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a b s t r a c t

Microcracking is one of the basic mechanisms of inelastic deformation for a large class of anisotropic
materials such as brittle matrix composites. Even at fixed microcracks density, the macroscopic behavior
of these materials is very complex due to the combination of two specific features of such deteriorating
phenomenon. First, the oriented nature of microcracks induces an evolution of the material symmetry
(interaction between the initial anisotropy and the microcracks induced one). Secondly, a change in the
elastic response of the material is expected, based on whether microcracks are open or closed in
response to specific loading situations (the so-called “unilateral effect”). The present paper is devoted to
a continuum micromechanics-based investigation of the resulting e generally fully e anisotropic mul-
tilinear response of orthotropic materials containing microcracks. The procedure leads to the proposal of
a closed-form expression of the macroscopic free energy corresponding to 2D initially orthotropic
materials weakened by arbitrarily oriented microcracks systems. The established results provide
a complete quantification of both coupling effects of anisotropies and elastic moduli recovery
phenomena induced by microcracks closure. A particular emphasis is put on the importance of Hill
lemma for the derivation of these results which constitute a basis to the micro-macro modeling of
damage process in initially orthotropic media.

1. Introduction

For a large class of engineering materials, diffuse microcracking
plays a crucial role in their macroscopic mechanical behavior. In the
particular case of anisotropic materials such as composites, sedi-
mentary rocks or some metals, the modeling of microcracks-
induced effects at fixed density of microcracks is of large interest
in view of two specific features which characterize the involving
process. If the question of anisotropic behavior related to micro-
cracks existence is itself a quite difficult task for initially isotropic
materials, it becomes even more complicated in the case of initially
anisotropic materials. This is mainly due to the strong interaction
between the primary (structural) material anisotropy and the
microcracks-induced one: the presence of the related oriented
defects may indeed lead to a very complex overall response. In
addition to this aspect, microcracks can be either open or closed
according to the loading and affect differently the weakened elastic
properties of the material. This unilateral effect leads to a multi-
linear macroscopic response when microcracks change from
opening to closure state, with generally a partial recovery of

properties at the closure of some defects (Chaboche, 1992, 1993;
Welemane and Cormery, 2002).

Experimental studies are often too restrictive to provide
exhaustive data on such aspects, especially due to the difficulties to
investigate elastic properties in various directions of the space and
also to separate each of these effects. The interaction between
structural and microcracks-induced anisotropies has been partly
investigated through ultrasonic measures on ceramic matrix
composites (Baste and Aristégui, 1998; Baste and El Bouazzaoui,
1996). These authors provide data which confirm the stiffness
modifications due to degradation process, both on the amplitude
(when loading axes correspond to initial material axes) and on the
type of resulting material symmetry, especially in the case of off-
axis loadings. They confirm also the major influence of micro-
cracks in the direction of their normal (which corresponds in fact to
the loading direction). Concerning the unilateral effect, some
authors have put in evidence the partial recovery of elastic prop-
erties at the closure of microcracks (Allix et al., 1993; Morvan and
Baste, 1998) but these studies are often limited to axial properties
or to defects configurations coinciding with the structural anisot-
ropy of the material (debonding mechanisms governed by rein-
forcements or loading in the material principal axes). In terms of
representation, the simultaneous account of microcracks-induced* Corresponding author. Tel.: þ33 (0)5 62 44 29 47; fax: þ33 (0)5 62 44 27 08.
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anisotropy and openingeclosure effects often leads to serious
difficulties. Even in the isotropic context, at constant microcracks
density and under frictionless conditions, mathematical or ther-
modynamical inconsistencies have been pointed out in existing
formulations, such as discontinuities of the stressestrain response
or non-uniqueness of the thermodynamic potential (Carol and
Willam, 1996; Chaboche, 1992; Challamel et al., 2006; Cormery
and Welemane, 2002).

In order to provide a fundamental basis for damage modelings,
micromechanical investigations provide some interesting and
proper issues to account for such specific features (see for instance
Cormery and Welemane, 2010; Costanzo et al., 1996; Halm and
Dragon, 1996; Krajcinovic, 1996; Murakami and Kamiya, 1997;
Pensée et al., 2002; Zhu et al., 2008). If many works have been
devoted to the analysis of the overall elastic properties of micro-
cracked materials, most of them deal with initially isotropic
materials (Dormieux and Kondo, 2009; Hashin, 1988; Kachanov,
1993; Nemat-Nasser and Hori, 1993; Ponte Castañeda and Willis,
1995; Welemane and Cormery, 2002; etc.) and only few publica-
tions consider the case of anisotropic materials (Horii and Nemat-
Nasser, 1983; Mauge and Kachanov, 1994; Santare et al., 1995;
Tsukrov and Kachanov, 2000; Wang et al., 2009). Moreover, it must
be emphasized that a general energy-based analysis of the multi-
linear behavior due to cracks closure effects in the presence of
matrix anisotropy has not been treated in literature. This motivates
the present study devoted to a homogenization-based investigation
of initial orthotropy containing arbitrarily oriented microcracks
which can be open or closed. The considered problem is two-
dimensional in order to derive a closed-form expression of the
overall anisotropy and of the stiffness recovery conditions.

To address such issues, one can adopt an Eshelby-like formalism
in which microcracks are modeled as elliptical voids in the 2D
orthotropic present context (Laws, 1977, 1983; Laws and
Brockenbrough, 1987). Despite the interest of the above approach,
the main difficulty lies in the determination of the Eshelby tensor
corresponding to arbitrarily oriented microcracks within an
orthotropic matrix. This can be done by taking advantage of results
recently established by Gruescu et al. (2005). However in such case,
the analysis of closed cracks remains a difficult task, especially the
definition of the local stiffness tensor corresponding to closed
cracks phase (see Deudé et al., 2002 or Dormieux and Kondo, 2009
in the context of an isotropic matrix). Consequently, we have
focused on a direct approach by making use of fracture-mechanics
based solutions as already considered by Andrieux et al. (1986) or
Pensée et al. (2002) for isotropic matrix, and by Mauge and
Kachanov (1994) (see also Horii and Nemat-Nasser, 1983; Tsukrov
and Kachanov, 2000) in the context of anisotropic matrix.
Compared to these analyses, the main contribution of the present
work is to simultaneously account, within a strain energy-based
framework, for the microcracks-induced anisotropy and for the
defects opening to closure transition. Again, this is primarily
required for the formulation of a rigorous and complete unilateral
damage model of initially orthotropic materials.

The study is developed under the assumptions of non inter-
acting frictionless microcracks. It provides a proper representation
of the anisotropic multilinear response of weakened materials and
constitutes a first step to address in the future more complex
situations such as interactions between defects or dissipative
sliding-based behavior. Let us emphasize also that the results have
been established owing to a careful application of the Hill lemma in
the case of anisotropic fissured media. This is crucial for arbitrarily
oriented closed microcracks embedded in an orthotropic matrix.

