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We report an experimental analysis of path and shape oscillations of an air bubble of
diameter d rising in water at high Reynolds number in a vertical Hele-Shaw cell of
width h. Liquid velocity perturbations induced by the relative movement have also been
investigated to analyze the coupling between the bubble motion and the wake dynamics.
The confinement ratio h/d is lower than unity so that the bubble is flattened in between
the walls of the cell. As the bubble diameter is increased, the Archimedes and the Bond
numbers increase within 10 6 Ar 6 104 and 6 × 10−3 6 Bo 6 140. Mean shapes
become more and more elongated. They first evolve from in-plane circles to ellipses, then
to complicated shapes without fore-aft symmetry and finally to semi-circular capped
bubbles. The scaling law Re = 0.5Ar is however valid for a large range of Ar, indicating
that the liquid films between the bubble and the walls do no contribute significantly
to the drag force exerted on the bubble. The coupling between wake dynamics, bubble
path and shape oscillations evolves and a succession of contrasted regimes of oscillations
is observed. The rectilinear bubble motion becomes unstable from a critical value Ar1
through an Hopf bifurcation while the bubble shape is still circular. The amplitude of path
oscillations first grows as Ar increases above Ar1 but then surprisingly decreases beyond a
second Archimedes number Ar2. This phenomenon, observed for steady ellipsoidal shape
with moderate eccentricity, can be explained by the rapid attenuation of bubble wakes
caused by the confinement. Shape oscillations around a significantly elongated mean
shape starts for Ar > Ar3. The wake structure progressively evolves due to changes in
the bubble shape. After the break-up of the fore-aft symmetry, a fourth regime involving
complicated shape oscillations is then observed for Ar > Ar4. Vortex shedding disappears
and unsteady attached vortices coupled to shape oscillations trigger path oscillations of
moderate amplitude. Path and shape oscillations finally decrease when Ar is further
increased. For Ar > Ar5, capped bubbles followed by a steady wake rise on a straight
path.



1. Introduction

It is well-known that a large bubble does not usually rise on a straight line but that
its velocity and shape may perform oscillations. In general, the dynamics involve the
coupling between the instability of the wake and the bubble degrees of freedom asso-
ciated to its translation, rotation and deformation. Due to the difficulty of measuring
or simulating an oscillating bubble, most studies have focused on the determination of
averaged characteristics: mean rise velocity and shape (Maxworthy (1996), Magnaudet
& Eames (2000)). In the last decade, three-dimensional high-speed imaging (Ellingsen &
Risso (2001); Shew et al.(2006)) and DNS (Mougin & Magnaudet (2002), Mougin & Mag-
naudet (2006)) have been used to investigate the unsteady motion of an oblate spheroidal
bubble of steady shape rising in an unbounded fluid. The cause of path oscillations is the
instability of the wake that develops in a series of symmetry breakdowns leading succes-
sively to zig-zag and ellipsoidal paths. Mougin & Magnaudet (2002) also revealed that
several types of transitions from straight to oscillatory trajectories may happen, the na-
ture of the bifurcation being highly dependent on the way shape eccentricity or Reynolds
number are varied around cross critical points. In their experiments, Lunde & Perkins
(1998) also demonstrated that some coupling between shape and path oscillations may
occur for freely rising ellipsoidal bubbles. Even when the path instability is primarily
excited by the wake, we still therefore have to explore how the shape oscillations respond
to the wake instability: What are the conditions of existence of shape oscillations? How
do they interact with vortex shedding and path oscillations? How is energy distributed
between path and shape oscillations? In the present study we investigate these questions
for high-Re bubbles confined between two plates, a flow configuration which is a two-
dimensional counterpart of the general problem of the motion of high-Re bubbles free to
move in an unbounded space.

Let us consider the general problem of a bubble of equivalent diameter d rising in
a vertical Hele-Shaw cell of width h filled with a liquid at rest (fig. 1-a). The non-
dimensionnal numbers that control the dynamics are the confinement ratio h/d, the
Archimedes number Ar =

√
gdd/ν and the Bond number Bo = ρgd2/σ (where d is

defined from the volume ϑ of the bubble by d =
√

4ϑ/(hπ), g is gravity acceleration, ν
the kinematic viscosity of the liquid, ρ its density and σ its surface tension). To discuss the
bubble dynamics it is also useful to consider the Reynolds number Re = Vbd/ν based on
the mean bubble velocity Vb. The analysis of Navier-Stokes equations describing the flow
around a bubble in the thin gap (h/d << 1 ) reveals the existence of two regimes. The
ratio of the magnitude of the inertial stress corresponding to the motion within the cell
plane to that of the stress in the transverse direction z is Re(h/d)2. The classic Hele-Shaw
regime corresponds to Re(h/d)2 << 1 and Re >> 1. In contrast, when Re(h/d)2 >> 1
and Re >> 1 the in-plane flow is equivalent to a two-dimensional high-Re flow, hereafter
referred to as the inertial regime. After the pioneering work of Taylor & Saffman (1959),
many studies have been devoted to the Hele-Shaw regime (see Maruvada & Park (1996),
and references therein). The present investigation focuses on the inertial regime.

The confinement has some features that alter the bubble dynamics: (i) thin liquid
films exist between the bubble and the walls, (ii) bubble deformation is easier along in-
plane directions than in the transverse direction so that the bubble degrees of freedom
are reduced, (iii) the wake of the bubble is submitted to shear stress at the wall. The
dynamics of a bubble in the plane of the cell however allows the study of the coupling
and the interplay between path and shape oscillations in regimes where inertia is impor-
tant, like in unconfined cases. Surprisingly, bubble oscillations in such a regime have not
been investigated in details. The mean bubble velocity and shape have been investigated



for very large bubbles (Collins (1965), Lazarek & Littman (1974), Bessler & Littman
(1987)). These studies focused on the description of the dynamics of these bubbles in the
potential flow regime, calculating their mean velocity and discussing the pressure distri-
bution in the wake. Bush & Eames (1998) experimentally investigated two-dimensional
bubbles confined between two plates to determine how the volume of liquid displaced
is related to added-mass. Kelley & Wu (1997) focused on the path instability, showing
that the critical Reynolds number for the appearance of the instability of the motion
increases when the confinement is stronger. But they only considered the case of bubbles
of fixed shape at low Bond numbers. In the present contribution, we investigate path and
shape oscillations of confined bubbles at large Reynolds number for a large range of flow
conditions.

