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While small, fragmented wooded elements do not represent a large surface area in

agricultural landscape, their role in the sustainability of ecological processes is

recognized widely. Unfortunately, landscape ecology studies suffer from the lack

of methods for automatic detection of these elements. We propose a hybrid

approach using both aerial photographs and ancillary data of coarser resolution

to automatically discriminate small wooded elements. First, a spectral and textural

analysis is performed to identify all the planted-tree areas in the digital photo-

graph. Secondly, an object-orientated spatial analysis using the two data sources

and including a multi-resolution segmentation is applied to distinguish between

large and small woods, copses, hedgerows and scattered trees. The results show the

usefulness of the hybrid approach and the prospects for future ecological

applications.

1. Introduction

The importance of green veining in agricultural landscapes has already been demon-

strated for soil and biodiversity conservation (Grashof-Bokdam and Langevelde

2005). Green veining, which consists of semi-natural elements such as pond, perma-
nent meadows, field margin, hedgerows and woodlots embedded in crop mosaics,

helps to maintain wildlife biodiversity (auxiliary, game) in rural landscapes. Among

these semi-natural elements, the identification and characterization of small wooded

objects (i.e. copses, hedgerows and scattered trees) are often required in landscape

ecology studies: for instance, to predict the response of passerine bird abundance to

landscape structure and composition (Balent and Courtiade 1992), or to identify

landscape elements and configurations that encourage auxiliary hoverflies (Sarthou

et al. 2005).
Although there is a growing interest in small wooded elements and their role in

ecological processes, landscape ecology studies suffer from the lack of operational

methods for automatic detection of these elements from aerial photographs. Several

investigations have already been carried out regarding the extraction of areas of

vegetation or anthropogenic objects (buildings, roads) from remotely sensed data

(Baltsavias 2004, Boyd and Danson 2005). However, most of the studies related to the

identification of wooded elements have been devoted to the classification of large

forest patches often with some refinements regarding tree species or boundary
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delineation (e.g. Peterson et al. 2004, Tuominen and Pekkarinen 2005). The automatic

detection of natural, small wooded and thin linear elements in rural landscapes and

their differentiation when they are connected but do not underpin the same ecological

processes (e.g. adjacent hedges and woods) has drawn less attention (Stach et al. 2006,

Thornton et al. 2006, Zhang et al. 2006). Because of the fine spatial resolution, large-
scale aerial photographs are preferred to identify such elements by applying

computer-aided interpretation techniques. However, this approach is generally

time-consuming and, thus, expensive and not recommended when investigating

large areas. In addition, the spectral information provided by this kind of data is

not always sufficient to obtain classifications of high accuracy. It often requires

adding texture into the classification step. Medium and high spatial resolution remo-

tely sensed data (e.g. SPOT and Landsat Thematic Mapper (TM) images) are also

widely used to identify wooded areas. These data provide richer spectral information
and cover larger areas. However, the relatively coarse spatial resolution (�20 m · 20

m) does not enable detection of all small wooded fragments such as copses, hedgerows

and scattered trees.

Since the availability of very high spatial resolution satellite images, object-based image

analysis (OBIA) has been proposed as an alternative to the pixel-based classification

approaches (Benz et al. 2004). It involves segmenting images into homogeneous regions

and characterizing objects with a set of features related to spectral, spatial and contextual

properties. Because these image segments represent objects in the landscape more accu-
rately than the original pixels, and classify them according to their shapes and sizes, this

approach is well suited for the extraction of small wooded elements. In addition, previous

studies have shown that object-based methods outperform pixel-based methods when

applied to aerial photographs (e.g. Cleve et al. 2008). However, segmentation in object-

based classification is still a crucial task. The user must decide the specific scale at which

an image is to be segmented into objects and this scale can vary from one class to another.

Scales are often difficult to define and parameter values are highly dependent on the user’s

experience. In that sense, a hybrid pixel/object-based classification may be less dependent
on the results of the segmentation. Such a hybrid approach has already been proposed

with success. Among the few recent researches in this area, Wang et al. (2004) integrated

the pixel and object-based classification for mapping mangroves from IKONOS imagery.

Shackelford and Davis (2003) adopted a hybrid fuzzy approach for urban land-cover

classification. Other works presented a similar method for shape-based object recogni-

tion: Li et al. (2006) for geophysical phenomena detection and Carmichael and Herbert

(2004) for computer vision applications. In general, two main conclusions can be drawn

from the above studies.