The paper is organized as follows. In Section 2, we provide the
general background of the micromechanical analysis, as already
exposed by Andrieux et al. (1986) in the context of initially isotropic

materials. Then, in Sections 3 and 4, original closed-form expres-
sions of the elastic free energy are derived in the more general case
of the 2D orthotropic matrix weakened by arbitrarily oriented
microcracks; a particular attention is paid to the importance of the
proper formulation of the Hill lemma in this context. We then
analyze and discuss in Section 5 the interaction between primary
and microcracks-induced anisotropies through a comparison of the
different terms appearing in the expression of the macroscopic free
energy. The resulting material symmetry is also analyzed through
the directional distribution of overall anisotropic elastic properties
of the microcracked material. In this last part, the focus is finally on
the influence of the opening/closure status of the microcracks
according to their orientation (with respect to symmetry axes of the
uncracked material).

Standard notations are employed throughout. The inner prod-
ucts are labeled as follows: a$b for two vectors and a:b for two
second-order tensors. Additionally, the tensor products of two
second-order tensors a and b are defined by:

½a5b�ijkl ¼ aijbkl;
�
a5b

�
ijkl ¼

1
2

�
aikbjl þ ailbjk

�
(1)

2. General background

We follow here the micromechanical approach proposed by
Andrieuxet al. (1986) and leading to a closed-form expression of the
macroscopic free energy of a 2D isotropic elasticmediumweakened
by arbitrarily orientedmicrocracks. The laterwere assumed open or
frictionless closed, and in dilute concentration. The proposed
approach allows also to derive the openingeclosure transition
criterion.

Let us consider a Representative Volume Element (RVE) in the
form of a square cell area A (with boundary denoted vA). This RVE
is made up of an orthotropic linear elastic matrix with symmetry
axes corresponding to the orthonormal basis (e1, e2). The stiffness
tensor of the virgin matrix is denoted C0 and reads:

C0 ¼ a1I5Iþ a2I5 Iþ a3A5A þ a4ðA5Iþ I5AÞ (2)

in which I denotes the second-order unit tensor and A ¼ e15e1;
constant coefficients faigi¼1;4 can be related to the stiffness
components in the basis associated to the material axes (e1, e2) as
follows:

a1¼C0
2222�2C0

1212; a2¼2C0
1212

a3¼C0
1111þC0

2222�2C0
1122�4C0

1212; a4¼C0
1122�C0

2222þ2C0
1212

(3)

Note that above expressions depend on the engineering moduli
of the material and can be written either for plane stress or for
plane strain conditions.

This matrix is weakened by an array of N families of flat
microcracks with arbitrary orientation relative to orthotropic axes
(Fig. 1). Microcracks of the ith family are characterized by their
mean length 2li. According to the classical scale separation condi-
tions, the defects size is assumed to be very small in comparison
with the size of the RVE but much larger than the scale of the
microstructure or planes of symmetry inducing the primary
anisotropy. The unit vector ni normal to these cracks and ti their
unit tangent vector are such that (ni, ti) forms an orthonormal
direct basis; uþ

i (respectively u�
i ) designates their upper face (resp.

the lower face) such that ni is oriented from u�
i toward uþ

i ;
ui ¼ uþ

i Wu�
i corresponds to the domain occupied by these cracks.

We denote by ½½uðxÞ��i ¼ uðx˛uþ
i Þ � uðx˛u�

i Þ the displacement
jump between the two faces uþ

i and u�
i for any point x˛ui and



classical unilateral conditions are retained (see for instance
Leguillon and Sanchez-Palencia, 1982):8<
:

EunðxÞFi ¼ EuðxÞFi$ni � 0
ni$sðxÞ$ni � 0
EunðxÞFiðni$sðxÞ$niÞ ¼ 0

;cni (4)

in which s is the local equilibrated stress field within the RVE. As
classically, small perturbations assumption, rate independent and
isothermal conditions are considered in the whole study.

Assuming dilute concentration of microcracks, the solution of
the homogenization problem comes to sum up the contributions of
each family of parallel microcracks. Therefore, the analysis can
classically be reduced to the study of an elementary cell weakened
by a single set of microcracks having a same unit normal n and
a mean length 2l (Fig. 2). N denotes the number of defects per unit
surface and u represents the domain occupied by the cracks.

As a general recall (Nemat-Nasser and Hori, 1993; Zaoui, 2002),
the macroscopic stress S and strain E tensors and the macroscopic
free energyW on a cellA are respectively defined as average values
of microscopic stress s and strain ε fields and local free energy,
namely:

S ¼ hsiA (5)

E ¼ hεiA (6)

and

W ¼ 1
2

D
ε : C0 : ε

E
A

(7)

with the integral operator h$iU ¼ ð1=jAjÞRUð$ÞdS and dS the surface
element. Still, particular attention should be paid to such

definitions in the specific context of cracked bodies due to the
presence of discontinuity surfaces (Suquet, 1982). Indeed, let
denote by A ¼ A� u the area of the matrix phase, v(x) the
outward unit normal to u and T(x, v(x)) the traction along the crack
faces for any point x˛u. Decomposition of local fields over the cell
and application of the divergence theorem allow to relate macro-
scopic and microscopic quantities. Typically, for the macroscopic
stress, one has (dx the length element):

S ¼ hsiA þN
2

Z
u

ðTðx;vðxÞÞ5xþx5Tðx;vðxÞÞÞdx ¼ hsiA (8)

which appears to be trivial for open microcracks (for which T(x,
v(x))¼0onanypointx˛u) but is also satisfied forclosedmicrocracks
since Tðx˛uþ; vðxÞÞ¼sðxÞ$n ¼ �Tðx˛u�; vðxÞÞ ¼ sðxÞ$ð�nÞ for
any point x˛u. On the other hand, the macroscopic strain E reads
(Hashin, 1988):

E ¼ hεiA þ N
2

Z
u

ðuðxÞ5vðxÞ þ vðxÞ5uðxÞÞ dx

¼ hεiA þ N
2

Z
uþ

ðEuðxÞF5nþ n5EuðxÞFÞdx (9)

The average strain field on the solid part hεiA is therefore not
sufficient to describe E, the contribution of displacements jump on
the cracks must be taken into account in its expression. At last, the
macroscopic free energy of the material is a finite quantity exclu-
sively defined on the matrix part of the material, that is:

W ¼ 1
2
�
ε : C0 : ε

�
A (10)

Again, it can be shown that for crackedmedia,W is given by (see
for instance Telega, 1990):

W ¼ 1
2

Z
vA

uðxÞ$sðxÞ$vðxÞ dx ¼ 1
2
S : E�N

2

Z
uþ

EuðxÞF$sðxÞ$ndx

(11)

with vA ¼ vAWu the boundary of the solidmatrix (according to the
integration domain, one should consider for v(x) in (11) the
outward unit normal toA, that is vðxÞ ¼ �n for uþ and v(x)¼ n for
u�). For openmicrocracks (load free), expression (11) reduces to the
elastic energy (1/2)S:E corresponding to the classical form of the
Hill lemma for continuous media. In what follows (Section 3.4), the
importance of the second term of (11) will be emphasized, in
particular for the case of closed microcracks embedded in the
orthotropic matrix.

