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Bayesian three-dimensional reconstruction of toothed whale
trajectories: Passive acoustics assisted with visual and tagging
measurements

Christophe Laplanchea)

Universit�e de Toulouse, INP, UPS, CNRS, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement),

ENSAT, Avenue de l’Agrobiopole, 31326 Castanet Tolosan, France

The author describes and evaluates a Bayesian method to reconstruct three-dimensional toothed

whale trajectories from a series of echolocation signals. Localization by using passive acoustic data

(time of arrival of source signals at receptors) is assisted by using visual data (coordinates of the

whale when diving and resurfacing) and tag information (movement statistics). The efficiency of

the Bayesian method is compared to the standard minimum mean squared error statistical approach

by comparing the reconstruction results of 48 simulated sperm whale (Physeter macrocephalus)

trajectories. The use of the advanced Bayesian method reduces bias (standard deviation) with

respect to the standard method up to a factor of 8.9 (13.6). The author provides open-source

software which is functional with acoustic data which would be collected in the field from any

three-dimensional receptor array design. This approach renews passive acoustics as a valuable tool

to study the underwater behavior of toothed whales.

I. INTRODUCTION

Researchers have brought three main approaches into

play to explore the behavior of toothed whales in the field:

Visual, electronic tagging, and passive acoustics. Visual

methods use photo-identification to differentiate individuals,

map their surface movements, and catalogue their clustering

preferences (Whitehead, 2003, pp. 206–285). Electronic tag-

ging consists of attaching embedded systems on whales and

record information on their subsequent behavior. Embedded

systems can contain diverse receptors (acoustic, accelerome-

ter, GPS, etc.) and provide as diverse information on whale

behavior (Johnson et al., 2009). Passive acoustics consists of

recording whale sounds from dragged, hull-mounted, or

bottom-mounted receptors and real-time or post-process sig-

nals (Houegnigan et al., 2010; Miller and Dawson, 2009;

Nielsen and Mohl, 2006). Toothed whales profusely use

sound for communication and echolocation. All toothed

whale species probe their underwater environment by emit-

ting a series of transient, directive, high level clicks (Madsen

and Wahlberg, 2007). Passive acoustic outcomes go beyond

inference on whale acoustic behavior (Teloni et al., 2008).

Passive acoustics also leads to: Source detection in ambient

noise (Sanchez–Garcia et al., 2010), separation of multiple

phonating individuals (Baggenstoss, 2011; Caudal and Glo-

tin, 2008), localization (Cranch et al., 2004; Hayes and Mel-

linger, 2000; Wahlberg et al., 2001), inference on whale

morphometry (Growcott et al., 2011), and information on

swim orientation during predation (Laplanche et al., 2005,

2006; Nosal and Frazer, 2007). Each of the three latter

approaches has pros and cons, by providing distinct pieces

of information, with various equipment budget and time

cost, and with different degrees of contact with whales.

Whatsoever, all three approaches share a common feature:

The need to localize the whale as a fundamental step in

studying its behavior.

Passive acoustic localization is achieved by triangulat-

ing source signals on a synchronized array of receptors. Var-

ious designs of receptors have been operated to study the

behavior of toothed whales: One-dimensional (Thode et al.,

2002), two-dimensional (Thode, 2004), or three-dimensional

arrays (Cranch et al., 2004; Hayes and Mellinger, 2000;

Wahlberg et al., 2001). Since times of emission of whale sig-

nals are unknown, triangulation is not achieved directly by

using times of arrival (TOA) at receptors, but by using times

of arrival differences (TOADs) at pairs of receptors. TOADs

are later processed with statistical software to compute loca-

tion estimates. One popular option is to derive a whale tra-

jectory from minimum mean squared error (MMSE)

estimates. The drawback of the latter approach is a high sen-

sitivity to measurement errors resulting in broad inaccuracy

(bias) and uncertainty (variance) on the estimate (Spies-

berger, 2001; Wahlberg et al., 2001). Bias and variance can

be as large as to make localization results unhelpful.