1. A more accurate classification can be achieved with a hybrid approach: a pixel-

based classification can be applied for classes with good separability while an

object-based analysis can be performed to better discriminate spectrally mixed

classes.

2. A more accurate segmentation can also be obtained: the classified pixel-level

can serve to optimally segment the individual objects of interest.

In this paper, we propose a hybrid method coupling a pixel-based classification

approach to extract woody elements in the landscape using texture from aerial

photographs and an object-based image analysis to discriminate among the different

wooded element types: large and small woods, copses, hedgerows and scattered trees.



2. Material

The study area is included in the territory of the Long-Term Ecological Research

(LTER-Europe) study site ‘Valleys and Hills of Gascogne’ (VHG), France (43�13¢ N,

0� 52¢ E). It is an agricultural landscape typical of south-western France (agricultural

mosaic with wooded patches) with mixed production systems, i.e. livestock farming

systems and cropping systems. The total area of the study site is approximately 25 000

ha and includes a meso-scale watershed (12 000 ha) – the Nère river.

The major data used for the study were a mosaic of orthorectified digital aerial true

colour photographs acquired in 2002 (named BDORTHO�) and produced by the
French mapping agency (IGN). This set of geo-referenced photographs covers

approximately 31 km2 and has a spatial resolution of 0.5 m · 0.5 m. Infrared (IR)

orthophotos which are more appropriate for extracting wooded elements also exist

for this study site. However, these data have not been used, the most recent date being

1996 which is too remote to combine with the present ecological data. In addition, the

structure of the agricultural land has since been modified and has led to the disap-

pearance of some hedges.

Additional data were also used to discriminate wooded areas during the object-
orientated analysis, especially to disconnect hedgerows from wood patches. These

data are a binary wood/non-wood image derived from an existing supervised land-

cover classification (Barreau 2003). This classification was based on four SPOT-4

multi-spectral (MS) multi-temporal images acquired in 2001 (January, April, July and

October) with a spatial resolution of 20 m · 20 m. In a general way, any source of

data of the same period providing a wood/non-wood map with coarser resolution (i.e.

.10 m · 10 m) can be used as ancillary data in the method (e.g. the CORINE Land

Cover map or the Pan-European Forest/non-Forest map proposed by the EU-Joint
Research Centre (Pekkarinen et al. 2009)).

3. Method

The hybrid method we propose has two main steps: (1) a spectral and textural pixel-

based analysis to get all the wooded elements of the study area and (2) a spatial object-

based analysis to delineate the different wooded element types: small and large woods,

copses, scattered trees and linear elements (figure 1). Data pre-processing was per-
formed to ensure accurate geometrical correspondence between the two sources of

data: the true-colour photograph and the binary wood/non-wood mask extracted

from the available land-cover classification. In addition, the digital photograph was

resampled to a pixel size of 1 m · 1 m for optimal running time computation during

textural analysis and segmentation. The pixel-based image analysis was conducted

using the resampled digital photograph mosaic.

3.1 Pixel-based image analysis: extraction of wooded elements

3.1.1 Textural analysis. Texture is the expression of local variations in grey-levels in

the pixels of the digital image that result from the particular organization of objects in

the landscape (Haralick et al. 1973). Several studies demonstrated interest in incor-

porating such spatial information into classification procedures to improve classifica-

tion accuracy. The addition of texture has become quite common for land-cover

mapping (Marceau et al. 1990, Puissant et al. 2005). It has been also widely used in

forestry and ecological mapping applications (St Onge and Cavayas 1995, Franklin



et al. 2000, Coburn and Roberts 2004), especially when digital aerial photographs are

required (Wulder et al. 1998, Caridade et al. 2007). Generally, the resolution of aerial

photographs is finer than or similar to the size of the trees in the image. Thus, local

variations in the pixels can be related to forest structure variables (Tuominen and

Pekkarinen 2005, Kayitakire et al. 2006).

In this study, the textural information is not used for estimating wood attributes

(e.g. species, height and density). The texture is used mainly to extract all the wooded

elements from the orthophotos more efficiently and limit confusion with other classes
that have similar pixel values (e.g. grasslands and crop fields). Since the further

supervised classification step can be performed without this information, the textural

analysis – which is time consuming – can be viewed as an optional step in the method.