Uniformboundary conditions applied on the boundary vA can be
given either by stresses or displacements. In the present case, we
consider stress boundary conditions on any point x of vA with
outward unit normal v, namely sðxÞ$vðxÞ ¼ S$vðxÞ; cx˛vA, in
order to take advantage inwhat followsof fracture-mechanics based
solutions.

Since main definitions and boundary conditions are clearly put
forward, the objective is now to derive various local fields involved
and to determine the effective microcracks contribution. In this
way, similarly to Andrieux et al. (1986), the problem P is decom-
posed into two sub-problems, as shown in Fig. 2:

� in the sub-problemPð1Þ, the displacement field uð1Þ corresponds
to that of the homogeneous virginmaterial subjected to uniform
stress conditions; accordingly the related local stress sð1Þ and
strain ε

ð1Þ fields are uniform and must comply with the average
stress rule hsð1ÞiA ¼ S andEð1Þ ¼ hεð1ÞiA ¼ ½C0��1 : S from(6),Fig. 2. Decomposition of the considered homogenization problem.

Fig. 1. Representative Volume Element in the two-dimensional case.



� for the sub-problem Pð2Þ, the displacement field uð2Þ is induced
by the displacement jump [u] between the crack faces; the
related local stress sð2Þ is in this case self-equilibrated, i.e.
hsð2ÞiA ¼ 0 from (8); on the other hand, since
hεð2ÞiA ¼ ½C0��1 : hsð2ÞiA ¼ 0; the macroscopic strain reads
from (9):

Eð2Þ ¼ N
2

Z
uþ

ðEuðxÞF5nþ n5EuðxÞFÞdx (12)

Introducing two scalar variables b and g related to the normal
EunðxÞF ¼ EuðxÞF$n and tangential EutðxÞF ¼ EuðxÞF$t average
displacement jump components on the cracks faces:

b ¼ N
Z
uþ

EunðxÞFdx; g ¼ N
Z
uþ

EutðxÞFdx (13)

the macroscopic strain in Pð2Þ can be expressed as follows:

Eð2Þ ¼ bn5nþ g

2
ðn5tþ t5nÞ (14)

Due to the above decomposition, the overall strain of the
problem P is then given by

E ¼ Eð1Þ þ Eð2Þ (15)

On the other hand, the overall free energy per unit surface W
defined by (10) with ε ¼ εðuð1Þ þ uð2ÞÞ can be expressed as the sum
of two contributions (Andrieux et al., 1986):

W ¼ 1
2

D�
ε
ð1Þ þ ε

ð2Þ
�
:C0 :

�
ε
ð1Þ þ ε

ð2Þ
�E

A ¼ Wð1Þ þWð2Þ (16)

for which have been taken into account the uniformity of εð1Þ and
the property hεð2ÞiA ¼ 0. W(1) is the free energy of the virgin
material related to the problem Pð1Þ:

Wð1Þ ¼ 1
2

D
ε
ð1Þ : C0 : εð1Þ

E
A

¼ 1
2
Eð1Þ : C0 : Eð1Þ (17)

and Wð2Þ corresponds to the contribution of displacement discon-
tinuities in problem Pð2Þ. It follows from (11) that:

Wð2Þ ¼ 1
2

D
ε
ð2Þ : C0 : εð2Þ

E
A ¼ �N

2

Z
uþ

EuðxÞF$sð2Þ�x�$ndx
¼ �N

2

Z
uþ

�
EunðxÞFn$sð2ÞðxÞ$nþ EutðxÞFn$sð2ÞðxÞ$t

�
dx

¼ �1
2

�
bn$sð2Þ$nþ gn$sð2Þ$t

�
(18)

for which use has been done of the fact that the microscopic stress
sð2Þ remains constant on u under the assumption of small micro-
cracks density ðsð2ÞðxÞ ¼ sð2Þ; cx˛uÞ. Note that these general
results (Eq. (16)e(18)) are valid for any linear elastic solid matrix
and may be particularly useful in the case of the orthotropic matrix
considered in the study.

3. Free energy of an orthotropic medium weakened by
arbitrarily oriented microcracks

3.1. Expression of the free energy as function of microcracks
displacements jump

The assumption of microcracks dilute concentration allows to
apply basic solutions of anisotropic elasticity theory to derive
expressions of the crack displacements jump and then the free

energy. Such determination of the displacements solutions has
been investigated through complex potential theory. For any point
x along an arbitrarily oriented crack, the displacement jump takes
the form (Lekhnitskii, 1963; Horii and Nemat-Nasser, 1983; Mauge
and Kachanov, 1994 or Tsukrov and Kachanov, 2000):

EuðxÞF ¼ 4
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � x2

p
n$
�
�sð2Þ

�
$H; cx˛½�l;þl� (19)

Expression (19) is based on classical fracture mechanics solu-
tions; sign (�) is introduced to be consistent with the stress field
sð2Þ considered in sub-problem Pð2Þ that should ensure the
decomposition P ¼ Pð1Þ þ Pð2Þ under frictionless conditions. The
symmetric second-order tensor H takes the following form in the
crack coordinate system (n, t):

H ¼ Hnnn5nþ Hntðn5tþ t5nÞ þ Httt5t (20)

whose components depend on the virgin matrix properties and on
the crack orientationwith initial symmetry axes (angle f ¼ ðe1;nÞ,
Fig. 3):

Hnn ¼ Cð1� Dcos 2fÞ; Hnt ¼ CDsin 2f; Htt ¼ Cð1þ Dcos 2fÞ
(21)

with scalars C and D related to the initial stiffness components:

C ¼ p

4

ffiffiffiffiffiffiffiffiffiffiffiffi
C0
1111

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
C0
2222

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C0
1111C

0
2222 � ðC0

1122Þ2
q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

C0
1212

þ 2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C0
1111C

0
2222

q
� C0

1122

C0
1111C

0
2222 � ðC0

1122Þ2
!vuuut

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C0
1111

q
�

ffiffiffiffiffiffiffiffiffiffiffiffi
C0
2222

q
ffiffiffiffiffiffiffiffiffiffiffiffi
C0
1111

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
C0
2222

q

(22)

Note that the above constants characterize the amount of the
structural anisotropy. In particular, for cubic symmetry or isotropy
(for which C0

1111 ¼ C0
2222), one gets D ¼ 0.