The paper is organized as follows. Section 2 describes the experimental set-up, operat-
ing conditions and measurement methods. Section 3 presents the scaling laws obtained
for the mean shape and the mean velocity of the bubbles. Section 4 focuses on the wake
structure. Finally, section 5 describes bubble shape and path oscillations, which are ex-
cited by vortex shedding within the wake.

2. Experimental methods

A single air bubble is injected at the bottom of a vertical Hele-Shaw cell filled with
distilled water at ambient temperature. Except that we regularly renew the distilled
water, we do not take special care to avoid interface contamination. The cell consists of
two glass plates, 40 cm wide, 80 cm high and 8 mm thick, separated by a gap of thickness
h =1mm (figure 1-a). We can vary the volume ϑ of the bubble in the range from 0.5 to
700 mm3 using a syringe equipped with various capillary needles of inner diameters from
0.14 to 0.25 mm. This allows to explore a large range of Archimedes numbers (10 6

Ar 6 15.103). Since we use a single couple of fluids, the Bond number is not independent
of the Archimedes number and evolves as Bo ≈ Ar4/3 (Fig. 2). It becomes greater
than unity from Ar ≈ 440, so that bubbles of increasing size become more and more
deformable, and reaches 140 for the largest bubbles. The ratio of confinement decreases
with the Archimedes number: h/d ≈ Ar−2/3. For h/d smaller than unity (Ar >100), the
bubble deforms and thin liquid films are formed between the bubble interface and the
cell walls. When h/d < 0.5 (Ar > 280), the bubble becomes strongly flattened and a two-
dimensional description of the flow becomes pertinent. The liquid and bubble motions
are observed in a window located in the central region of the cell, far from the injection
and from the upper free surface. The size of this measurement window is varied between
4.3cm×3.4cm and 12.8cm×10.2cm to adapt the field of view to the size of the bubble.
The width of the cell was checked by laser beam refraction and proved to be constant
over the whole measurement window.
The liquid velocity a priori depends on the three space coordinates x, y, z, and time

t. However, except in the near vicinity of its interface, the liquid velocity perturbation
induced by the motion of a bubble has no component perpendicular to the walls. We
developed a specific experimental methodology to measure by means of Particle Image
Velocimetry (PIV) the liquid velocity, ~u(x, y, t) = u~ex + v~ey, averaged over the gap
(Roudet et al. (2011)). The present PIV method uses laser lighting of the whole cell
volume and a front camera with a depth of field larger than the gap. Neutrally-buoyant
particles made of encapsulated B-Rhodamine are used as fluorescent tracers. Their size
is far smaller than the width of the gap. As the whole depth of the flow is illuminated,
all the tracers contribute to PIV measurements. Their spatial distribution across the



gap therefore strongly determines their contribution to the velocity estimated by PIV.
A non uniform velocity in the z-direction could cause inertial migration of the tracers
due to the effect described by Segré & Silberberg (1962). But we have checked that no
significant tracer migration occurred here during data acquisition and proved that PIV
measurements correspond to the liquid averaged over the gap (Roudet et al. (2011)).
We used a Quantel multipulse Nd:YAG laser of 2×200mJ, a PCO 12-bits CCD camera
(1280×1024 pixels) and the software PIVIS developed at IMFT, which is based on an
iterative multi-pass PIV algorithm. We used interrogation windows of size 32×32 pixels
or 64×64 pixels with an overlapping of 50%. Their size lpiv is about 3 or 6mm. In the
vicinity of a bubble, measurements obtained nearer than lpiv to the bubble interface have
been discarded because of the noise induced by reflexion and bias in PIV estimation due
to the presence of a moving object different from the tracers in the interrogation window.

Bubbles evolutions are filmed at 500 frames per second by means of a high-speed
camera (Photron APX) with 1280×1024 pixels. The size of the measurement window
allows us to observe at least one or two periods of their oscillatory motion. The cell is
uniformly illuminated from behind with a stable constant light (Nanolight). The direction
of the light is perpendicular to the cell so that the bubble frontier appears clearly as a fine
dark line easy to detect (figure 3). A dedicated image analysis algorithm, using a threshold
method applied to grey levels, detects the pixels corresponding to the bubble contour
projected onto the plane of the cell. From the contour we obtain a description of the in-
plane motion and shape and determine the time evolutions of the bubble characteristics
(see figure1-b): coordinates xb(t), yb(t) and velocities Vx(t), Vy(t) of its centre, projected
area S, aspect ratio λ(t) = L/l between the major axis L and the minor axis l of the
ellipse having the same moments of inertia, angle βn(t) between the minor axis and the
x-direction and angle βv(t) between bubble velocity and x-direction. In the following, the
bubble is characterized by its averaged equivalent two-dimensional diameter d =

√

4S/π.
The relative error in the diameter measurement is less than 4%.

For all diameters, the bubble behavior can be described by oscillations of shape and
velocity around their mean value (Figure 4) at a single dominant frequency. These oscil-
lations can be reasonably approximated by sine functions, even if secondary harmonics
with small amplitudes may appear at largest Ar. The bubble interface evolution is thus
described by fitting the following harmonic functions to the measured signals:

Vx = Vb + Ṽxcos(2ωt+ φvx), (2.1)

Vy = Ṽycos(ωt+ φvy), (2.2)

λ = λm + λ̃cos(2ωt+ φλ), (2.3)

βn = β̃ncos(ωt+ φβn
), (2.4)

βv = β̃vcos(ωt+ φβv
). (2.5)

where Vb is the mean rise velocity, λm characterizes the mean shape of the bubble around
which oscillations may occur, ω is the dominant frequency, and the amplitudes (Ṽx, Ṽy,

λ̃, β̃n, β̃v) and the phases (φvx, φvy, φλ, φβn
, φβv

) completely describe the dominant
harmonic oscillation.