The author presents an advanced statistical method of

processing TOAD data which aim is to compute localization

results of enhanced quality, that is to say of lower bias and var-

iance than the standard method. The essence of the advanced

method is to refine the processing of the acoustic data and to

use nonacoustic data. Refined processing of the acoustic data

will be achieved by reconstructing a whale trajectory while,

and not afterwards, processing acoustic data. The interest of

using nonacoustic data is to further improve the localization
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procedure (Davis and Pitre, 1995; Laplanche, 2007; Tiemann

et al., 2006). The complexity of the statistical model (high

number of unknowns, non-linearities, heterogeneous sources

of data) prevents the use of standard statistical tools but Bayes-

ian modeling (Congdon, 2003, pp. 1–457). Bayesian modeling

has already proven to be an efficient framework to address

advanced issues in passive acoustic localization (Dosso and

Wilmut, 2011; Spiesberger, 2005; Tollefsen and Dosso, 2010).

The essence of Bayesian modeling is to (i) express (known)

measured variables as functions of (unknown) latent variables,

(ii) assign a prior distribution to the latent variables, (iii) calcu-

late a mathematical expression of the posterior distribution of

the latent variables, and (iv) use numerical methods to com-

pute posterior estimates of the latent variables. The mathemati-

cal expression of the posterior distribution as well as the

computation of posterior estimates are complex with complex

models, making Bayesian modeling difficult to apply for

researchers who are not familiar with computer programming

and Bayesian statistics. Recent user-friendly Bayesian model-

ing tools, however, such as BUGS (Bayesian inference Using

Gibbs Sampling), automatically calculate a mathematical

expression and simulate the posterior [steps (iii) to (iv)], leav-

ing only model formulation to users [steps (i) to (ii)], making

Bayesian modeling more accessible (Ntzoufras, 2009, pp. 83–

150).

The author first presents the standard localization proce-

dure. This method is reformulated into a Bayesian context,

before being extended, to get up to the full Bayesian local-

ization method. The efficiency of both methods is compared

by using simulated data, with the sperm whale (Physeter

marcocephalus) as an example. The full Bayesian localiza-

tion method could be of interest to study other toothed whale

species, which is discussed.

II. MATERIALS AND METHODS

A. The standard statistical model

Sperm whales routinely undertake several hundred

meters deep, 30 to 60-min dives (Whitehead, 2003, pp. 78–

84, 156–168) interrupted by 10-min breathing breaks at the

sea surface (Watwood et al., 2006). Sperm whales are clearly

visible and identifiable when breathing. Let us consider the

full dive of some sperm whales, diving at time tdive and

resurfacing at time tresurf. Sperm whale underwater acoustic

activity is recorded on a synchronized array of receptors; let

R be the number of acoustic receptors and r [ {1,… ,R} be

an index over receptors. Sperm whales emit several thou-

sands of clicks through their dive; let us consider only a sub-

sample of these clicks, where K denotes the number of

processed clicks and k [ {1,… ,K} an index over clicks.

Let tk be the time of emission of click k, tdive< t1
< � � �< tK< tresurf. Let ðx

h
r;k; y

h
r;k; z

h
r;kÞ be the Cartesian coordi-

nates of receptor r at time tk. The measured value of TOA of

click k on receptor rðr 2 f1;…;RgÞ is denoted TOAr,k. By

using the first receptor as a baseline, the measured value of

TOAD of click k on receptor r ðr 2 f2;…;RgÞ is denoted

TOADr,k.

Let Mk¼ðxk; yk; zkÞ be the Cartesian coordinates of the

whale at time tk. By using the spherical propagation model, c

is the sound speed, the predicted value of TOA of click k on

receptor rðr 2 f1;…;RgÞ is

TOAr;k ¼ tk þ
1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxk ÿ xhr;kÞ
2 þ ðyk ÿ yhr;kÞ

2 þ ðzk ÿ zhr;kÞ
2

q

:

(1)

And by using the first receptor as baseline, the predicted

value of TOAD of click k on receptor rðr 2 f2;…;RgÞ is

TOADr;k ¼ TOAr;k ÿ TOA1;k: (2)

The MMSE point estimate of (M1,… ,MK) minimizes the

quadratic sum of the residuals S2 ¼
PK

k¼1 S
2
k where

S2k ¼
X

R

r¼2

ðTOADr;k ÿ TOADr;kÞ
2 : (3)

