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A critical review of some damage models with unilateral effect

F. Cormery *, H. Welemane

Laboratoire de M�eecanique de Lille, Ecole Universitaire DÕIngenieurs de Lille, Boulevard Paul Langevin,

URA CNRS 1441, 59655 Villeneuve dÕAscq Cedex, France

Abstract

The concern here is the macroscopic modeling of the brittle damage unilateral effect (due to the opening-closure of

microcracks). Several formulations have been proposed in recent years to solve the problems pointed out by Chaboche

(Int. J. Damage Mech. 1 (1992) 148). In this paper, we examine precisely two of these new formulations (Int. J. Damage

Mech. 2 (1993) 311; Int. J. Damage Mech. 5 (1996) 384) and show that they still exhibit some major inconsistencies.

1. Introduction

The particularities of the mechanical response of quasi-brittle materials such as some rocks, concrete,

ceramics have been widely explained by the existence, nucleation and growth of microcracks. The oriented

nature of these microdefects, coupled with the unilateral contact of their lips (i.e. microcracks can be either

open or closed depending on loading), lead to a complex anisotropic behavior notably characterized by a

recovery of some effective properties at the closure of microcracks.

In an extensive critical review paper, Chaboche (1992) has pointed out that no existing continuum

damage model could account accurately for the damage activation–deactivation process (referred to as

unilateral effect). Generally, the description of this phenomenon led to either a non-symmetric elastic

stiffness tensor or the occurrence of discontinuities in the stress–strain response. To address this critical

issue, several new damage formulations have been proposed in the literature. In this paper, we examine two

of these new formulations (Chaboche, 1993; Halm and Dragon, 1996) and show that, although they offer a

better overall description of damage, they still exhibit some internal inconsistencies.

Usual intrinsic notation is employed throughout. In particular, the tensor products of two second-order

tensors a and b are defined by:

½a
 b� : x ¼ ðb : xÞa; ½a 
 b� : x ¼ a � x � bT; ½a 
 b� : x ¼ a � xT � bT; a 
 b ¼ ½a 
 bþ a
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for any second-order tensor x. Moreover, n
p ¼ n
 n
 � � � 
 n describes the pth tensor product power of

any vector n, I denotes the second-order identity tensor, H represents the Heaviside function and the set of

unit vectors ðe1; e2; e3Þ forms an orthonormal basis.

2. Presentation of the models

The models are formulated within the framework of irreversible thermodynamics with internal variables,

in which the single dissipative mechanism considered is nucleation and growth of microcracks. In the

undamaged state, the material is assumed to be isotropic and linear elastic, the corresponding elastic

stiffness tensor is denoted by C0 and the Lam�ee coefficients are k0 and l0. Since the discussion presented

below is restricted to the investigation of the elastic response, we just present the thermodynamic potential

postulated in these models. Let denote by e the strain tensor and by D the damage internal variable(s).

2.1. Formulation of Chaboche (1993)

This formulation constitutes a general framework that can be applied to any macroscopic damage

model. In the case of a strain formulation, the thermodynamic potential w takes the form:

wðe;DÞ ¼



where di and vi are the eigenvalues and eigenvectors of D. According to the previous spectral decomposition

(4), any damage configuration is thus equivalent to three mutually orthogonal sets of parallel microcracks.

The thermodynamic potential proposed in (Halm and Dragon, 1996) has the following expression:

wðe;DÞ ¼ g trðe �DÞ þ k0

2
tr2 eþ l0 trðe � eÞ þ a tre trðe �DÞ þ 2b trðe � e �DÞ

ÿ ðaþ 2bÞe :
X3

i¼1

Hð
"

ÿ vi � e � viÞdiv
4
i

#
: e ð5Þ

where the constant g characterizes residual effects due to damage, whereas a and b are two coefficients

related to the degradation of elastic properties.

In the formulation (5), the fourth-order tensorial operator div

4
i ensures the cancellation of the contri-

bution of the equivalent set of microcracks with normal vi to the degradation of the normal stiffness in this

direction when vi � e � vi6 0. The model postulated in (Halm and Dragon, 1996) is thus based on the spectral

decomposition of D to account for damage unilateral effect.

3. Critical analysis

As indicated in the introduction, the above formulations show some inconsistencies. Let point them out

through two simple examples.

Let us examine first the formulation (1) proposed in (Chaboche, 1993) when the set of unit vectors

ðv1; v2; v3Þ corresponds to a principal basis of the second-order damage variable D. Consider a state ðe;DÞ
for which strain is uniaxial e ¼ e0e