Fig. 3. Geometrical representation of the crack coordinate system.



Introduction of (20) within (19) leads to the following expres-
sions of the normal and tangential components of the displacement
jump EuðxÞF between the crack faces:

EunðxÞF ¼ 4
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � x2

p h
Hnnn$

�
�sð2Þ

�
$nþ Hntn$

�
�sð2Þ

�
$t
i

EutðxÞF ¼ 4
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � x2

p h
Hntn$

�
�sð2Þ

�
$nþ Httn$

�
�sð2Þ

�
$t
i ;

cx˛½�l;þl� (23)

An important remark concerns the existence of a coupling
between cracks mode related to the anisotropic context. Indeed, for
the two following cases:

� the virgin material is such that C0
1111sC0

2222 (so D s 0),
� the crack orientation does not coincide with the orthotropy
axes (nsfe1; e2g so fsf0; ðp=2Þg),

a direct coupling between the normal and tangential cracking
modes is noted since tensor H is a non diagonal one (Hnt s 0):
a normal (resp. tangential) stress n$sð2Þ$ns0 (resp. n$sð2Þ$ts0) on
the crack faces induces both normal ðEunðxÞFs0Þ and tangential
ðEutðxÞFs0Þ crack opening displacements. On the other hand, as
already noted by Mauge and Kachanov (1994) and Tsukrov and
Kachanov (2000), the above mentioned coupling between cracks
modes obviously disappears

� for cubic or isotropic cases (so D ¼ 0),
� or, if the crack is parallel to one of the orthotropy axes (n ¼ {e1,
e2} so f ¼ f0; ðp=2Þg),

since both situations induce a diagonal expression for H (see Eq.
(21)).

Integrating (23) along the crack faces gives rise to the expres-
sions of variables b and g as function of the local stress:

b ¼ 2d
	
Hnnn$

��sð2Þ�$nþ Hntn$
��sð2Þ�$t


g ¼ 2d
	
Hntn$

��sð2Þ�$nþ Httn$
��sð2Þ�$t
 (24)

with d ¼ N l2 the crack density parameter (Bristow, 1960; see also
Budiansky and O’Connel, 1976). This corresponds to results by
Mauge and Kachanov (1994) and Tsukrov and Kachanov (2000). In
other terms, the normal and tangential local stresses on the crack
depend as follows on b and a:

n$
�
�sð2Þ

�
$n¼ 1

2d
½G11bþG12g� ; n$

�
�sð2Þ

�
$t¼ 1

2d
½G21bþG22g�

(25)

with

G11 ¼ Htt

HnnHtt � H2
nt
; G12 ¼ � Hnt

HnnHtt � H2
nt

¼ G21;

G22 ¼ Hnn

HnnHtt � H2
nt

(26)

Taking account (25) in (18) gives

Wð2Þ ¼ 1
4d

h
G11b

2 þ 2G12bgþ G22g
2
i

(27)

and reporting in (16) together with (17) leads to the following
expression of the overall free energy of the orthotropic material

weakened by the considered microcracks system as function of the
displacements jump variables:

W ¼ 1
2
Eð1Þ : C0 : Eð1Þ þ 1

4d

h
G11b

2 þ 2G12bgþ G22g
2
i

(28)

Since crack opening displacements explicitly appear in (28), this
free energy expression accounts for both open and closed micro-
cracks. Analysis of microcracks closure effects which constitutes the
main originality of the present study will be examined later in
Subsection 3.3 and fully exploited in Section 4.

3.2. Expression of displacements jump variables as function of
macroscopic quantities

The free energy of the material describes the elastic behavior of
the microcracked material for a given density d. In this way, we
intend to express W as a function of the macroscopic strain E
uniquely, the microcrack density parameter d being fixedð _d ¼ 0Þ.
To this end, one may express b and g as function of E. Following
Andrieux et al. (1986) and Pensée et al. (2002), we propose an
analysis of reversible conditions for which the dissipation D must
cancell:

D ¼ S : _E� _W ¼ 0 (29)

Combining Pð1Þ (in which S ¼ C0 : Eð1Þ) with Eqs. (14) and (15)
yields to the expression of the macroscopic stress as a function of
variables E, b and g:

S ¼ C0 :
�
E� bn5n� g

2
ðn5tþ t5nÞ

�
(30)

Such remark is valid also for the free energy from relation (28).
In this latter case, the time derivation of W then leads to:

D ¼ �vW
vb

_b� vW
vg

_g ¼ 0; c
�
_b; _g
�

(31)

for open or for frictionless closed microcracks as considered in the
whole study. It follows that:

8>><
>>:
vW
vb

¼ 0

vW
vg

¼ 0
5

8><
>:
n$S$n ¼ 1

2d
½G11bþG12g� ¼ n$

�
�sð2Þ

�
$n

n$S$t ¼ 1
2d

½G12bþG22g� ¼ n$
�
�sð2Þ

�
$t

(32)

Accordingly, Eq. (32) clearly shows the stress transfer from
macroscale to microscale, in particular on the crack faces, in
agreement with the dilute concentration hypothesis. Moreover,
note also that (24) relates the displacements jump variables b and g

to the overall stress S:

b ¼ 2d½Hnnn$S$nþ Hntn$S$t�;
g ¼ 2d½Hntn$S$nþ Httn$S$t�

(33)

At this stage, the derivation of a closed-form expression of the
macroscopic free energy as function of the macroscopic strain E
requires to express b and g as function of E (and d) instead ofS. This
is done by taking advantage of the dilute concentration assumption
for which one can make the approximation SzC0 : E (or equiva-
lently to neglect second-order terms in d). So that, introducing Eq.
(30) within (33), one has the following approximate expressions:



b ¼ 2d½HnnN : EþHntT : E�; g ¼ 2d½HntN : EþHttT : E� (34)

where N and T denote second order symmetric tensors defined by:

N ¼ C0 : n5n

¼ a1Iþ a2n5nþ a3ðn$A$nÞA þ a4½ðn$A$nÞIþ A�

T ¼C0:
1
2
�
n5tþ t5n

�
¼ a2

2
ðn5tþ t5nÞ þ a3ðn$A$tÞA þ a4ðn$A$tÞI

(35)

Equation (34) appear then as strain localization relations which
determine E(2) as a function of E from (14).

3.3. Openingeclosure criterion

These above expressions of the average crack displacements
jump allow to distinguish the microcrack status. Indeed, in accor-
dancewith unilateral conditions (4),microcrackswith normaln are:

� open when the normal average crack displacement is strictly
positive (b > 0),

� frictionless closedwhen such component comes to zero (b¼ 0),

whatever the tangential value g. In view of previous developments,
we can thus introduce a strain-based openingeclosure criterion in
the context of orthotropic media weakened by arbitrarily oriented
cracks.