The minimum of S2 is actually reached by minimizing each

S2k separately. The implications of the latter assertion are first

that the 3K-dimension optimization problem (minimizing S2)

can be handled without difficulty by partitioning it into K

three-dimension optimization problems (minimizing S2k for

all k) and using a standard optimization method. Second,

acoustic data at time tk is only used to compute an estimate

of the location of the whale at the exact same time. In view

of whale inertia, measured values TOADr,k actually contain

information on the location of the whale around time tk. The

advanced Bayesian model which will be presented later will

process acoustic data in this perspective. The advanced

model is an extension of a Bayesian reformulation of the

standard model, which is presented below.

B. Bayesian formulation of the standard model

MMSE estimates are approximately equal to expecta-

tion a posteriori (EAP) estimates by using a Bayesian statis-

tical model with independent, normally distributed residual

errors of equal variance and vague priors (Appendix A).

Such a statistical model is defined by Eqs. (1) and (2) plus

following Eqs. (4) to (6). Let Normal(l,r2) denote some

Normal variate of expectation l and variance r2 and

Gamma(a, b) some Gamma variate of shape a and scale b.

Measured TOAD values are modeled as independent, nor-

mally distributed variates of expectation predicted TOAD

values and of variance r2s

TOADr;k � NormalðTOADr;k; r
2
sÞ; (4)

where r2s is the variance of the TOAD residual error. Vague

priors are assigned to the Cartesian coordinates of the whale

xk; yk; zk � Normalð0; 108Þ; (5)

and to the variance of the residual error

1=r2s � Gammað10ÿ3; 10ÿ3Þ: (6)

See Appendix A for a mathematical expression of the poste-

rior of this model. Relationships between model variables



are illustrated with a Directed Acyclic Graph (DAG, Fig. 1).

The full model is an extension of the standard model by

including a trajectory model, visual data, speed statistics,

and acceleration statistics.

C. Whale trajectory

The underwater movement of the whale is modeled as a

continuous series of segments of uniform linear motion and

of equal duration (Fig. 2). Let I be the number of segments,

DI¼ (tresurfÿ tdive)/I be the duration of the segments, and

ti ¼ tdive þ iDIði 2 f0; ::::; IgÞ. Let Mi ¼ ðxi; yi; ziÞ be the

location of the whale at time ti, and [MiMiþ1] be the seg-

ments which make up the modeled trajectory. With this

model, the location of the whale at time tk is Mk ¼
ðxk; yk; zkÞ with

xk ¼ xik þ
xikþ1 ÿ xik
tikþ1 ÿ tik

ðtk ÿ tikÞ; (7)

and similar formulas for yk and zk, where ik 2 f0;…; I ÿ 1g is

the index of the trajectory segment where the whale is located

at time tk. Predicted TOAD at time tk is still provided by Eqs.

(1) and (2) and the relationship between measured and pre-

dicted TOAD values is still given by Eq. (4). Relationships

between model variables are illustrated in Fig. 1. Free parame-

ters of the model are the Cartesian coordinates ðxi; yi; ziÞ as

well as the variance of the residual error r2s . A vague prior is

assigned to the Cartesian coordinates of the whale

xi; yi; zi � Normalð0; 108Þ; (8)

and a vague prior is assigned to the variance of the residual

error [Eq. (6)].

FIG. 1. DAG of the full model.

Frames indicate levels: Receptor (r[

{1,… ,R}), click ðk 2 f1;…;KgÞ,
and trajectory segment (i [ {0,… ,

I}). White rectangles: Latent varia-

bles; filled rectangles: observed

variables; circles: model components.

The standard model reduces to model

component 1. The standard model

connects whale coordinates ðxk; yk;
zkÞ, receptor coordinates ðxhr;k; yhr;k;
zhr;kÞ, and acoustic data TOADr,k to

each other. The full model is an

extension of the standard model by

adding a trajectory model (model

component 2), visual data (component

3), speed statistics (component 4), and

acceleration statistics (component 5).