However, as illustrated in the results, adding this information contributes to con-

siderable improvement in the classification accuracy.

There are several approaches to texture processing. The most widely used in remote

sensing is based on the grey-level co-occurrence matrix (GLCM) proposed by

Haralick et al. (1973). This matrix computes the relationships of pixel values from
which various second-order statistical texture measures can be derived (Haralick

1979). Several parameters must be defined for computation of the GLCM: the size

of the moving window, and offset distance and direction.

In our case, height texture measures were computed from the green band of the

aerial photograph: dissimilarity, contrast, homogeneity, variance, entropy, correla-

tion, angular second moment and mean. This set of measures was chosen with the

intent of not selecting arbitrarily just a few of them. The 8-bit image (256 grey levels)

was rescaled into 32 grey levels to ensure statistical validity of the measures (Clausi
2002) and to reduce the computation time of the GLCM (which is proportional to 2n

where n is the number of bits). Four main directions (0�, 45�, 90�, 135�) and three

window sizes (3 · 3, 7 · 7, 11 · 11) were used with a constant offset distance of one

pixel. The combination of all GLCM parameter values produced 96 texture images.

Figure 1. Flowchart of the method proposed to discriminate small wooded elements in rural
landscape. A pixel-based image analysis is performed to extract wooded objects from true-
colour photography. An object-based analysis is applied in the next step using the result of the
previous step and an additional wood/non-wood map with coarser resolution, to enhance the
thematic resolution of the pixel-based classification and disconnect objects related to different
ecological processes.



Finally, to reduce the number of the texture images computed and decorrelate them

without decreasing the main textural information, standardized principal component

analyses (PCA) based on correlation matrices were performed following two different

strategies (figure 2). The strategies were tested to compare their performance and to

identify a possible optimal window size for wooded objects with the understanding that

the success of the classification procedure using textural measures depended largely on
the selected window size (Puissant et al. 2005). In the first strategy (figure 2(a)), a PCA

was applied on all the texture variables including the different window sizes and

directions. In the second strategy (figure 2(b)), a PCA was computed for each set of

texture variables related to only one window size including each direction. With each

strategy, more than 90% of the textural information was conserved within the principal

components retained for the classification.

3.1.2 Classification and post-processing. Several classifications were performed fol-

lowing the different strategies (see C1, C2, C3, C4 in figure 2). The principal compo-
nents were added to the R–G–B bands of the digital photograph to extract all the

wooded areas and obtain a binary mask (i.e. the planted/non-planted-tree mask

mentioned in the next section). The standard maximum likelihood classifier (MLC)

was applied using training site data derived from visual interpretation. In the next

post-classification step, the resulting mask was filtered to reduce the salt-and-pepper

effect in the image and to join some disconnected planted-tree elements within the

woods. First, a major analysis with a window size of 9 · 9 was performed on pixels

classified as planted-tree areas. Then, the same filter was applied successively on non-
planted-tree areas in an iterative way until all the wood patches were filled in. This

selective post-processing enabled some classification artefacts to be corrected without

Figure 2. The classification strategies tested to assess the usefulness of adding texture. Each
cell of the matrix represents one texture image related to one texture measure (DISS, dissim-
ilarity; CON, contrast; HOM, homogeneity; ASM, angular second moment; ENT, entropy;
COR, correlation; VAR, variance; MEAN), one window size and one direction. In the first
strategy (a), a principal component analysis (PCA) was computed using all the texture variables
including all the window sizes and directions. In the second strategy (b), a PCA was applied on
each set of texture variables related to one window size and including all directions.



substantial alteration of the borders of the wooded elements. Finally, classification

C1, which proved to be the best, was retained for the following object-orientated

image analysis.

3.2 Object-based image analysis: discrimination between wooded element types

A spatial analysis based on the object-orientated approach was performed to get more

details in the planted-tree areas class and to disconnect some merged elements that

were semantically different and related to different ecosystems (in particular, the

woody fragments and the hedgerow network). This analysis was carried out following

the OBIA methodology composed of three steps: segmentation, object characteriza-

tion, classification. These steps are described in detail in the following sections.