3. Evolution of mean shape and velocity with Archimedes number

As illustrated in Figure 3 the shape of the bubble evolves markedly when the gas
volume is varied. The mean shape aspect ratio λm is reported in Figure 5 as a function
of Ar. Some instantaneous bubble contours are also reported to illustrate the gradual
evolution of the shape. For Ar 6 600, λm is unity since Bo being smaller than unity
(Fig. 2) surface tension is strong enough to keep the shape circular. For larger Ar, λm

increases as bubbles become elongated and flattened under the action of gravity. Up to
Ar ≈ 3.103, λm evolves but the mean shape remains an ellipse. AboveAr ≈ 3.103, bubbles
adopt more and more complex shapes. The fore-haft symetry is lost for Ar > 3 − 4.103

as the rear of the bubble remains concave along an entire oscillation. When Ar > 7.103,
λm stops increasing and remains equal to 3. A morphological change has happened,
characterized by circular capped bubbles, which have already been observed at high Bo
by Collins (1965), Lazarek & Littman (1974) and Bessler & Littman (1987). For any Ar,
the aperture angle γ at the rear part of the capped bubbles is nearly equal to 5π/8 in
agreement with the estimation of Collins (1965). In the present experimental conditions,
we could not generate stable bubbles for equivalent diameters greater than d ≈3.5 cm
because such big bubbles broke up.
Varying the Archimedes number allows us to explore a great variety of regimes. The

succession of in-plane shapes is similar to that observed for bubbles free to evolve in
the three-dimensional unconfined space. It is remarkable that the scaling law giving the
velocity of confined bubbles does not depend upon the shape for all the Archimedes
numbers that have been explored. As visible in figure 2, the bubble mean velocity for
Ar < 15.103 is well described by the simple law:

Re = 0.5Ar. (3.1)

This has a major consequence on the role of the liquid films in the bubble dynamics. The
average balance of the forces acting on a bubble in the x-direction can be written

ρg
πd2

4
h =

1

2
ρCDV 2

b dh+ 2ξµVb/hfSf , (3.2)

with buoyancy on the l.h.s, and on the r.h.s. the drag force exerted by the in-plane
motion around the free edge of the bubble plus that exerted by the liquid films. CD is
the drag coefficient, Sf ≈ πd2/4 the surface of the bubble in contact with a liquid film
and hf the width of the film. On an interface that is free of contaminants, a zero shear-
stress boundary condition applies so that the liquid in the films remains almost at rest
and does not exert any significant force on the bubble (ξ ≈ 0). In contrast, contaminated
interfaces may be rigidified and a no-slip boundary condition then apply on them. A
Couette flow then develops in the films which causes a drag force on the bubble (ξ = 1).
As we do not use ultra-purified water, partial interface contamination probably exists.
This implies that viscous shear stress is non zero in the films (0 < ξ < 1). Actually,
the force balance reduces to CD = 2π (3.1) which means that the contribution to the
drag due to the films is negligible compared to that caused by the flow surrounding the
bubble.
We observe a deviation from (3.1) for the smallest bubbles (Ar < 300) because their

motion is still sensitive to three-dimensional effects. We also note for the largest bubbles
(Ar > 6.103), that a better fit is given by Re = 0.42Ar, which corresponds to a systematic
relative difference of about 8% with (3.1). Collins (1965) showed that the mean velocity
of large two-dimensional bubbles is given by Vb = 0.5

√
grC , where rC is the radius of

curvature at the front stagnation point. This scaling is obtained by assuming that the in-
plane shape of the bubbles near the stagnation point is well approximated by a circle and



Author Ar Bo h/d K k

Collins (1965) 3900 18 0.55 0.3∗∗ 0.545 ∗

Bessler & Littman (1987) 500 to 36.103 460 to 520 0.25 0.71∗ 0.47∗∗

Present work 6.103 to 15.103 30 to 140 0.06 to 0.03 0.42 0.43= 0.42(1.06)1/2

Table 1. Coefficients of the scaling laws for the velocity of 2D semi-circular capped bubbles
at high Ar given in the literature. Coefficients are defined by: K = Vb/

√
gd and k = Vb/

√
grC .

The values ∗ are directly reported from the measurements, the values ∗∗ are obtained as-
suming that for semi-circular caps d/rC is related to the measured aperture angles γ by

d/rC = (4/π(γ/2− sin(γ)))1/2

that the flow may be considered potential in this region. For the present largest bubbles,
d/rC ≈ 1.06, which leads to the theoretical prediction: Re = 0.485 Ar. Therefore, even if
the curvature at the stagnation point may explain for a part the decrease of the slope of
the curve Re(Ar), it is not sufficient to recover the experimental result. As also mentioned
by Collins (1965), a confinement in the y-direction can also reduce the velocity of large
two-dimensional bubbles, the dimension of which is not negligible compare to that of
the cell. It is however never the case in the present configuration. As shown in Table 1,
even at very large Ar for which bubbles are expected to fulfill the assumptions of the
theoretical relation derived by Collins (1965), the experimental results published in the
literature are scattered and highly sensitive to the Bo and h/d.

To summarize, an important conclusion is obtained about the rise velocity of confined
bubbles: for all Reynolds numbers in the range from 150 to 6× 103, the drag coefficient
is constant although bubble size and shape vary significantly. This result contrasts with
unconfined bubble for which such a behavior is only observed for spherical capped bubbles
at large Bo.

4. Velocity perturbation induced in the liquid

The liquid velocity averaged over the gap ~u(x, y, t) has been explored by PIV for the
whole range of Archimedes number. Instantaneous fields of ~u(x, y, t) superimposed to its
vorticity Ωz are plotted in figures 6 to 9 for 2006 Ar 613700. For all these cases, a strong
perturbation develops in the wake of the bubble, the dynamics of which evolves strongly
as Ar increases. From Ar ≈ 200 to 3 × 103, periodic vortex shedding is observed as
illustrated in figures 6 and 7. For 2006 Ar 6 700, figure 6 shows that the bubbles are not
deformed and that, once released, vortices evolve in a vanishing vortex street. As bubbles
elongate, the shape of the vortices that are released becomes more and more elongated
ellipses, as illustrated by the case Ar =1500 (figure 7). The changes in the vortex shape
is related to λm by the mechanism responsible for their generation. Vorticity is produced
by the fluid rotation around the curved bubble interface and is proportional to both the
magnitude of the curvature and the bubble velocity (Batchelor (1990)). The maximum
curvature of elongated bubbles is observed near their equator and its magnitude scales
as λ0.5

m /d. The general evolution of the vorticity dynamics when further increasing Ar is
revealed by the differences between the instantaneous vorticity fields of cases at Ar =1500
and 2950. At Ar =1500, vortices are released downstream of the bubble, are distant from