FIG. 2. The whale movement is modeled as a series of segments of uniform

linear motion. The trajectory model is represented at two time steps, infini-

tesimal (full line, white and black dots) and at a larger time step (dashed

line, black dots only). At an infinitesimal time step, M
½j�
i ¼ ðx

½j�
i ; y

½j�
i ; z

½j�
i Þ;V

½j�
i

¼ ðdx
½j�
i =dt; dy

½j�
i =dt; dz

½j�
i =dtÞ and A

½j�
i ¼ ðd2x

½j�
i =dt

2; d2y
½j�
i =dt

2; d2z
½j�
i =dt

2Þ are

the location, the speed, and the acceleration of the whale at time t
½j�
i . At a

larger time step, Mi ¼ ðxi; yi; ziÞ is the location of the whale at time ti,

Vi¼ (dxi/dt, dyi/dt, dzi/dt) is the average speed of the whale on segment i,

and Aiþ1¼ (d2xiþ1/dt
2, d2yiþ1/dt

2, d2ziþ1/dt
2) is the acceleration of the whale

when passing from segment i to segment iþ 1. The modeled location of the

whale at click time tk by using the trajectory model with a non-infinitesimal

time step are also illustrated (Mk, gray circles). Mathematical relationships

between Mi;Vi;Ai;M
½j�
i ;V

½j�
i ;A

½j�
i are provided in Appendix C. The expression

of Mk is given in the text.



D. Visual data

Sperm whales are clearly visible and identifiable

when breathing (Whitehead, 2003, pp. 206–285). Let

ðxdive; ydive; 0Þ and ðxresurf ; yresurf ; 0Þ be the measured values

of the Cartesian coordinates of the whale at time tdive and tre-

surf. Deviations between predicted and measured values are

tolerated and are modeled as independent normally distrib-

uted errors of variance r2xy

xdive � Normalðx0; r
2
xyÞ; (9)

and similar formulas for ydive, xresurf, and yresurf. The pre-

dicted depths when diving and resurfacing are forced to be

exactly equal to zero, z0 ¼ 0 and zI ¼ 0.

E. Speed statistics

Sperm whales initiate and end dives by being silent and

by swimming substantially vertically (Watwood et al.,

2006). Let Vi¼ (Miþ1ÿMi)/DI be the average speed of the

whale on segment i (Fig. 2). The Cartesian coordinates of

Vi are denoted (dxi/dt, dyi/dt, dzi/dt) with dxi=dt ¼
ðxiþ1 ÿ xiÞ=DI (and similar formulas for dyi/dt and dzi/dt,

i [{0,… , Iÿ 1}). Let {0,… , istart ÿ 1} and {istop ÿ 1,… ,

I ÿ 1} be the index of segments while the whale is silent at

the beginning and at the end of the dive, respectively. The

horizontal speed of the whale for i 2 f0; :::; istart ÿ 1g [
fistop ÿ 1; :::; I ÿ 1g is modeled as independent, normally

distributed variates of expectation 0 and of variance r2t=DI

dxi

dt
;
dyi

dt
� Normalð0; r2t=DIÞ; (10)

where r2t is the variance of the horizontal speed of the whale

which would be measured by using a speed recording device

at a 1 s time step (see Appendix C).

F. Acceleration statistics

Sperm whale acceleration is limited due to hydrody-

namic drag (Miller et al., 2004). Let Ai¼ (Vi ÿ Viÿ1)/DI be

the acceleration of the whale when passing from segment

iÿ 1 to segment i (Fig. 2). The Cartesian coordinates of Ai

are noted ðd2xi=dt
2; d2yi=dt

2; d2zi=dt
2Þ with d2xi=dt

2 ¼

ðdxi=dtÿ dxiÿ1=dtÞ=DI (and similar formulas for d2yi=dt
2

and d2zi=dt
2; i 2 f1;…; I ÿ 1gÞ. The acceleration of the

whale is modeled as independent, normally distributed vari-

ates of expectation 0 and of variance r2a=DI

d2xi

dt2
;
d2yi

dt2
;
d2zi

dt2
� Normalð0; r2a=DIÞ; (11)

where r2a is the variance of the acceleration of the whale

which would be measured by using an acceleration recording

device at a 1 s time step (see Appendix C).