3.2.1 Multi-resolution segmentation. Image objects were created from the binary

mask obtained in the previous step using the multi-resolution segmentation method

proposed by Definiens Software (eCognition). The segmentation algorithm intro-
duced by Baatz and Schäpe (2000) is a bottom-up region-growing technique which

merges stepwise adjacent pixels according to their similarity. Two pixels are merged to

form larger segments if the resulting segments do not exceed a user-defined hetero-

geneity threshold. The definition of heterogeneity includes both spectral and spatial

criteria and is fixed by the ‘scale parameter’. Distinct weights can be assigned to the

data layers used in the segmentation process.

In this study, segmentation was conducted at two levels using different scale para-

meters to construct a hierarchical image object network. The first level (level 1) was
created with a scale parameter fixed at 200 using only the spectral heterogeneity

criterion related to the binary mask composed of the planted/non-planted-tree classes

(weight = 1). The R–G–B bands of the digital photograph were not used at this level

(weight = 0). In this way, all the pixels classified in the binary mask were aggregated

and transformed into image objects with boundaries strictly identical to the classes at

the pixel level. In the second step, a lower level (level 2) was created with a scale

parameter of 50 using both spectral and spatial heterogeneity criteria. This level was

processed from the three visible bands of the aerial photograph (weight = 1) but with-
out using the binary mask of planted-tree areas (weight = 0). The sub-objects created at

this level with finer segmentation enabled disconnected elements to be merged at the

higher level (e.g. adjacent woods and hedges).

It is important to note that the method is not very sensitive to the scale parameter

values defined for the multi-resolution segmentation. At segmentation level 1, the scale

value must be sufficiently high to avoid an over-segmentation of the pixel-based

classification. This condition does not cause any difficulty since the segmentation is

performed on the binary mask of the planted/non-planted area classes. On the contrary,
at segmentation level 2, the scale value must be relatively low to over-segment the aerial

photograph and disconnect elements belonging to different classes.

3.2.2 Class definition and image object characterization. The image objects were

characterized with different features according to the classes we wanted to extract.

The class hierarchy defined for this study is presented in figure 3. For level 2

classification, we defined two classes of woody areas: classes ‘A’ and ‘B’. The first

included the wooded elements classified as planted-tree areas in both the data sources

(i.e. the planted-tree areas of the level 1 segmentation derived from the aerial photo-

graph and the wooded/non-wooded areas derived from the existing land-cover



classification of the 20 m · 20 m resolution SPOT images). Thus, this class ‘A’

contained mainly large planted-tree areas but not the small fragments of woods and

hedges that did not appear in the data with coarser resolution. These small objects

were represented in class ‘B’, which included the planted-tree areas that only existed in

the aerial photograph (i.e. in segmentation level 1). The definitions adopted for the

child classes at level 2 were adapted from the French National Forest Inventory (IFN)
typology. A woody area is classified as a ‘large wood’ if it covers more than 4 ha. The

‘small wood’ class includes areas of between 50 ares and 4 ha. The ‘copse’ class

includes areas of between 5 and 50 ares. ‘Scattered trees’ are clumps of less than 5

ares and ‘natural linear elements’ are tree rows with a width of less than 25 m and a

length of more than 25 m. In contrast to the IFN definitions, we did not take into

account the average width at the top of the trees or the species composition in our

definitions.

According to this typology, several spatial and relational features were computed to
characterize the objects and to prepare the rule-based classification. The features

selected were: area, length, width, compactness, elliptical fit and relation to super-

objects. The wood/non-wood mask with coarser resolution derived from the land-

cover classification was imported as a raster thematic layer. The affiliation of the

image objects to the thematic class of this layer was defined through a thematic

attribute.

3.2.3 Rule-based classification. A rule-based classification composed of several

steps concluded the object-orientated analysis. First, the image objects at segmenta-

tion level 1 were directly classified as planted-tree and non-planted-tree areas using

the mask derived from the pixel-based analysis. Next, the image objects at the lower

segmentation level (level 2) were processed to distinguish the woody areas ‘A’ and ‘B’

within the planted-tree areas. Initially, woody areas labelled ‘A’ were identified using
both the result of the previous classification (through the ‘relational to super-object’

feature) and the wood/non-wood thematic layer of the land-cover classification

(through a corresponding ‘thematic’ attribute). Woody areas labelled ‘B’ were

extracted as a result. After this classification, the level 2 segmentation (in which the

objects were over-segmented) was modified by merging all adjacent objects of the

same class (classification-based fusion). This merging was undertaken to take into

account the area criteria in the object recognition. The classification of the woody