Considering expressions (34), the following openingeclosure
characteristic function is defined:

gðE;nÞ ¼ HnnN : Eþ HntT : E ¼ M : E (36)

in which M is a symmetric second-order tensor which reads:

M ¼ HnnNþ HntT (37)

For each set of parallel cracks set with normal n, the transition
from crack opening to crack closure occurs when g(E, n) cancels,
such that:

� microcracks are open if g(E, n) > 0,
� microcracks are closed if g(E, n) � 0.

It must be emphasized that, even for isotropic matrix or crack
orientation coinciding with the orthotropy axes, the formulation
(36) involves both normal and shear strain on the crack faces.
Indeed, for an isotropic matrix such that C0 ¼ l0I5Iþ 2m0I5 I
(with l0 and m0 the Lamé constants), Eq. (36) reads
gðE;nÞ ¼ 2m0trðE$n5nÞ þ l0tr E, which has been obtained by
Andrieuxet al. (1986) and Pensée et al. (2002). In thisway, it appears
as much more general than the phenomenological criterion
n$E$n ¼ 0 employed by different authors and restricted to the
normal strain (for instance Chaboche et al., 1996; Chaboche and
Maire, 2001, 2002; Halm et al., 2002; Maire and Chaboche, 1997;
Maire and Lesne, 1998).

3.4. Importance of the Hill lemma for anisotropic cracked media

For continuous media (without cavities), the Hill lemma allows
to express the work equivalence between the micro and themacro-
scales over the cell A (Christensen, 1979; Hashin, 1983; Hazanov,
1998; Hill, 1965):

hsiA : hεiA ¼ hs : εiA (38)

In such a case, this leads to the correspondence between the
average of the free energy over A and the macroscopic elastic
energy ðW ¼ ð1=2ÞS : EÞ. As underlined by Eq. (11), the context of
cracked bodies requires an extended formulation of the Hill lemma
(see for instance discussions by Suquet, 1982 or Telega, 1990). For
illustration purpose, let us compute in the present case of ortho-
tropic matrix with arbitrarily oriented microcracks the amount of
the following quantity:

D ¼ W � 1
2
S : E ¼ �N

2

Z
uþ

EuðxÞF$sðxÞ$ndx (39)

According to the decomposition of the problem P, it is readily
seen that:

D ¼ �N
2

Z
uþ

EuðxÞF$
�
sð1ÞðxÞ þ sð2ÞðxÞ

�
$ndx (40)

where the displacements jump vector EuðxÞF for any point x on the
crack corresponds to sub-problem Pð2Þ (no discontinuity in Pð1Þ)
and the stress field sð1Þ of sub-problem Pð1Þ is homogeneous so that
sð1ÞðxÞ ¼ S, cx˛A. By introducing the already defined variables
b and g, it comes:

D ¼ �1
2
S :
h
bn5nþ g

2
ðn5tþ t5nÞ

i
þWð2Þ (41)

with Wð2Þ given by (27). Moreover, taking into account the
approximation SzC0 : E (justified by the assumption of micro-
cracks dilute concentration) and the expressions of N and T defined
by (35), one gets finally:

D ¼ �b

2
N : E� g

2
T : Eþ 1

4d

h
G11b

2 þ 2G12bgþ G22g
2
i

(42)

By the help of (26) and of expressions (34) of b and g, and taking
into account the unilateral conditions, one can express the quantity
D according to the microcracks opening/closure status:

� if microcracks are open (i.e. gðE;nÞ > 0):

D ¼ 0 (43)

� if microcracks are closed (i.e. gðE;nÞ � 0):

D ¼ gHnt

2
�
HnnHtt � H2

nt

� ðHnnN : Eþ HntT : EÞ

¼ gHnt

2
�
HnnHtt � H2

nt

�g�E;n� (44)

In the open state of microcracks, D vanishes systematically;
indeed, as mentioned before, microcracks surfaces are in this case
free of traction and the classical form W ¼ ð1=2ÞS : E of the Hill
lemma is obviously still valid. In contrast, if the microcracks are
closed, the only situations for which D ¼ 0 are the following ones
such, that Hnt ¼ 0 (see Section 3.1 for the definition of Hnt):

� the matrix has a cubic symmetry or is isotropic; this result
therefore justifies the approach of Kachanov (1993) (consisting
of computing the overall free energy by means of



W ¼ ð1=2ÞS : E) for isotropic materials but could not be used
in the case of orthotropic matrix,

� microcracks are parallel to the orthotropic axes.

In the most general case of an orthotropic mediumweakened by
microcracks having arbitrary orientation, (44) readily proves that
the free energy differs from ð1=2ÞS : E, pointing out the importance
of the extended form (11) of the Hill lemma for microcracked
media.

4. Final expression of the overall energy

By combining (14 and 15) and (28) together with the assump-
tion of microcracks dilute concentration, one obtains the overall
free energy:

W ¼ Wð1Þ þWð2Þ ¼ W0 þWd (45)

with W0 the free energy of the virgin material

W0 ¼ 1
2
E : C0 : E

¼ a1
2
tr2Eþ a2

2
tr
�
E$E

�þ a3
2
tr2
�
E$A

�þ a4tr E tr
�
E$A

�
(46)

and Wd the contribution of microcracks:

Wd ¼ � E : C0 : Eð2Þ þWð2Þ ¼ �bN : E

� gT : Eþ 1
4d

h
G11b

2 þ 2G12bgþ G22g
2
i (47)

From (26) and (34) and introducing unilateral conditions, the
free energy can be written for both microcracks states, namely:

� if cracks are open (g(E, n) > 0):

W ¼Wopen ¼W0�d
h
HnnðN :EÞ2þ2Hnt

�
N :E

��
T :E

�þHttðT :EÞ2
i

(48)

� if cracks are closed (g(E, n) � 0):

W ¼Wclos ¼W0þ
d

HnnHtt�H2
nt

h
HnnH2

ntðN :EÞ2

þ2H3
nt
�
N :E

��
T :E

�þHtt

�
2H2

nt�HnnHtt

�
ðT :EÞ2

i (49)

It is interesting to emphasize that, for any given orthotropic
matrix described by the stiffness C0 and any microcrack density
parameter d, expressions (48 and 49) remarkably satisfy the
following form at the transition between the microcracks opening
and closure states:

cðE;nÞ; gðE;nÞ ¼ 0;
v2
h
Wopen �Wclos

i
vE2 ¼ s

�
C0;d;n

�
M5M

¼ s
�
C0; d;n

� vg
vE

5
vg
vE

ð50Þ

withM the second-order tensor expressed in Eq. (37) and s a scalar
function of the solid matrix elastic properties and of the crack
density parameter d as well as cracks orientation:

s
�
C0; d;n

�
¼ �2dG11 ¼ �2d

Htt

HnnHtt � H2
nt

(51)

As demonstrated by Curnier et al. (1995) and then by Cormery
and Welemane (2010), the quadratic form (50) ensures in all

cases that the free energy functionW is continuously differentiable,
or equivalently that the stress-strain response is continuous at
the microcrack deactivation point, that is on the hypersurface
g(E, n) ¼ M:E ¼ 0 between the open (g(E, n) > 0) and closed
(g(E, n) > 0) strain-based domains.