G. Dataset

The author compares the efficiency of the standard and

the full Bayesian methods with a simulated dataset. The

interest of using a simulated dataset is to have at one’s dis-

posal true values, and compare them to estimated values.

The author considers 48 simulated whale trajectories. An

example of a trajectory is illustrated in Figs. 3 and 4. The

whale dives at some arbitrary point (xdive¼ 500, ydive¼ 0m)

at tdive¼ 0, starts clicking at tstart¼ 2min, stops clicking at

tstop¼ 30min, and resurfaces at tresurf¼ 40min. Trajectories

are randomly generated in accordance with the autoregres-

sive model of Appendix C with r
v
¼ 0.1m/s, ra¼ 0.05m/s2,

and Dt¼ 1 s.

Sperm whale clicks are recorded on three hydrophones.

Hydrophones are initially located at (0, 0, ÿ30) m, (ÿ200, 0,

ÿ40) m, and (0, 200, ÿ50) m. All hydrophones drift North-

east at 0.1m/s. Both direct and surface-reflected source sig-

nals are assumed to be detected on the receptors, leading to a

virtual array of six hydrophones (Skarsoulis and Kalogera-

kis, 2005). The author investigates the consequences of the

variations of the quantity and the quality of the acoustic

dataset by considering two click rates as well as two noise

levels. Two series of predicted TOAD values are computed

for each trajectory, at a slow rate (1 click every DK¼ 30 s,

K¼ 57) and at a high rate (1 click every DK¼ 5 s, K¼ 337).

A white Gaussian noise of standard deviation rs¼ 0.1ms or

rs¼ 1ms is added to the predicted TOAD values, leading to

4 acoustical datasets for each trajectory. Furthermore, two

levels of trajectory resolution are compared by using the full

Bayesian model: Low-resolution trajectories, with DI¼ 60 s

segments (I¼ 40), and smoother trajectories, with DI¼ 10 s

segments (I¼ 240). Acoustic data at a slow click rate are

processed with the standard model and with the full model at

a low-resolution and acoustic data at a high click rate are

processed with the standard model and with the full model at

a high-resolution. As a summary, a total of 384 simulations

are carried out: 48 trajectories, 2 noise levels, 2 click rates,

and 2 models.

H. Software

Models are implemented in BUGS language by using

OpenBUGS, an open source version of WinBUGS (Ntzouf-

ras, 2009, pp. 1–492). The creation of input files for BUGS,

as well as the gathering of BUGS output files in order to

compute trajectory statistics and display, is achieved with R.

BUGS and R scripts are gathered within the open-source

software SBPLAsH version 2.0 (http://modtox.myftp.org/

software/sbplash). Users can provide input files and explore

simulation results through SBPLAsH graphical user inter-

face. SBPLAsH also creates Unix batch and portable batch

system scripts to perform parallel BUGS computations on a

UNIX desktop computer or a high performance computing

(HPC) resource. See Appendix B for more computational

details.

I. Model comparisons

Models are compared in terms of goodness-of-fit and

complexity (Appendix B) as well as accuracy and uncer-

tainty. The average absolute bias �Dx ¼
PK

k¼1 jxk ÿ x̂kj=K
(with similar formulas for �Dy and �Dz) is used as a proxy of

model accuracy, where x̂k denotes the estimate of xk. The

average standard deviation �Rx ¼
PK

k¼1 r̂x;k=K(with similar



FIG. 4. Whale xy coordinates. See legend

of Fig. 3.

FIG. 3. Whale depth. True value (black

line), point estimate (dark gray line), 95%

interval estimates (light gray polygon),

diving point (black square), and resurfac-

ing point (black triangle). Acoustic data

from 1 of the 48 whale trajectories at a

low noise level (rs¼ 0.1ms) is processed

by using the standard model (left) or the

full model (right) and by processing

clicks at a slow rate (top, DK¼ 30 s) or

high rate (bottom, DK¼ 5 s). Respective

xy-coordinate values are illustrated in

Fig. 4.



formulas for �Ry and �Rz) is used as a proxy of model uncer-

tainty, where r̂x;k denotes the estimate of the standard devia-

tion of the posterior of xk.