Figure 3. Image object class hierarchy based on the IFN typology. Woody areas ‘A’ are planted-
tree areas in both the aerial photograph and the wood/non-wood mask with coarser resolution
derived from an existing land-cover classification. Woody areas ‘B’ include the planted-tree areas
that exist only in the photograph.



areas ‘A’ and ‘B’ was then broken down into specialized classes (large wood, small

wood, copse, scattered trees and linear elements) according to rules that had been

defined previously.

This classification procedure was followed by a post-processing step to improve the

results of the classification. Except for hedges, adjacent objects of the same or

different classes (i.e. from different woody areas ‘A’ or ‘B’) were merged by keeping

as class value the value of the largest woody object. For instance, if an object classified
as copse ‘B’ was adjacent to an object classified as small wood ‘A’, the resulting object

was integrated in the small wood class ‘A’ after merging. If the area of the newly

created object exceeded the maximum value associated with the definition of the

resulting class, the object was integrated in the next higher-level woody class. In the

previous example, the new object would be integrated in the large wood class ‘A’ if it

was bigger than 4 ha. At the end of the process, the objects in class ‘A’ and ‘B’ were no

longer distinguished (figure 4).

3.3 Validation

A visual interpretation of the digital photography was performed to obtain data for
validation of the pixel and object classifications. More than 1% (i.e. 330 199 pixels) of

the classified area was randomly selected to assess the accuracy of the pixel-based

classification and 107 segments were retained in the case of the refined object-based

classification. Accuracy assessment was based on the confusion matrix and associated

indicators: overall accuracy and Kappa coefficient.

4. Classification results and discussion

A statistical summary of the results is presented for both the pixel-based and object-

based classifications (table 1). In a general way, the gain in thematic resolution with

the object-based classification led to a loss in overall accuracy (from 92.6% for the best

classification in the initial pixel-based analysis to 83.5% at the end of the object-based

classification), due to the creation of some mixed objects during the segmentation.

However, because the pixel-based and object-based analyses are sequential, the results

of the two approaches should not be compared. In the case of the pixel-based analysis,

Figure 4. Excerpt of the pixel and object-based classifications.



the accuracy assessment is related to the extraction of the planted-tree/non-planted-

tree areas from the aerial photographs, with regard to textural information. For the
object-based analysis, because the limits of the planted-tree area class have been

definitively fixed at the previous step, only confusion errors involved in the discrimi-

nation between the wooded element types within the planted-tree area class are

computed. The object-based classification results do not indicate confusion between

the wooded element classes and the non-planted-tree areas.

In terms of proportions, the ‘large wood’ class represents 10.90% (342.53 ha)

relative to the entire study area versus 3.27% (102.86 ha) for the ‘small wood’ class,

2.61% (82.21 ha) for the ‘copse’ class, 1.14% (35.90 ha) for the ‘scattered trees’ class,
3.44% (108.20 ha) for the ‘linear elements’ class and 78.63% (2471.08 ha) for non-

planted-tree areas.

Concerning the pixel-based analysis, the addition of textural information always

represented an important improvement in classification accuracy compared with the

results obtained with the R–G–B classification alone. Without using the textural

information, the overall accuracy was 79.5% with a k coefficient of 0.60 (see C0 in

table 1(a)). There was considerable confusion between grasslands and cropped fields.

Thus, even if the textural analysis is an optional step in the method, it is recommended
to use this information to increase the accuracy degree of classification. Moreover, the

pixel-based classification strategy that provided the highest accuracy included all the

texture images in the PCA (i.e. C1 derived from nine principal components and the

R–G–B bands) but the results were very similar to C3 and C4 (the difference was less

than 1%). It seems difficult to determine the most appropriate classification of these

three cases. Concerning window size, the intermediate 7 · 7 dimension gave the most

accurate results (C3). The smaller dimension (3 · 3) was more suitable for the detec-

tion of small objects (scattered trees and thin linear elements) but shadows and
planted-tree areas were mixed. The larger dimension (11 · 11) provided a classifica-

tion that respected the object boundaries better but there were more omissions of

small elements. Since the objects to be extracted are of different sizes, an intermediate

window size may be optimal (C3) or alternatively, a strategy that incorporates the

three window sizes in the PCA (C1), but this is more time-consuming. Finally,

although the results of the classifications were not the same, overall accuracy was

relatively high for each and provided a binary mask of planted/non-planted-tree areas

of good quality.