In order to getmore explicit expressions that put in evidence the
coupling between primary anisotropy (through tensor A) and
crack-induced one (through vector n), we introduce the notations
k1 ¼ C and k2 ¼ CD, so that components of tensor H in the crack
coordinate system (n, t) come to:

Hnn ¼ k1 þ k2 � 2k2ðn$A$nÞ; Hnt ¼ �2k2ðn$A$tÞ; Htt

¼ k1 � k2 þ 2k2ðn$A$nÞ (52)

From this, one can first express the openingeclosure charac-
teristic function as a function of E, n and A:

gðE;nÞ ¼ gðE;n;AÞ ¼ h1trðE$n5nÞ þ h2trEþ h3trðE$AÞ
þ h4trðE$n5n$AÞ (53)

with coefficients fhpðC0;n;AÞgp¼1;4 depending on n$A$n, as
described in Appendix A (Eq. (A.1)). As an example for an isotropic
matrix, one recovers h1¼2m0, h2¼ l0 and h3¼ h4¼ 0, as mentioned
previously. The anisotropic context induces consequently an
explicit coupling between structural and induced anisotropies even
in the definition of the microcracks opening/closure status.

Moreover, we can deduce also the global form of the potential:

W ¼ W0

þd

2
66664
c1tr2Eþ c2tr2ðE$AÞþ c3tr E trðE$AÞ
þc4tr2ðE$n5nÞþ c5tr E trðE$n5nÞþ c6trðE$E$n5nÞ
þc7tr E trðE$n5n$AÞþ c8trðE$AÞtrðE$n5nÞ
þc9trðE$AÞtrðE$n5n$AÞ
þc10trðE$n5nÞtrðE$n5n$AÞ

3
77775

(54)

This clearly demonstrates that W is positively homogeneous of
degree two with respect to E, linear in the crack density d, radially
symmetric with respect to n and depends on the orientation n of
the cracks with respect to symmetry axes described by tensor.
Coefficients fcpðC0;n;AÞgp¼1;10 in (54), which depend also on
n$A$n, obviously take expressions depending on the microcracks
status, that is (see detailed expressions in Appendix A):

� fcpðC0;n;AÞgp¼1;10 ¼ fcopenp ðC0;n;AÞgp¼1;10 in the open state
(gðE;n;AÞ > 0, Eq. (A.2)),

� fcpðC0;n;AÞgp¼1;10 ¼ fcclosp ðC0;n;AÞgp¼1;10 in the closed state
(g(E, n, A)�0, Eq. (A.3)).

5. Discussion and applications

We propose in this last section to highlight some of the above
results derived from the micromechanical approach. Both general
considerations on the resulting anisotropy and numerical applica-
tions illustrating the effective elastic properties are presented.

5.1. Interaction between primary and microcracks-induced
anisotropies

The overall anisotropy of the microcracked material results
from:

� the primary orthotropy of the matrix (uncracked material),
� the microcracks-induced anisotropy governed by the orienta-
tion of the defects,



� the openingeclosure state of microcracks; at fixed microcracks
density, a specific anisotropy may be induced by the opening/
closure configuration of themicrocracks systems. This has been
already demonstrated by Welemane and Goidescu (2010) in
the context of initially isotropic materials with isotropic
microcracks density distribution. The result for this case is
contained in (74) provided coefficients fcðiÞp ðC0;ni;AÞgp¼1;10 are
defined according to the microcracks status, but will not be
detailed here.

The above micromechanical derivations allow to address
the crucial question of interaction between anisotropies. Indeed,
expression (54) provides explicit contribution of orientational
effects of the considered family of microcracks to the material
overall behavior. Note that the behavior of the solid matrix is
described by means of the free energy W0 expressed in (46)
through the combined invariants of the macroscopic strain E
and structural tensor A. On the other hand, the induced anisot-
ropy depends on n5n and is represented within Wd through the
invariants of combinations of E, A and n5n. Detailing such
latter contribution, one could distinguish three kinds of
coupling between the initial anisotropy and the microcracks-
induced one:

� isotropic-like coupling, that preserves the initial orthotropy of
the material (see 46); in Eq. (54), this feature is represented by
following invariants of E and A (namely terms of coefficients c1,
c2 and c3):

tr2E; tr2ðE$AÞ; tr E trðE$AÞ (55)

whose derivation leads to stiffness tensorial generators that char-
acterize orthotropy (see later Eq. (61)):

I5I; A5A; I5A þ A5I (56)

Note that coefficients c1, c2 and c3 (see Appendix A) involve both
a constant part (function of the virgin properties of the material)
and a scalar dependence of the microcrack orientation with the
material symmetry axes (function also of n$A$n);

� weak anisotropic coupling, that accounts for the loss of mate-
rial orthotropy through a directional dependence identical to
the isotropic context (see Andrieux et al., 1986); this concerns
terms c4, c5 and c6 related to combined invariants of E and n5n

tr2ðE$n5nÞ; tr E trðE$n5nÞ; trðE$E$n5nÞ (57)

whose derivation leads to following stiffness tensorial generators

n5n5n5n; I5n5nþ n5n5I; I5n5nþ n5n5 I (58)

Still, one should note that the present case differs from isotropy
since the amplitude of constants c4, c5 and c6 are affected by the
primary orthotropy through a scalar dependence in n$A$n (see
Appendix A);

� strong anisotropic coupling, accounted by all others terms
(c7ec10), which involves combinations of orientational effects
of E, A and n5n and leads to a complex resulting anisotropy.

5.2. Effective moduli

Expression (54) also reveals the intricate effects in the material
response of the orientation of microcracks and their individual
unilateral behavior. In order to demonstrate such influence, we
propose to analyze the macroscopic elastic properties of ortho-
tropic materials containing a dilute concentration of microcracks,
with account of openingeclosure effects.