III. RESULTS

Simulation results are illustrated in Figs. 3 and 4, with

one of the 48 trajectories as an example, with acoustic data

at a low noise level (rs¼ 0.1ms). Simulation results for

other combinations of trajectory, noise level, and click rate

are provided as supplementary material. Accuracy and

uncertainty for each of the eight combinations of noise level,

click rate, and model are averaged over trajectories and are

provided in Table I.

The results show, in each case, that the full model is

more accurate and less uncertain than the standard model. At

a low noise level and by processing one click every

DK¼ 30 s, using the full model rather than the standard

model reduces bias (standard deviation) by a factor 1.9 (2.2).

Results of the standard model at a high noise level are

unhelpful (bias: 156m; standard deviation: 210m). A stand-

ard deviation of 210m corresponds to a 95% confidence

interval which is approximately 880m wide. At a high noise

level and by processing one click every DK¼ 30 s, using the

full model rather than the standard model reduces bias

(standard deviation) by a factor 5.3 (5.7). The processing of

a higher number of clicks does not improve localization

results by using the standard model. Results are improved

when using the full model. At a low noise level and by proc-

essing one click every DK¼ 5 s, using the full model rather

than the standard model reduces bias (standard deviation) by

a factor 4.2 (7.4). At a high noise level, bias (standard devia-

tion) is reduced by a factor 8.9 (13.6) and reach an accepta-

ble level (bias: 17.6m; standard deviation: 15.5m).

IV. DISCUSSION

Results show that processing TOAD data with the stand-

ard approach provides biased, uncertain outputs. Localiza-

tion results range from inaccurate and uncertain (at a low

noise level) to unhelpful (at a high noise level). The reasons

for that are (1) to process acoustic signals independently of

one another and (2) to discard additional, nonacoustic infor-

mation which could be of interest in the localization proce-

dure. The joint processing of acoustic data with a trajectory

model, the consideration of visual measurements, and the

use of prior knowledge on whale trajectory statistics has sig-

nificantly enhanced localization results. Localization results

by using the full model range from highly accurate at a low

noise level (bias: 6.1m; standard deviation: 4.5m) to helpful

at a high noise level (bias: 17.6m; standard deviation:

15.5m). OpenBUGS software offers a handy framework to

operate Bayesian models, SBPLAsH software provides a

user-friendly interface to operate the localization models,

and both softwares are open-source. Consequently, the

author encourages bioacousticians to use SBPLAsH and

explore the capabilities of Bayesian methods to locate sound

sources to a higher accuracy.

The software do not require any update at all to run with

a three-dimensional array design which would be different

from the one which has been used as an example. The reason

is that the number of receptors as well as the coordinates of

the receptors are provided as inputs to the software. While

SBPLAsH in its current version requires the coordinates of

the receptors to be known, a minor update would be required

for SBPLAsH to be operative with unknown receptor coordi-

nates. Indeed, TOADs contain information on the locations

of both the whale and the receptors. Spiesberger (2005) has

already shown that it is possible to compute reliable esti-

mates of source and receptor coordinates from TOAD data

with a Bayesian model. The minor update to SBPLAsH

would be to process receptor coordinates ðxhr;k; y
h
r;k; z

h
r;kÞ as

latent variables instead of measured variables. Receptor

coordinates would be inferred from TOAD data for the same

reasons as whale coordinates.

The method has been evaluated with simulated data.

The parameters of the autoregressive trajectory model (r2t
and r2a) need to be adjusted for the method to be operative in

the field. Adjusted values could be computed for sperm

whales by using past measurements from data loggers with

accelerometers (Johnson et al., 2009). The model could be

recalibrated and used to locate species of genera Hyperoo-

don, Mesoplodon, or Ziphius, whose underwater behaviors

are very close to a sperm whale’s (Baird et al., 2006; Hooker

and Baird, 1999). The method could also be used to locate

smaller toothed whales. In that case, the time resolution of

the model (DI and DK) should also be updated. At last, with

the same limitations as above, the method could be used

to locate other echolocating marine mammals such as Mir-

ounga species.