each others in the transverse direction and, adopt noticeable inclinations with respect to
the x-axis. In contrast, at Ar =2950, they are located close to the bubble, are elongated
in the longitudinal direction and, rather close to each others. They are still unsteady, but
the trailing vorticity is no longer well organized in detached vortex structures. Except
in the region near the bubble, downstream velocities are no longer present in the wake.
This leads to a global oscillating wake consisting of two unsteady vortices attached at
the equator of the bubble and trailed by a column of ascending fluid entrained by the
bubble. This is also observed for cases at Ar =3550 and 4750, which correspond to
highly deformable elongated bubbles (figure 8). In this regime, due to the oscillations
of the shape and of the inclination of the bubble, a vortex may be generated nearly
upstream of the equator as shown for case Ar =3550 (Fig. 8). The magnitude of the
non-dimensional vorticity also increases with Ar up to Ar ≈ 3.103, as it can be remarked
from the evolution of the scales of Ωz from figures 6 to 8. For case Ar =4750, a decrease
of the non-dimensional vorticity is observed. We shall see later that this is a signature of
a change in the oscillating regimes. Then, for the large capped bubbles, the normalized
vorticity increases again with Ar (figure 9). The most striking result is that, in between
Ar =6950 and 13700, the wake structure changes from non-stationary to stationary. In
figure 9 at Ar =6950, a small instantaneous asymmetry of the near wake is observed,
which reveals a slight transverse oscillation of the wake. But at Ar =13700, the wake
has recovered a stationary state. The instantaneous velocity field is symmetrical, with
an attached recirculating wake extending up to x/d ≈-1.4 in the longitudinal direction.

Due to confinement, the dynamics of the vorticity produced at the interface presents
peculiar features. The vorticity Ωz can be neither stretched nor tilted, but while it is
transported by convection and by diffusion in in-plane directions, it is also attenuated by
the shear stresses exerted at walls. The temporal evolution of the vortices has been studied
in the range 2006 Ar 6 2.103 where vortex shedding occurs. We define individual vortices
as simply connected regions of vorticity exceeding the ambient noise by a threshold equal
to one fourth of the maximum vorticity in this region. Their size dΩ is defined from their
area and their averaged vorticity Ωm is calculated over the extension of each individual
vortex. In figures 10-a and 10-b, these parameters are reported in non-dimensional form:
Ωm is normalized by Vb/d and dΩ by d/λ0.5

m for accounting for the bubble shape. The
vorticity vanishes very rapidly behind the bubble passage, in a time independent of Ar
related to the diffusive time scale τ = h2/ν. This scaling clearly shows that the rapid
attenuation of the vorticity is strongly related to the confinement in z-direction. It is
not due to an in-plane diffusion of the vorticity as shown by the constant length scale
of the vortex achieved during the attenuation process after a short transient (figures 10-
b). The experimental law can be approximated by Ωm(t)d/Vb ≈ 2exp(−6tν/h2). Such
an exponential decay confirms that the shear exerted at walls on the liquid flow is the
dominant mechanism driving wake attenuation. The evolution of Ωm(t) is predicted by
the momentum balance averaged over the gap. Assuming that the velocity profile in the
z-direction is parabolic and neglecting the in-plane diffusion, the momentum balance
writes

ρ
∂~u

∂t
+

6

5
ρ(~u.~∇)~u = −~∇P − 12µ

h2
~u. (4.1)

The last term, which is the drag force contribution caused by wall friction, is similar
to the term introduced by Gondret & Rabaud (1997). Taking 6/5 ≈ 1, the transport
equation of Ωz is deduced easily,

dΩz

dt
= −12ν

h2
Ωz, (4.2)



the solution of which is Ωz = Ωz(0)exp(−12tν/h2). The difference between the rates of
decay of this solution and that of the experimental law is due to the fact that a parabolic
profile has not enough time to develop during the attenuation process. A more rigorous
calculation would require to take into account the development of the wall boundary
layers during the vortex attenuation. The present analysis is however sufficient to ex-
plain the rapid attenuation of the downstream vorticity observed for 2006 Ar 6 2.103

(figure 10-a).

Figure 11 shows the evolution of the normalized longitudinal liquid velocity u(x, 0)/Vb

along the symmetry axis of two large bubbles at Ar =6950 and 13700, respectively. (Note
that x =0 is the bubble centre). Upstream of the bubble (x >0), the position is normalized
by the bubble diameter. Since both Re and Re(h/d)2 are large, the velocity perturba-
tion in front of the bubble is in excellent agreement with the potential flow around a
cylinder of radius equal to the bubble radius of curvature at the upstream stagnation
point (continuous dark and grey lines). Downstream of the bubble (x <0), the position
is normalized by the viscous length, Vbh

2/ν. In the recirculating wake, located approx-
imatively in the region where

∣

∣xν/(Vbh
2)
∣

∣ < 0.16 in both cases, the velocity is greater
than Vb. At the rear of the recirculating wake (−0.4 6 xν/(Vbh

2) 6 −0.16), the decay
of the velocity perturbation follows an exponential law, u/Vb = exp(−10xν/(Vbh

2)). The
viscous length scale is the one that allows to obtain a decay of u/Vb that is independent
of the Archimedes. Farther in the wake, the decrease of the velocity defect turns out to
depend again on Ar. The velocity decrease is still exponential, but the slope varies with
Ar. This longitudinal evolution is linked to the pressure evolution in the wake. Measure-
ments of the pressure field behind capped bubbles by Bessler & Littman (1987) at high
Reynolds numbers (with Re close to 4.103 but for larger values of Bo and h/d than in our
study) showed the existence of a region of low pressure at the rear of the bubble caused
by the the attached vortices. Along the axis of symmetry of the bubble, they found a
negligible pressure gradient in the region −4 6 x/d 6 −1 and a strong positive one in
the region −6 6 x/d 6 −4, which allows to recover the pressure of the unperturbed
flow. In our experiment, the location of the slope change (xν/(Vbh

2) ≈0.4) corresponds
to x/d ≈4 and 3.2 at Ar =6950 and 13700, respectively. We can discuss the decay of the
liquid velocity u in a frame moving with the bubble from the x-momentum balance on
the axis of symmetry of the wake,