To this end, we consider the variations of the elongation L(m)
and bulk k(m) moduli related to each direction of the space of unit
vector m that fully characterize the elasticity of the material (He
and Curnier, 1995). Consider a pure elongation test E ¼ Em5m
in the direction of unit vector m, these moduli are defined by:

LðmÞ ¼ m$S$m
m$E$m

; kðmÞ ¼ trS
trE

(59)

with S the macroscopic stress related to the macrostrain E by
S ¼ C : E, where the effective stiffness tensor of the microcracked
material is given by C ¼ v2W=vE2. One has:

LðmÞ ¼ m5m : C : m5m; kðmÞ ¼ I : C : m5m (60)

The derivation of the free energy (54) gives rise to the overall
stiffness tensor:

By definition of multilinear functions (Curnier et al., 1995; Cormery
and Welemane, 2010), such stiffness tensor exists only on strict
domains of opening (i.e. g(E, n, A)> 0) or closure (i.e. g(E, n, A)< 0)
of microcracks (W is of class C1).

C ¼ C0 þ d

2
6666666666666666664

2c1I5Iþ 2c2A5A þ c3ðI5A þ A5IÞ
þ2c4n5n5n5nþ c5ðI5n5nþ n5n5IÞ
þc6

�
I5n5nþ n5n5 I

�
þc7
2
½ðn5n$A þ A$n5nÞ5Iþ I5ðn5n$A þ A$n5nÞ�

þc8ðn5n5A þ A5n5nÞ

þc9
2
½ðn5n$A þ A$n5nÞ5A þ A5ðn5n$A þ A$n5nÞ�

þc10
2

½ðn5n$A þ A$n5nÞ5n5nþ n5n5ðn5n$A þ A$n5nÞ�

3
7777777777777777775

(61)



Introducing angle j ¼ ðe1;mÞ (Fig. 3), relevant calculations
from Eqs. (2), (60) and (61) lead to the following expressions:

where L0(m) and k0(m) represent the elongation and bulk moduli
of the virgin orthotropic matrix:

L0ðmÞ ¼ L0ðjÞ ¼ a1 þ a2 þ 2a4cos
2jþ a3cos

4j (64)

k0ðmÞ ¼ k0ðjÞ ¼ 3a1 þ a2 þ a4 þ ða3 þ 3a4Þcos2j (65)

In order to illustrate the consequences of microcracks on these
elastic properties, let consider the plane-stress context of a 2D
SiCeSiC composite characterized by Aubard (1995). Coefficients
faigi¼1;4 of the stiffness tensor (2) are obtained as:

a1 ¼ E2
1� n12n21

� 2G12;a2 ¼ 2G12;

a3 ¼ ð1� 2n21ÞE1 þ E2
1� n12n21

� 4G12;a4 ¼ E2ðn12 � 1Þ
1� n12n21

þ 2G12

(66)

with the following engineering constants in the orthotropic axes:
Young moduli E1 ¼ 320 GPa in the direction of e1 and E2 ¼ 170 GPa
in the direction of e2, Poisson ratio n12 ¼ 0.18 and shear modulus
G12 ¼ 90 GPa relative to directions e1 and e2. Note that expressions
of the constants C and D given by (22) read:

C ¼ p

4

ffiffiffiffiffi
E1

p
þ

ffiffiffiffiffi
E2

p
ffiffiffiffiffiffiffiffiffiffi
E1E2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
G12

�2n12
E1

þ 2ffiffiffiffiffiffiffiffiffiffi
E1E2

p
s

;D ¼
ffiffiffiffiffi
E1

p
�

ffiffiffiffiffi
E2

p
ffiffiffiffiffi
E1

p þ ffiffiffiffiffi
E2

p (67)

Figures (4) and (5) show the roses (also known as direction
curves) of generalized moduli L(m) and k(m) of such material
weakened by a set of parallel microcracks with density d ¼ 0.1 and
two different orientations of their unit normal n; the anisotropic
virgin properties are depicted as a reference.

Several important comments can be done in view of previous
results. First, concerning the interaction between initial orthotropy
and microcracks-induced one, Fig. (4-a) and (5-a) show that
microcracking along initial symmetry axes (for example cracks
with normal n ¼ e2 so f ¼ p/2) preserves the structural ortho-
tropy of the material (isotropic-like effect) since it induces an
orthotropic perturbation in the same axes of the uncracked
material. Indeed, for open or closed microcracks, equations (62)
and (63) come to:

L
�
m
� ¼ L

�
j;f¼ p

2

�

¼ L0
�
j
�þ 2d

2
4 c1 þ c4 þ c5 þ c6
þðc3 � 2c4 � c5 � c6 þ c8Þcos2j
þðc2 þ c4 � c8Þcos4j

3
5 (68)

and

k
�
m
�¼ k

�
j;f ¼ p

2

�

¼ k0
�
j
�þ d

�
6c1 þ c3 þ 2c4 þ 4c5 þ 2c6 þ c8
þ½2c2 þ 3c3 � 2c4 � 3c5 � 2c6�cos2j

�
(69)

that are of the same form as L0(m) and k0(m) given by (64) and (65).
Otherwise, an arbitrary orientation of the microcracks induces an
overall complex material anisotropy, as shown by Fig. (4-b) and
(5-b) for (e1, n) ¼ f ¼ p/6.

The question of the unilateral effect of microcracks is also
examined through the analysis of the overall elastic properties (62
and 63) and in particular through the dependence of coefficients
fcpðC0;n;AÞgp¼1;10 with the microcracks status. Accordingly, in
both cases (isotropic-like and anisotropic couplings), the macro-
scopic stiffness is strongly affected by the microcracks
openingeclosure state. Let denote:

LðmÞ; kðmÞ ¼

LopenðmÞ; kopenðmÞ; if gðE;n;AÞ>0
LclosðmÞ; kclosðmÞ; if gðE;n;AÞ � 0 (70)

In the open state first, we note that elastic properties Lopen(m)
and kopen(m) are deteriorated by the presence of cracks
(Lopen(m) � L0(m), kopen(m) � k0(m) whatever m), mostly in:

� directions m corresponding exactly to the normal n to cracks
when the crack is in one of the orthotropy axes, according
to considerations on anisotropies interaction (Figs. (4-a) and
(5-a)); this stands also in agreement with results obtained for
isotropic media;

LðmÞ ¼ Lðj;fÞ ¼ L0ðmÞ þ 2d

2
66664
c1 þ c2cos4jþ c3cos2jþ c4cos4ðj� fÞ
þc5cos2ðj� fÞ þ c6cos2ðj� fÞ
þc7cosfcosjcosðj� fÞ þ c8cos2jcos2ðj� fÞ
þc9cosfcos3jcosðj� fÞ
þc10cosfcosjcos3ðj� fÞ

3
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kðmÞ ¼ kðj;fÞ ¼ k0ðmÞ þ d

2
6666664
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� directions m close to n for an arbitrary defect orientation
(Figs. (4-b) and (5-b)); this latter case is attributed to the
competition between structural and induced anisotropies and
to the stronger influence of the second one as density
d increases.