2
1 with e0 < 0 and tensor D is isotropic, i.e. D ¼ d0I. Since the material is

assumed to be isotropic in the case of active damage, the stiffness tensor eCC is isotropic and has the form:

eCC ¼ ðk0 þ aÞI
2 þ 2ðl0 þ bÞI 
 I ð6Þ
where a and b are scalar functions of D. Besides, as damage is described by a spherical tensor, tensor D has

an infinite number of principal bases and the set of vectors ðv1; v2; v3Þ can be identified with any of these

bases. In particular, if we choose the basis ðe1; e2; e3Þ for the set ðv1; v2; v3Þ, then Eqs. (1) and (6) yield:

wðe;DÞ ¼ 1
2
½k0 þ 2l0 ÿ gðaþ 2bÞ�e20 ð7Þ

Let us check the uniqueness of the representation (7). If we identify ðv1; v2; v3Þ with an other principal basis

of D, say ðt1; t2; t3Þ such that:

t1 ¼ 1ffiffi
2

p ðe1 þ e2Þ; t2 ¼ 1ffiffi
2

p ðÿe1 þ e2Þ; t3 ¼ e3 ð8Þ

then we obtain:

wðe;DÞ ¼ 1

2
k0

h
þ 2l0 ÿ

g

2
ðaþ 2bÞ

i
e20 ð9Þ

Comparison between (7) and (9) clearly shows that wðe;DÞ is not unique. Thus, a state ðe;DÞ can be as-

sociated with several different values of the free energy (an infinite number in the present case); this shows

that w is not a thermodynamic potential.

The formulation proposed in (Halm and Dragon, 1996) leads to the same mathematical anomaly. In-

deed, Eq. (5) can be written in the form (residual effects due to damage being neglected, thus g ¼ 0):

wðe;DÞ ¼ 1

2
e : eCC : eþ



with

eCC ¼ C0 þ aðI
DþD
 IÞ þ 2bðI 
 DþD 
 IÞ ð11Þ

which shows that the formulation postulated in (Halm and Dragon, 1996) enters the general framework

proposed in (Chaboche, 1993) that we have just investigated above. From this remark, we can conclude

that the introduction of the damage unilateral condition in the basic model proposed in (Dragon et al.,

1994) makes w lose its status of thermodynamic potential. Note that we arrive to the same conclusion when

residual effects are taken into account.

When the set of unit vectors ðv1; v2; v3Þ corresponds to a principal basis of the strain tensor e, the for-

mulation (1) postulated in (Chaboche, 1993) associates each state ðe;DÞ with a single value of the free

energy wðe;DÞ. It can be shown however that this choice of unit vectors ðv1; v2; v3Þ does not ensure the

uniqueness of the representation of the elastic stiffness tensor C ¼ Cðe;DÞ. Consider a state ðe;DÞ char-

acterized by uniform strain e ¼ e0I with e0 < 0 and damage variable(s) D such that tensor eCC is isotropic

(thus of the form (6)). In this case, the set of unit vectors ðv1; v2; v3Þ can be identified with any of the

principal bases of the strain tensor (as tensor e is spherical, it has an infinite number of principal bases). Let

us determine the expression for tensor C when the set ðv1; v2; v3Þ corresponds to either the basis ðe1; e2; e3Þ or
the basis ðt1; t2; t3Þ defined in (8). In view of (2) and (6), we obtain:

C ¼ eCC ÿ gðaþ 2bÞðe
4
1 þ e
4

2 þ e
4
3 Þ when vi ¼ ei ði ¼ 1; 2; 3Þ ð12Þ

and

C ¼ eCC ÿ gðaþ 2bÞðt
4
1 þ t
4

2 þ t
4
3 Þ when vi ¼ ti ði ¼ 1; 2; 3Þ ð13Þ

At the same time,

t
4
1 þ t
4

2 þ t
4
3 ¼ 1

2
½e
4

1 þ e
4
2 þ e
2

1 
 e
2
2 þ e
2

2 
 e
2
1 � þ e
2

1 
 e
2
2 þ e
2

2



4. Conclusion

The macroscopic modeling of the damage unilateral effect remains a difficult and open research field.

Indeed, besides the evidence of the inconsistencies of the formulations proposed by Chaboche (1993) and

Halm and Dragon (1996), this study illustrates more generally the shortcomings induced by the use of

spectral decompositions to represent the damage activation–deactivation process. Note that such a con-

clusion has also been pointed out by Carol and William (1996). The proper description of the unilateral

effect in constitutive formulations would then require to abandon such decompositions and to consider the

problem through a new approach. This research is currently under work.

References

Chaboche, J.L., 1992. Int. J. Damage Mech. 1, 148.

Chaboche, J.L., 1993. Int. J. Damage Mech. 2, 311.

Carol, I., Willam, K., 1996. Int. J. Solids Struct. 33 (20–22), 2939.

Dragon, A., Cormery, F., Desoyer, T., Halm, D., 1994. In: R. Chambon et al. (Ed.), Localization and Bifurcation Theory for Soils and

Rocks. Rotterdam, p. 127.

Halm, D., Dragon, A., 1996. Int. J. Damage Mech. 5, 384.

Fig. 1. Youngs modulus related to direction n normalized by its initial value E0 for a Vosges sandstone (k0 ¼ 3250 MPa, l0 ¼ 4875

MPa, a ¼ 9925 MPa, b ¼ ÿ11 180 MPa, D ¼ 0:1I, e ¼ e0I): (––) EðnÞ=E0 when e0 > 0, (