6

5
ρVb

∂u

∂x
= −∂P

∂x
− 12µ

h2
u, (4.3)

In the regions where the longitudinal pressure variation can be neglected, the velocity
predicted by Eq. (4.3) is u/Vb = exp(−10xν/(Vbh

2)). It is in agreement with our exper-
imental observations in the region −0.4 6 xν/(Vbh

2) 6 −0.16 where Bessler & Littman
(1987) found a constant pressure.
Farther downstream, the wake is so attenuated that the longitudinal momentum bal-

ance on the axis (Eq. 4.3) reduces to an equilibrium between the pressure gradient im-
posed by the attached vortices and the shear stress at walls. In this region, the pressure
coefficient measured by Bessler & Littman (1987) increases so rapidly along the axis that
it is possible to fit its evolution by an exponential law, Cp = (P − P∞)/(1/2ρV 2

b ) ≈
−1.8+ exp((x− 3αd)/(3.5αd)), where α is the ratio between the horizontal half-width of
the bubble and its diameter. Injecting this pressure gradient into the momentum balance
(4.3) and neglecting inertia leads to

u

Vb
=

Vbh
2

24ν

1

3.5αd
exp((x− 3αd)/(3.5αd)). (4.4)



With such a rapid recovery of the external pressure, an exponential decrease of the
velocity is still predicted, but its is lower than in the previous region. This is in remarkable
agreement with the behavior observed at Ar =13700 for xν/(Vbh

2) 6-0.4 (Fig. 11). At
Ar=6950, the predicted evolution is less satisfactory, but the simplified balance between
a dominant pressure gradient and the shear stress at the walls explains the enhancement
of the rate of decrease.
For Ar =6950, figure 12 reports transverse profiles of the liquid velocities u and v

normalized by Uaxis(x) = u(x, y = 0) at several longitudinal locations in the wake
(−3.21 6 x/d 6 −1.06). In the vicinity of the bubble (x/d > −2), the transverse profile
of u/Uaxis does not vary with x in the central region of the wake (|y/d| 6 0.8) where the
fluid is entrained by the rising bubble. In contrast, in the external region (|y/d| > 0.8),
negative values of u are observed. For x/d > −2, the profiles of u/Uaxis and v/Uaxis still
evolve with the distance x/d, which is the signature of the two attached vortices (fig. 9).
Outside the attached wake (x/d 6 −2.4), both velocity profiles of u/Uaxis and v/Uaxis

become invariant with x. This invariance is observed beyond the limit of the first region
of exponential decrease of Uaxis (x/d > −5.6). The invariance of the profiles of u/Uaxis

as a function of y/d is a clear indication that momentum diffusion in the plane (x, y)
is negligible. Considering the invariant distribution u/Uaxis(y/d), two transverse regions
can be distinguished: (1) a central region (|y/d| 6 0.65) where the longitudinal velocity
profile is unchanged as compared to that observed for x/d > −2; (2) an external region
(|y/d| > 0.65) where it is a linear function of y/d. The longitudinal velocity u vanishes
near |y/d| ≈ 1.5, while the transverse velocity v remains constant and equal to 0.4Uaxis

in this external region.
The wakes of confined bubbles are strongly influenced by the shapes of the interface

and by the shear stress exerted at the walls. Even if exact transitions were difficult to
determine, vortex shedding or unsteady trailing vorticity is observed for Ar 6 7×103 -104,
and stationary wakes for greater Archimedes numbers. In all cases, wakes are attenuated
by the confinement and decay very rapidly after bubbles passages. Next section describes
the corresponding regimes exhibited by the bubble dynamics.

5. Instability of the bubble motion

The geometrical confinement constrains the path and the deformation of the bubble
to in-plane motions. The four degrees of freedom associated to translation, rotation and
deformation still permit, however, a great variety of contrasted regimes of bubble dy-
namics. Figure 13 illustrates these regimes. Successive instantaneous bubble shapes are
plotted along their trajectory for different Archimedes numbers in the range from 102

to 18 × 103. At Ar =105, the shape of the bubble is circular and the bubble rises at
constant velocity on a straight line (fig. 13-a). At Ar = 450 and 1130, ellipsoidal bubbles
with negligible shape oscillations show sinusoidal trajectories (fig. 13-b and c). Then, for
higher Ar, shape oscillations add themselves to path oscillations (fig. 13-d and e). In
this regime, instantaneous shapes are quite elongated. At Ar =2540, the bubble shape
oscillates around an ellipse that can be distinguished at specific phases of the oscillation.
At Ar =4560, the bubble oscillates with its rear part staying concave all along the os-
cillation. This loss of fore-haft symmetry is an important feature that happens around
Ar ≈ 3×103−4×103. A region of concave shape curvature is observed at the front part
of the bubble when the bubble reaches the extreme transverse positions along its path.
The location of this concave curvature moves from the right to the left side in phase
with the oscillation of the displacement. Increasing further Ar leads to a regime with
strong and complex shape oscillations (fig. 13-f) where two moving regions of concave



shape are always present at the front of the bubble, and where the rear interface remains
concave. In this regime the transverse elongation oscillates with a large amplitude. This
complex regime is followed by a radical change in the motion. At Ar =9140, the ampli-
tudes of path and shape oscillations are strongly attenuated (fig. 13-g). There still exist
two points along the front interface where the curvature changes of sign, but the location
of these points is stabilized. At higher Archimedes number, oscillations have completely
disappeared (see Ar =18400): the bubble adopts a semi-circular stationary shape and
a constant velocity (fig. 13-h). The general features of these successive regimes are in
qualitative agreement with the description given by Bush & Eames (1998).