On the other hand, the closure of microcracks modifies their
contribution; the resulting macroscopic stiffness is much more
complex than in the open state, especially for an arbitrary orien-
tation of microcracks. Indeed, we observe a global recovery of
elastic properties, that is:

a

b

Fig. 5. Roses of the generalized bulk modulus k(m) (in GPa) of a composite material weakened by a single array of microcracks of unit normal n ( : open state, : closed state,
: virgin material).

a

b

Fig. 4. Roses of the generalized elongation modulus L(m) (in GPa) of a composite material weakened by a single array of microcracks of unit normal n ( : open state, : closed
state, : virgin material).



cm; LopenðmÞ � LclosðmÞ and kopenðmÞ � kclosðmÞ (71)

Microcracks closure is then associated to a partial microcrack
deactivation as it exists some m such that Lclos(m) (resp. kclos(m))
remains different from L0(m) (resp. k0(m)). Moreover, it is quite
difficult to quantify in the general case microcracks closure effects
since some directions m are such that LclosðmÞ � L0ðmÞ (resp.
kclosðmÞ � k0ðmÞ) and for others L0ðmÞ � LclosðmÞ (resp. k0ðmÞ �
kclosðmÞ). Yet, some significant unilateral effects should be
highlighted:

� the full recovery of the elongation modulus L(n) in the direc-
tion n normal to microcracks,

� the full recovery of the bulk modulus k(m) whatever the
direction m,

if and only if the crack orientation coincides with the orthotropy
axes (see Figs. 4-a and 5-a). In other terms, one could write


LclosðnÞ¼L0ðnÞ
kclosðmÞ¼k0ðmÞ; cm

; if andonlyifn¼fe1;e2g
�
sof¼

n
0;
p

2

o�
(72)

Let consider the example described in Eqs. (68) and (69). Indeed,
in this case, the following relations exist between coefficients
fcclosp ðC0;n¼e2;AÞgp¼1;10:

cclos1 þ cclos4 þ cclos5 þ cclos6 ¼ 0

6cclos1 þ cclos3 þ 2cclos4 þ 4cclos5 þ 2cclos6 þ cclos8 ¼ 0

2cclos2 þ 3cclos3 � 2cclos4 � 3cclos5 � 2cclos6 ¼ 0

(73)

which leads to the cancellation of degradation terms in Lclos(n)
(for which j ¼ f ¼ p=2) and kclos(m) whatever m (so whatever
j). The result (72) makes then appear a recovery mode when
microcracks stand along symmetry axes identical to the context
of initially isotropic materials (Welemane and Cormery, 2002,
2003).

As a final comment, note that the assumption of dilute
concentration of microdefects easily allows to extend the above
considerations to an orthotropic matrix weakened by an array of N
families of microcracks. Defects of the ith family have same unit
normal ni and mean length 2li, N i denotes the number of micro-
cracks of this family per unit surface. Concerning the overall free
energy, the generalized form of (54) is simply given by summation
of the elementary contributions:

W¼W0þ
XN
i¼1

di

2
6666666666664

cðiÞ1 tr2EþcðiÞ2 tr2ðE$AÞþcðiÞ3 trEtrðE$AÞ
þcðiÞ4 tr2ðE$ni5niÞþcðiÞ5 trEtrðE$ni5niÞ
þcðiÞ6 trðE$E$ni5niÞ
þcðiÞ7 trEtrðE$ni5ni$AÞþcðiÞ8 trðE$AÞtrðE$ni5niÞ
þcðiÞ9 trðE$AÞtrðE$ni5ni$AÞ
þcðiÞ10trðE$ni5niÞtrðE$ni5ni$AÞ

3
7777777777775

(74)

with di¼N il2i the density of the ith set of parallel microcracks and
associated coefficients fcðiÞp ðC0;ni;AÞgp¼1;10 depending on the
microcracks status (open if g(E, ni, A) > 0, closed if g(E, ni, A) � 0).
Accordingly, the recovery condition can be extended in this way:
microcracks whose normal ni corresponds to orthotropy axes no
longer contribute in their closed state to the degradation of the
elongation modulus L(ni) neither to the bulk moduli k(m) what-
ever m.

6. Conclusion and perspectives

This study has focused on the micromechanical determination
of overall anisotropic multilinear response of 2D initially ortho-
tropic materials weakened by microcracks under the dilute
concentration assumption. These results rigorously extend the
energy-based homogenization approach initially proposed by
Andrieux et al. (1986) for isotropic media to the context of
orthotropic materials. The micromechanical procedure leads to
the derivation of original closed-form expression of the overall
free energy of the microcracked material with account of closure
effects for arbitrarily oriented microcracks. The consideration of
such unilateral behavior constitutes the main contribution of the
study. The explicit expressions obtained provide then a complete
quantification of interaction effects both between primary and
microcracks-induced anisotropies and between opening and
closure states of cracks. Especially, the overall response high-
lights the recovery phenomena induced by the microcracks
closure: the recovery mode is found to be identical to isotropic
case when microcracks stand along symmetry axes. Illustrations
of these various effects are given on the case of a SiCeSiC
composite.

From these basic results, further work will now be conducted
in order to develop a fully-constitutive damage model for 2D
initially orthotropic materials in the framework of Continuum
Damage Mechanics. The overall free energy expression derived in
the present work will allow to introduce both oriented and closure
effects due to microcracks in the material response and damage
evolution. By this way, one can account for the dependence of
such materials behavior on the loading, both on its orientation
(on/off axes loadings) and on its nature (tension/compression
load).

Appendix A. Expression of coefficients

This section provides detailed expressions of coefficients
appearing in Eqs. (53) and (54) for a single set of microcracks with
unit normal n.

Coefficients fhpðC0;n;AÞgp¼1;4 entering the openingeclosure
characteristic function (53) are given by:

h1 ¼ a2ðk1 þ k2Þ
h2 ¼ a1½k1 þ k2 � 2k2ðn$A$nÞ� þ a4ðk1 � k2Þðn$A$nÞ
h3 ¼ a4½k1 þ k2 � 2k2ðn$A$nÞ� þ a3ðk1 � k2Þðn$A$nÞ
h4 ¼ �2a2k2

(A.1)

Coefficients fcpðC0;n;AÞgp¼1;10 entering the free energy (54)
take the following expressions according to the microcracks status:

� if cracks are open ðgðE;n;AÞ > 0Þ; fcpðC0;n;AÞgp¼1;10 ¼
fcopenp ðC0;n;AÞgp¼1;10



� if cracks are closed ðgðE;n;AÞ ¼ 0Þ; fcpðC0;n;AÞgp¼1;10 ¼
fcclosp ðC0;n;AÞgp¼1;10
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