50 1C 65 1C

Stirring 300 rpm 600 rpm 400 rpm 500 rpm –

k1 (mol-2L2s-1) 8.33�10ÿ4 5.10�10ÿ2 3.86�10ÿ3 1.29�10ÿ3 5.00�10ÿ2

kÿ1 (mol-2L2s-1) 1.83�10ÿ3 3.98�10ÿ1 2.77�10ÿ4 4.42�10ÿ4 1.00�10ÿ10

k2 (mol-2L2s-1) 3.58�10ÿ3 5.42�10ÿ1 7.48�10ÿ3 2.80�10ÿ3 1.50�10ÿ1

kÿ2 (mol-2L2s-1) 2.05�10ÿ2 9.58�10ÿ1 1.78�10ÿ3 1.12�10ÿ3 7.00�10ÿ2

k3 (mol-2L2s-1) 4.03�10ÿ3 9.00�10ÿ3 1.46�10ÿ2 1.62�10ÿ3 5.00�10ÿ2

kÿ3 (mol-2L2s-1) 1.17�10ÿ4 1.50�10ÿ5 1.05�10ÿ3 1.47�10ÿ4 1.50�10ÿ2



coefficients and sets of kinetics constants, obtained in batch reactor

with an alcohol to oil molar ratio of 6.0 and various experimental

conditions.

The mass transfer coefficient we established for transesterifica-

tion reaction which is valid whatever the ethanol to oil molar ratio

used and whatever the size of the tubular reactor (1.0�10ÿ5 m/s) is

of the same order of magnitude as mass transfer coefficients

(Table 6) calculated in various works of literature in spite of different

processes (temperature, nature of catalyst, type of reactor).

It is quite difficult to compare rate constants (Table 7) of a

work with another one because all experiments were carried out

under different conditions. Moreover, the kinetics constants

obtained from batch reactors often characterize apparent kinetics

constants (including mass transfer and reactional phenomenon).

Nevertheless, parameters we determined can approach more

particularly the work of (Vicente et al., 2005), except our kÿ1

constant, which is very different from other works of literature.

Our kÿ1 constant is very close to zero, which can be justified by

the very small amount (or even the lack) of triglycerides at the

end of the reaction. The simulator we have at our disposal is thus

a robust tool which allows to model transesterification reactions

in a very fast time.

4. Using the model to simulate the separation of the products

The model can be used to simulate different transesterification

reactions, with other ethanol to oil molar ratios or in other

reactors with higher or lower dimensions. Herein, the case study

of products separation is presented. Indeed, it is possible to

simulate the glycerol removal because it is a by-product of the

reaction and its removal shifts the equilibrium towards products

formation in order to maximize ethyl ester formation (trying to

consume all triglycerides, diglycerides and monoglycerides). Two

different cases were studied: one simulating a total glycerol

removal from a removal time tR until the end of the reaction,

and an other one simulating constant and continuous glycerol

removal (i.e., a glycerol-removing flux FG(R) in mol/s) starting after

a removal time tR. These simulations were carried out for a

transesterification reaction with an ethanol to oil molar ratio of

6.0 in a 1/1600 PFA tube at 65 1C but we could also have led them

with other conditions because the set of parameters is valid

whatever the molar ratio and the reactor size.

4.1. Simulation of total glycerol removal

First of all, a total glycerol removal was simulated, as it can be

carried out at industrial scale in batch reactor (equivalent to a

decantation): from tR1, a glycerol removal was set with a suffi-

cient glycerol molar flux to eliminate the totality of glycerol

present in the reaction medium. For t4tR1, glycerol was removed

while forming. Fig. 8 illustrates a glycerol removal (FG(R)¼0.5 mol/s)

from a reaction time tR1¼500 s.

On Fig. 8, glycerol removal is visible (without optimization of tR),

diglycerides and monoglycerides concentrations decrease while

ethyl ester concentration increases. This is due to the equilibrium

shift towards consumption of reaction intermediates and thus,

the system tends to the maximum ethyl ester concentration

([EE]max¼1.98 mol/L). Maximum yield of 100% could be reached

with such a system.

4.2. Simulation of a constant and continuous glycerol removal

Glycerol removal can also be simulated with a constant and

continuous flux from a given time tR. On one hand, if we proceed

to the glycerol removal from tR2 using a flux lower than the

glycerol formation flux (FG (formation)), then glycerol concentration

still increases until a limit time tL. After tL, glycerol removal flux

becomes more important than glycerol formation flux and gly-

cerol concentration starts to decrease until reaching a zero value

(for reaction time tG¼0). On the other hand, if we proceed to the

glycerol removal from tR3 using a flux higher than glycerol

formation flux, then glycerol concentration decreases continu-

ously from tR3 to t0G¼0, when glycerol concentration becomes null.

These two cases are illustrated on Fig. 9 ((a): for t¼tR2, FG(R)o

FG (formation) and (b): for t¼tR3, FG(R)4FG (formation)).

The goal of continuous glycerol removal is to shift equilibrium,

as in previous paragraph 4.1, in order to form a maximum of ethyl

esters. If the main objective is to reach a certain glycerol removal

or to minimize the removal time, a parameter optimisation on

glycerol flux and/or removal time, for example, has to be carried

out. Obviously, the simulator is usable for other objectives.

Moreover to validate the simulation work, experiments of

continuous separation have to be managed. Indeed, polymer

(Saleh et al., 2010) or ceramic (Wang et al., 2009; Gomes et al.,

2010) membranes are used inside microreactors or millireactors

Fig. 8. Simulation of a total glycerol removal from tR1¼500 s during transesterification reaction (ethanol to oil molar ratio¼6.0, 1 wt% EtONa, 65 1C, 1/1600 PFA tubes).



in order to selectively separate the two reaction products accord-

ing to the physico-chemical properties of membranes.

5. Conclusions

In this work, a model able to represent both mass transfer

phenomenon and reaction kinetics at a given temperature (65 1C)

for the transesterification reaction between high oleic sunflower oil

and ethanol was built. A set of kinetics parameters was determined

in order to represent the evolutions of concentrations of different

compounds (reactants and products but also reaction intermediates)

whatever the ethanol to oil molar ratio and whatever the limiting

phenomenon: chemical kinetics in microreactors (1/1600 PFA tubes)

and mass transfer in millireactors (1/800 PFA tubes). Moreover, this

model is useful to simulate other reaction conditions. We simulated

as an example the continuous removal of glycerol where ethyl ester

reaches a maximum yield in a minimum of time. Various possible

scenarios (total glycerol removal or constant and continuous gly-

cerol removal) to modify the displacement of reaction equilibrium

were studied. Optimization of parameters such as glycerol removal

flow rate or removal time has to be carried out. A comparison

between simulation results and real experimental data from separa-

tions with membranes would be interesting in a future work.
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