5.1. Coupled oscillations of path and shape excited by the wake

For any Archimedes number, the parameters Vx(t), Vy(t), βv(t), βn(t) and λ(t) that
describe translation, rotation and deformation of the bubble are either steady or peri-
odic with all the same frequency (Fig. 4). The Strouhal number is defined as the non-
dimensional frequency of the oscillations, St = ωd/Vb. Its evolution with Ar is plotted
in figure 14. It turns out that there is no oscillation below a critical Archimedes number
in between 105 and 128, let say Ar1 ≈ 100, so that the Strouhal number is equal to
zero below this threshold. Above a value denoted Ar5 that is around 104, oscillations
also completely vanish because the wakes of the circular capped bubbles are stationary
(Fig. 9). Some other values of Ar corresponding to regime transitions are also reported
on figure 14. They are not visible on the evolution of the frequency but will appear from
those of the amplitudes of the oscillations. In the vicinity of Ar1, the Bond number is
low, the in-plane shape is circular and there is no shape oscillation. The instability of the
bubble motion results from that of the wake, which is characterized by regular vortex
shedding (Fig. 6 for Ar =200). The transition between steady and oscillatory motions
appears in a regime where the confinement ratio h/d is of order unity, which means that
the three-dimensional flow induced in the vicinity of the bubbles may still have some in-
fluence on the bubble dynamics. The value of Ar1 is thus expected to depend on Bo and
h/d. Kelley & Wu (1997) found that Ar1 increases from 226 to 332 when h/d decreases
from 0.621 to 0.362. The present value of Ar1 found for h/d ≈ 1 is therefore consistent
with their measurements.

For bubbles of circular or ellipsoidal shape (Ar 61500), the Strouhal number increases
up to unity and then reaches a plateau at Ar ≈600, indicating that vortex shedding
is the cause of bubble path oscillations. The initial increase of St is in agreement with
common observations around the onset of the wake instability that develops behind a
fixed cylinder as well as behind confined bubbles for various values of h/d (figure 14).

For Ar > 1500, the Strouhal number increases rapidly with Ar to reach approximately
3 at Ar ≈ 104. The increase of St is controlled by the increase of the mean shape ratio λm.
Two different unsteady regimes are successively observed. For Ar 6 3× 103 − 3.5× 103,
a von Karmán street is present behind the bubbles (Fig. 7). For larger Ar, attached
vortices are unsteady but the released vorticity is no longer organized in a von Karmán
vortex street (see figure 8). The time-scale of shape oscillations, τS ≈

√

ρd3/σ, becomes
of the same order of magnitude as the period of wake fluctuations. This can promote
collaborative action of interface and vorticity dynamics so that vorticity may be enhanced
by interface oscillations as observed in figure 8 at Ar =3550.

For all considered Ar, path, wake and shape oscillations are synchronized, a single
frequency being observed for all parameters, even for highly deformable bubbles.



5.2. Overview of the various regimes of oscillations

Once path instability has appeared (Ar > Ar1), its development can be discussed by con-
sidering the evolutions of the amplitudes and the phase differences of all the parameters
which are plotted as a function of Ar in figure 15.

At first, we notice that in the range of Ar where oscillations exist (Ar1 6 Ar 6

Ar5), the amplitudes of the different degrees of freedom do not evolve monotonically.
We have defined several values of Archimedes numbers limiting four different regimes
of oscillations. The evolution of the amplitudes of the velocity oscillations (figure 15.a)
indeed reveals that for Ar > Ar1 the value of Ṽi/Vb (i=x or y) increases until Ar2 ≈
600. Then, for Ar 6 Ar3 ≈ 1500, this amplitude decreases. It is then nearly constant
in the range Ar3 6 Ar 6 Ar4 ≈ 3500. The last oscillating regime is associated to a
final attenuation of the amplitude Ṽi/Vb when Ar increases until Ar5. In unconfined
situation, the linear growth of the wake instability is generally followed by a non-linear
saturation. For confined bubbles, a complex succession of amplifications and attenuations
is observed, indicating that both changes in mean shape and confinement have major
effects on the dynamics of the instability. The inspection of λ̃ and β̃n show transitions
for the same values of Ar as Ṽi/Vb, whereas their evolutions within each regime are
different (figures 15.b, 15.c and 15.d). The concordance of the transitions for all the
parameters plotted in figure 15 confirms the strong coupling between all the degrees of
freedom of the bubble. In the following, the dominant mechanisms for each regime are
discussed by considering the effect of confinement and the evolution of the bubble shape.

5.3. Discussion of the dominant mechanisms

Regime of initial instability growth: Ar1 6 Ar 6 Ar2.
The mean shape aspect ratio λm remains close to unity (Fig. 5) and there is no shape

oscillation (λ̃ =0, Fig. 15.b) because surface tension is sufficient to keep the in-plane
shape nearly-circular (Bo < 1). For Ar from 100 to 600, the shape evolves from a circle
to an ellipsoid with small eccentricity (Fig. 13). As Ar increases beyond Ar1, velocity
and angular amplitudes Ṽx/Vb, Ṽy/Vb, β̃v and β̃n increase suddenly with Ar. Through
this first regime of oscillations, the ratio h/d decreases from 1 to 0.3. To discuss the roles
of h/d and Ar in the development of the initial instability, it is interesting to compare
our results to those of Kelley & Wu (1997) since our confinement ratios are, forAr >200,
similar to theirs. Their experiment suggested that the first path instability corresponds
to an Hopf bifurcation when Ar is increased at constant h/d. When h/d is decreased,
the critical value ArC they found increases, while the growth rate of the amplitude of
the y-displacement is given by Ã/d ≈ C

√

Ar −ArC(h/d), with a factor C ≈ 0.0216 that
does not depend significantly on h/d. The evolution of the amplitudes with Ar that we
observed is in good agreement with their measurements. This can be seen in figure 15.a
where our data closely follow the curve Ṽy/Vb ≈ C

√
0.5St

√
Ar −ArC , which is identical

to the above relation for velocity oscillations (represented by the continuous black line
for St=1). This confirms the small influence of h/d on the relationship between Ṽy/Vb

and Ar−ArC . The results are also consistent with the existence of an Hopf bifurcation.
Figures 15.c and 15.d reveal that both angular parameters βv(t) and βn(t) oscillate with
the same phase and the same amplitude. This means that the bubble keeps a constant
orientation relative to the trajectory, both velocity vector and minor axis of the bubble
being always aligned.
For these nearly circular confined bubbles, the origin of the path instability is not clear.

It is worth recalling that the wake of an unconfined bubble with a clean interface remains
stable whatever the value of Re provided the shape is spherical. Following this argument,
Kelley & Wu (1997) conjectured that the instability of circular confined bubbles were



caused by interface contamination. It can hardly be the case here since the scaling of the
drag force indicates that the interface is not immobilized by contamination. Moreover,
the bubbles being circular near the onset of path instability, the vorticity production
at interface is not sufficient to generate wake instability. The production and transport
of vorticity, which are modified by the confinement, lead to an original mechanism of
instability, the exact nature of which still remains an open question.