Users need to process raw acoustic recordings and com-

pute TOADs before running SBPLAsH. For that purpose,

users need to (1) detect clicks in ambient noise, (2) identify

clicks across receptors, and (3) compute TOAs and TOADs.

Several algorithms have been developed to detect transient

whale signals in ambient noise (Yack et al., 2010). The rate

of emission of toothed whale clicks is highly variable during

predation, which facilitates multi-path separation at a single

receptor (Baggenstoss, 2011) or identification of source sig-

nals across receptors. TOAs and TOADs can be computed

by using a cross-correlation or related method (Carter,

1987). Whereas the use of SBPLAsH at the current version

TABLE I. Bias ð�DÞ and standard deviation ð�RÞ of the standard and the full

models at two noise levels (rs¼ 0.1ms and rs¼ 1ms) and two click rates

(DK¼ 30 and DK¼ 5 s). Bias and standard deviation are averaged over tra-

jectories, clicks, and spatial dimensions. Ratios of averaged bias and stand-

ard deviations are also provided.

rs (ms) 0.1 1

Model DK (s) 30 5 30 5

Standard �Ds(m) 28.5 25.6 155.8 156.1

�RsðmÞ 34.9 33.5 211.2 209.7

Full �D f ðmÞ 15.2 6.1 29.2 17.6

�R f ðmÞ 16.1 4.5 37.2 15.5

standard
full

�Ds=�Df ðmÞ �1.9 �4.2 �5.3 �8.9

�Rs =�Rf ðmÞ �2.2 �7.4 �5.7 �13.6



to reconstruct the trajectory of isolated toothed whales is an

appealing perspective, the use of SBPLAsH is somewhat

premature to localize groups of individuals. Separation of

echolocation signals originating from groups of toothed

whales is a difficult task indeed. The interest of coupling

source separation and localization has already been demon-

strated (Bahl et al., 2004; Caudal and Glotin, 2008; Hirotsu

et al., 2008, 2010). To the authors’ point of view, Bayesian

modeling is a promising approach on this prospect, in view

of the superiority of the approach to handle source separation

(Rowe, 2002, pp. 169–206) and the capabilities of the

approach to achieve localization. Bayesian modeling, by

providing a flexible framework to statistically handle hetero-

geneous data, opens up new horizons for renewing passive

acoustics as a valuable tool to study the behavior of toothed

whales.

ACKNOWLEDGMENTS

This work was granted access to the HPC resources of

CALMIP under the allocation 2012-P1113. The author is grate-

ful to the anonymous referees for their valuable comments.

APPENDIX A: TOWARD A BAYESIAN EXPRESSION OF
THE STANDARD MODEL

Let M¼ (M1,… ,MK) and TOAD¼ (TOAD2,1,… ,

TOADR,K). Under the assumption of independent, normally

distributed residual errors of equal variance r2s , measured

and predicted TOAD values are related by Eq. (4). In that

case, the likelihood of the TOAD dataset is

pðTOADjM; r2sÞ ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffi

2pr2
n

s

p expðÿS2=2rsÞ; (A1)

where the maximum is reached by minimizing S2. MMSE

estimates are therefore equal to maximum likelihood (ML)

estimates under the assumption of independent, normally

distributed residual errors of equal variance. Moreover, ML

estimates are equal to maximum a posteriori (MAP) esti-

mates by choosing flat, uniformative priors. Indeed, by using

Bayes’ theorem, the prior p(M, r2) and the posterior p(M,

r2jTOAD) of the model parameters are related as follows:

pðM; r2jTOADÞpðTOADÞ ¼ pðTOADjM; r2ÞpðM; r2Þ:

(A2)

The posterior is proportional to the likelihood by using the

flat prior pðM; r2Þ ¼ 1, and as a corollary, ML and MAP

estimates are equal. Flat priors are not proper distributions,

however, and low-informative (also known as vague) distri-

butions should be used instead (Lambert et al., 2005). A

usual choice is to assign conjugate prior distributions with

large variance. The whale coordinates are assigned a vague

normal prior [Eq. (5)] and the residual variance is assigned a

vague inverse-gamma prior [Eq. (6)]. By using vague priors,

MAP and ML estimates are substantially equal. Finally,

EAP estimates are more easily obtainable by using Monte

Carlo Markov chain (MCMC) numerical methods than MAP

estimates. EAP estimates are equal to MAP estimates for

unimodal, symmetric posterior distributions. The latter prop-

erty can easily be checked from MCMC simulations. As a

conclusion, under the limitations provided above, EAP and

MMSE estimates are substantially equal to each other, and

the Bayesian expression of the standard model can be used

to compute approximate MMSE estimates.