Table 1. Summary statistics of the classification results.

(a) Accuracy of the pixel-based analysis (b) Accuracy of the object-based analysis (%)

C0 C1 C2 C3 C4 LW SW C L ST

OA (%): 79.50 92.61 86.90 92.13 91.72 LW 100 0.00 0.00 0.00 0.00
Kappa 0.60 0.85 0.74 0.84 0.83 SW 0.00 91.30 0.00 3.03 0.00

C 0.00 0.00 89.47 24.24 9.09
L 0.00 8.70 10.53 63.64 9.09
ST 0.00 0.00 0.00 9.09 81.82

OA (%) 81.3 Kappa 0.76

C0, without textural information; C1–4, with textural information; OA, overall accuracy; LW,
large wood; SW, small wood; C, copse; L, linear element; ST, scattered trees.



Concerning the object-based analysis, the results derived from the confusion matrix

are given in table 1(b). For large and small woods, the classification was very accurate

since the only criterion that distinguished the objects was area. However, for copses,
linear elements and scattered trees, accuracy was moderate. There was confusion

between classes due to segmentation errors. In some cases, hedgerows were difficult

to extract because the linear character could not always be verified, especially when

the hedges were interconnected. This created only one image object characterized by a

complex shape which did not satisfy the previously defined classification rule. The

shape property values get skewed. However, this issue is mitigated by ecological

requirements. From the fauna point of view, hedges may be connected and form a

continuous network throughout the landscape. The main challenge lies in distinguish-
ing woods and hedges which do not underpin the same ecological processes

(e.g. breeding versus mobility). Some adjacent hedges and wood patches are con-

nected to form only one object which can introduce a confusion error. However, the

use of the wood/non-wood mask with coarser resolution deriving from the existing

land-cover classification means this aggregation effect can be limited. This is the main

interest of using ancillary data in this hybrid method. At the lower segmentation level,

the largest woody areas (class ‘A’) were classified using the two data sources. The

smallest objects (including hedges) that did not appear in the 20 m land-cover
classification because they were too small were identified in the digital photograph.

Since the photograph is over-segmented at this segmentation level 2, adjacent hedges

are not included in the class ‘A’ woody areas that border them. They can therefore be

individualized (figure 5). The remaining aggregation errors mainly appeared between

copses, scattered trees and hedges that were only extracted from the aerial photograph

but, as mentioned previously, these errors are less critical because the objects con-

cerned are related to the same ecosystems. In all cases, even when two sources can be

used to classify the objects, all the object boundaries will be derived from the digital
photograph (i.e. the data source with the greatest geometrical accuracy).

5. Conclusion

The aim of this study was to assess the potential usefulness of combining pixel-based
and object-based image analysis using multi-source data to extract wood patches and

linear elements in agricultural landscapes. Compared to the traditional per-pixel classi-

fication approach, the hybrid method enables the use of spatial and relational features

during the classification process. This helps to discriminate between the different

wooded element types based on their shape and size (large and small woods, copses,

hedgerows and scattered trees). Compared to object-based image analysis, this

approach contributes to classification results that are less dependent on the results of

Figure 5. Disconnecting adjacent hedges and woods using a layer of woods with coarser
resolution.



segmentation. Considering classification accuracy, the incorporation of texture mea-

sures in the pixel-based analysis proved to be the most reliable way to detect planted-

tree areas from aerial photographs. The object-orientated classification could probably

be improved by incorporating an intermediate segmentation level to reduce errors due

to confusion between copses, scattered trees and linear elements. The assessment of the
accuracy of this method could also be extended since the confusion matrix gives only

information on the thematic accuracy but not on the geometrical accuracy of the image

objects (i.e. the quality of segmentation). The resulting maps will now be used to

calculate the fragmentation of wooded patches and connectivity indices. The morpho-

logical operators proposed by Vogt et al. (2007) to define forest spatial patterns are now

being applied for this purpose.
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