Regime of attenuation of the first instability: Ar2 6 Ar 6 Ar3.
For Ar > Ar2, an attenuation of the amplitudes of velocity and angular oscillations is

observed. The transition from the previous regime to this one appears progressively,
with smooth variations of the amplitudes of all the oscillations with Ar. Whatever
the Archimedes number, the bubble shape remains an ellipse of moderate eccentricity
(1 6 λm 6 1.3, Fig. 5) and shape oscillations remains small (λ̃ 610%, Fig.15.b). There is
still no phase difference between βv(t) and βn(t), but their amplitudes differ since β̃v is
lower than β̃n. The attenuation of path oscillations is the striking point of this regime. It
is related to the strong vorticity attenuation caused by the wall friction, which happens
with a constant time scale τv ≈ h2/6ν (Fig. 10). The Strouhal number is nearly constant
and equal to unity, so that the period of the vortex shedding increases as ω−1 ≈ d1/2. The
life-time τv of the vortices thus becomes shorter and shorter compared to the period of
vortex detachment, which could explain the decrease of the amplitudes of the oscillations.

Regime of elongated and deformable ellipsoidal bubbles: Ar3 6 Ar 6 Ar4
The transition at Ar3 occurs when the Bond number is already quite high (Bo ≈ 5)

and is characterized by the sudden appearance of both an important mean deformation
and significant shape oscillations (Fig. 5 and 15.b). The discontinuity observed in the
evolution of λ̃(Ar) suggests the existence of a bifurcation controlled by the Bond number.
The shape oscillations induced by the pressure oscillations in the wake remain for all
regimes until Ar5. For Ar3 < Ar < Ar4, the mean shape remains an elongated ellipse,
with an eccentricity that varies with Ar (1.5 < λm < 2.5, Fig. 5). Considering λm

as an additional control parameter, it is interesting to examine how the oscillations
are influenced by mean bubble deformation. First, from comparison of figures 5 and
14, it is evident that the Strouhal number increases with λm. The Strouhal number
is approximately given by 0.85

√
λm. It is interesting to notice that this scaling law is

similar to that observed for solid axisymmetric bodies with various aspect ratios that are
free to move in a liquid at rest (Fernandes et al.(2007)). This similarity points out the
major role of the aspect ratio in the dynamics of bodies that are free to move. Under
data scattering, the non-dimensional amplitudes of the velocity oscillations Ṽi/Vb are
constant for Ar3 6 Ar 6 Ar4. This feature is also related to the increase of λm with Ar.
An enhancement of the vorticity production is expected as bubble elongation increases.
It may however be compensated by the concurrent enhancement of vorticity evacuation
by the mean flow and its attenuation by the wall friction.
While β̃v is nearly constant, it remains lower than the angular amplitude β̃n. The de-

crease of β̃n is related to the evolution with λm of the added-inertia coefficients in trans-
lation and rotation of an ellipse. The flattening of the bubbles increases inertia, which
can limit the rotation oscillations as compared to translation ones. Also, an important
modification of the phase difference, φβv

− φβn
, occurs. In agreement with observations

for thick disks (Fernandes et al.(2005)), the increase of λm generates a continuous in-
crease of the phase difference from 0◦ up to 105◦. For the lowest Ar, the inclination of
the bubble relative to its path varies but the phase lag being zero, the bubble always ap-
proximatetely faces the relative movement. In contrast, the largest bubbles tend to align



their major axes with their trajectories. This modification of the instantaneous inclina-
tion of a bubble along its trajectory is known to result from complex modifications of
both added-inertia and vortex shedding as the elongation varies ( Mougin & Magnaudet
(2002), Fernandes et al.(2005)).

Shape oscillations appear for ellipsoidal mean shapes before the fore-aft asymmetry is
broken. Considering the coupling between unsteady wake and shape oscillations is an im-
portant feature of this regime, we can examine the conditions for the matching between
the frequency associated to the wake dynamics Vb/d and that of modes n = 2 and n = 3
of the shape oscillations of a cylindrical bubble of infinite length and circular section. The
corresponding periods are given by τn = 2π

√

ρd3/(8n(n2 − 1)σ) (Lamb (1932)). Equat-
ing τn with d/Vb yields Ar =1450 for n =2, which is in good agreement with Ar3, the
onset of oscillations around a mean ellipsoidal shape. For n =3, this leads to Ar =4090,
which is near Ar4, the Archimedes number corresponding to the disappearance of the
bubble fore-aft symmetry.

Regime of complex shapes and intense shape fluctuations: Ar4 6 Ar 6 Ar5
This regime illustrates the two-way coupling between shape/path oscillations and wake

instability. The bubbles are very elongated and may adopt complex shapes as illustrated
in figures 13.e and 13.f. Shape oscillations are intense as revealed by the large values of λ̃
(figure 15.b). Furthermore, the time records λ(t) are no longer pure sine functions. The
decrease of velocity and angular amplitudes is clear (Fig. 15.a and c). It can be explained
by the shape transition and the change in the wake structure that leads to stationary
capped bubbles for Ar larger than Ar5. Shape oscillations provoke the unsteadiness of the
wake revealed by velocity measurements (Fig. 8). The trailing vortices remain however
attached and are the cause of the permanent concave rear of the bubble. As long as λ̃ is
large enough path oscillations are observed.

Beyond Ar5 ≈ 104, all oscillations eventually disappear and stable capped bubbles
are observed. The appearance of this asymptotic state where all fluctuations vanish is
hard to locate precisely. The biggest isolated bubbles are not easy to produce with our
injection system. It is thus difficult to give a precise value for Ar5 and to analyze if the
evolution is a smooth transition or a bifurcation. But the final regime is clearly identified
and characterized.