APPENDIX B: COMPUTATIONAL DETAILS

BUGS simulates posterior parameter samples by using a

Markov chain Monte Carlo (MCMC) method (Ntzoufras,

2009). MCMC methods produce an ergodic chain of parame-

ter samples which stationary distribution is their posterior

(Robert and Casella, 2010, pp. 267–320). Consequences are

three-fold: first, some time is required for the MCMC

method to converge; second, some more time is required to

have enough samples to provide relevant posterior statistics;

and third, both latter assertions are true no matter which ini-

tial parameter value is chosen. An astute choice of initial

value can, however, reduce time to convergence and as a

result reduce overall computation time. Initial values were

chosen as follows: Initial values of the standard model are

xk¼ yk¼ 0 and zk¼ÿ300m (k [ {1,… , K}), estimated val-

ues of the standard model at a low resolution (for a given tra-

jectory and noise level) are used to initialize the full model

at a low-resolution (for the same trajectory and noise level),

and estimated values of the full model at a low-resolution

are used to initialize the full model at a high-resolution. Con-

vergence was unambiguous by inspection of the simulated

MCMC samples. The total number of simulated samples for

each run is provided in Table II, the first half was discarded

for convergence purposes. Subsequent parameter samples

are autocorrelated. Thinning (e.g., keep one sample every

1000) guided by the examination of the autocorrelation func-

tion of the parameter samples is a good option in order to

produce a series of independent samples and correctly set

the total number of MCMC iterations. Five hundred inde-

pendent samples were saved for each run. As an illustration,

106 samples were simulated by using the standard model

with rs¼ 0.1ms and DK¼ 5 s, the first 500 000 were dis-

carded, 1 sample every 1000 was kept among the 500 000

next samples, in order to produce 500 independent samples.

Simulation times are provided in Table II. Each simulation

was run on a single core of a 2.8 Ghz quad-core Nehalem

EX. Simulations were run on a HPC resource in order to pro-

cess trajectory data on 48 cores.

TABLE II. Total number of iterations and computation times of the standard

and full models at two noise levels (rs¼ 0.1ms and rs¼ 1ms) and two click

rates (DK¼ 30 and DK¼ 5 s).

rs (ms) 0.1 1

Model DK (s) 30 5 30 5

Standard iterations (�106) 0.5 1 1 2

time (h) 0.2 0.8 0.3 1.8

Full iterations (�106) 1 2 2 4

time (h) 0.8 11.0 1.8 21.0



The 500 independent samples of each run are used to

compute point, interval, and standard deviation estimates of

the model parameters. Reported point estimates are EAP

estimates and reported interval estimates are 2.5% and

97.5% posterior marginal quantiles. Point and interval esti-

mates of (xk, yk, zk) [and (xi, yi, zi) by using the full model]

are used to compute whale trajectories (Figs. 3 and 4). Point

and standard deviation estimates of (xk, yk, zk) are used to

compute model bias and variance (Table I). Posterior expec-

tation of the deviance statistics (denoted �D) is used as an

index of goodness-of-fit. The latter statistics are computed

by calculating the likelihood with respect to the TOAD

dataset [Eq. (A1)], before calculating the deviance (minus

2 times the log likelihood) and averaging over MCMC

samples. Models can be compared in term of goodness-

of-fit—the lower the deviance the better the fit—to the strict

limitation that compared indexes are computed by using the

exact same dataset. The four datasets which are simulated

for each trajectory—two different noise levels and two dif-

ferent click rates—are distinct. Model complexity (denoted

pD) is computed as described by Spiegelhalter et al. (2002),

which is a better representation of model complexity than a

manual count of free parameters. Averaged values of good-

ness-of-fit and complexity are provided in Table III.
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