6. Concluding remarks

We have investigated the dynamics of a bubble rising in a Hele-Shaw cell in situations
where inertia plays a dominant role. The path and shape dynamics of the bubble in
the plane of the cell, as well as the velocity disturbance induced in the liquid phase,
have been characterized for 106 Ar 6 104. A general description of the various regimes
arising from the coupling between wake dynamics and bubble motion has been provided
for inertial confined bubbles. When the bubble diameter increases, both the Archimedes
number and the Bond number increase, and the evolution of the bubble mean shape is
qualitatively similar to the one observed in unconfined geometries. The mean shapes are
successively circles, ellipses that are more and more elongated and, finally semi-circular
caps. The scaling of the mean velocity indicates, however, that inertia and gravity effects
are dominant and stay in a constant ratio over all the range of Archimedes numbers. In
contrast, such a behavior is only observed for capped bubbles at very high Archimedes
numbers for bubbles free to move in an unbounded domain.
Wake instability is at the origin of path and shape oscillations. The structure and



the dynamics of the wake being strongly dependent on the bubble shape, the coupling
between bubble wake and interface oscillations varies as the bubble shape changes. Four
different oscillating regimes have been observed in the range Ar1 6 Ar 6 Ar5. Beyond
these limits, bubbles have a stationary wake and their motion is stable. They are either
small circular bubbles (Ar 6 Ar1) or large semi-circular capped bubbles (Ar5 6 Ar)
with, in both cases, a straight path. The first regime of instability (Ar1 6 Ar 6 Ar2) ap-
pears for bubbles of nearly circular shapes. The observed Hopf bifurcation is not caused
by known mechanisms of vorticity production such as critical in-plane curvature or inter-
face immobilization by the presence of contaminants. The instability of the wake results
from the particular vorticity dynamics that takes place in a confined geometry. The
three-dimensional vorticity distribution in the near vicinity of the bubble interface pos-
sibly triggers the instability and the modification of the vorticity balance by the wall
friction probably also plays a role. Beyond this initial regime where the instability of
the trajectory grows as Ar increases, a second regime appears, where the instability is
attenuated. For Ar2 6 Ar 6 Ar3, bubbles are ellipses with moderate eccentricity that
experience no shape oscillation and the amplitude of velocity oscillations decreases as
Ar increases. This original behavior is explained by the strong attenuation of the trail-
ing vorticity by the wall friction. For Ar > Ar3, the Bond number becomes rather high
so that shape oscillations appear. For Ar3 6 Ar 6 Ar4, bubbles are elongated ellipses
exhibiting large shape oscillations. Vortex shedding is still observed and bubble paths
oscillate. For Ar4 6 Ar 6 Ar5, bubbles are no longer ellipses since the fore-aft symmetry
is broken. They show intense and complex shape fluctuations. Vortex shedding disap-
pears and is replaced by an attached unsteady wake that is dampened when Ar further
increases. Path and shape oscillations thus eventually vanish.
By causing a strong attenuation of the wake, limiting motions to the cell plane and

imposing strong interface curvature in the transverse direction, the confinement leads to
the original regimes revealed by the present investigations. Future works are required to
understand the precise physical mechanisms underlying these regimes and to determine
the exact nature of the transitions between them. Numerical simulations are probably
better suited to achieve this goal.
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Figure 1. Parameters used to describe bubble trajectory and shape
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Figure 2. Evolutions of Reynolds number, Bond number and confinement ratio h/d with
Archimedes number
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Figure 3. Snapshots of bubbles when Ar is varied.
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Figure 4. On the left side: Time variations of bubble velocity components (Vx, Vy) and de-
formation (λ) (dotted line Vx, continuous line Vy, continuous line with open circles λ). On the
right side: Time variations of the characteristic angles (βv, βn) (dotted line : βv, continuous line
: βn). Three different cases are plotted with the Archimedes numbers: Ar=870 (a), 2540 (b) and
6.103 (c).
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Figure 6. Velocity and vorticity around bubbles at Ar =200 (left) and 700 (right). (Vorticity
is normalized by Vb/d. Measurements near the interface have been discarded.)



Figure 7. Velocity and vorticity around bubbles at Ar =1500 (left) and 2950 (right).
(Vorticity is normalized by Vb/d. Measurements near the interface have been discarded.)



Figure 8. Velocity and vorticity around bubbles at Ar =3550 (left) and 4750 (right). (Vor-
ticity is normalized by Vb/d. Measurements near the interface have been discarded.) (For each
bubble we have reported three successive velocity fields during or after the bubble passage. The
x-coordinate has been translated assuming the bubble is rising at constant velocity.)



Figure 9. Velocity and vorticity around bubbles at Ar =6950 (left) and 13700 (right). (Vorticity
is normalized by Vb/d. Measurements near the interface have been discarded.)(For each bubble
we have reported two successive velocity fields at a fixed measuring window. The x-coordinate
has been translated assuming the bubble is rising at constant velocity.)
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x/d = -1.06 (⊲), -1.60 (⊳), -2.67 (◦), -3.21 (⋄).



−0.01 −0.005 0 0.005 0.01
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

x
(m

)

y(m)

a/

 

 
Ar = 105

−0.01 −0.005 0 0.005 0.01
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

x
(m

)

y(m)

b/

 

 
Ar = 450

−0.02 −0.01 0 0.01 0.02
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

y(m)

c/

−0.02 −0.01 0 0.01 0.02
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

y(m)

d/

−0.03 −0.02 −0.01 0 0.01 0.02
0

0.02

0.04

0.06

0.08

0.1

0.12

y(m)

e/

−0.03 −0.02 −0.01 0 0.01 0.02
0

0.02

0.04

0.06

0.08

0.1

0.12

y(m)

f/

−0.02 0 0.02
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

y(m)

g/

−0.02 0 0.02
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

y(m)

h/

Figure 13. Various regimes of shape and path oscillations. The contours are plotted with an
time interval δt. a/ Ar =105 δt=16ms, b/ Ar=450 δt=32ms, c/ Ar=1130 δt=24ms, d/ Ar=2540
δt=32ms, e/ Ar=4560 δt=32ms, f/ Ar=6.103 δt=16ms, g/ Ar=9140 δt=32ms, h/ Ar=18400
δt=32ms
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Figure 14. Strouhal as function of Ar. (Present experiments: ◦, results of Williamson (1988)
for a fixed cylinder: black line in bold, results of Kelley & Wu (1997) at 3 fixed values of h/d:
0.621 (•), 0.448 (+) and 0.362 (black line))
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Figure 15. Amplitudes and phases of the oscillations as function of Ar. a/ Velocity fluctuations
normalized by the mean velocity Vb (in continuous line the evolution observed by Kelley & Wu
(1997)); b/ Oscillations of shape; c/Amplitudes of angles; d/ Phase difference




