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Abstract Thin-walled textile-reinforced composite parts possess excellent properties, including
lightweight, high specific strength, internal torque and moment resistance which offer opportunities
for applications in mass transit and ground transportation. In particular, the composite material is
widely used in aerospace and aircraft structure. In order to estimate accurately the parameters of the
constitutive law of woven fabric composite, it is recommended to canvass multi-scale modeling
approaches: meso, micro and macro. In the present investigation, based on the experimental results
established by carrying out observations by Scanning electron microscope (SEM), we developed a
micro-scale FEM model of carbon-fiber reinforced thermoplastic using a commercial software
ABAQUS. From the SEM cartography, one identified two types of representative volume
elementary (RVE): periodic and random distribution of micro-fibers in the yarn. Referring to
homogenization method and by applying the limits conditions to the RVE, we have extracted the
coefficients of the rigidity matrix of the studied composites. In the last part of this work, we
compare the results obtained by random and periodic RVE model of carbon/PPS and we compute
the relative error assuming that random model gives the right value.

Introduction

The determination of the mechanical performance of woven fabric composites materials is based on
the study of the behavior of the texture and the composite under different solicitations. Currently,
the multi scale modeling of composites (figure 1) is one of the most used methods and it was
adapted by several researchers. In fact, using this approach, F. Costanzo and L. Gray [1] haves
implanted a survey on periodicity and boundary conditions; P.Boisse [2] has raised the constructive
equations of the mechanical behavior of the composites woven during the forming; Gilles Hivet [3]
has elaborated a mathematical approach to identify the trajectory and the different sections of the
yarn in texture, the profiles of the contacts’ curves and the contact’s sections according to the conic
equations; L. Orgéas [4] has studied in meso-scale, the permeability of the reinforcements woven of
stratified composites by surveying the velocity in such composites; J. Wang [5] has studied the
predictive mechanical behavior modeling in woven composite structure, by analyzing 3D finites
elements ; P. Badel and P. Boisse [6,7] have determined fibers orientations, in reinforcements
woven during and after composites’ formation.
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Fig. 1: Multi-scale modeling techniques in woven fabric composites

In order to identify the behavior of the studied composite using multi-scale approach, we have
developed in this paper a simulation of the reinforcement’s woven fabric composite (figure 1).

We have started by using an experimental characterization of the texture to prepare a geometrical
description of fibers’ diameters and distributions in the Polyphenylene sulfide (PPS) matrix. Then,
we identified two types of RVE (periodic and random one) in order to estimate the errors’ values in
the results. Then, basing on the homogenization method and after applying the boundary conditions
to the RVE, one has extracted the coefficients of the rigidity matrix and the parameters of the yarn
composites. Finely, we have identified the able RVE to characterize accurately the yarn of our
woven fabric composite.

I.  Carbon-fiber reinforced thermoplastic materials

The composite texture consists of a carbon fibers and a PPS matrix and the volumetric fraction of
the fibers in the composites is Vy = 0.5 .The characteristics of the materials forming the composite

are summarized in the following table:

Table 1: The characteristic of the materials forming the composite

Material | Filament | Volumetric YOUNG Shear Poisson’s Constrained | Maximum Thermal
diameter | Mass p module Module ratio of rupture Elongation dilation
(um) (kg.m™) E(Mpa) G(Mpa) | v (traction) (%) ratio °C’!
MPa
Carbon | 6.24 1800 390 000 20 000 0.35 2500 0.6 0.08 10”
Fiber
PPS 1300 4000 65 100 5107




The characterization of the texture of the composite has been carried out throw two main steps. In
the first one, we determine the texture’s character, the trajectory, and the sections of the yarns
(Texture of the composite: satin 5x1 in three layers). Then, in a second step, we find out the
micrographic arrangement of the fibers in a yarn (figure 3).
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Fig. 2: (a) micrographic of three ply fabric specimens (meso-scale), (b) size and
arrangement of the micro fibers in the yarn

The yarn is composed by thousands of small fibers whose diameter in the order of 6.24 ums (figure
2). This value is established by calculating the average of 150 fibers’ diameter. The disorganized
arrangement of the fibers in the yarn presented in figure3 will produce a variation in the local
properties influenced by the distance between these fibers. Then it is necessary to start by
characterizing the fibers’ arrangement in order to determine the minimal size of the representative
volume elementary (RVE) of the yarn. To do so, we can characterize the distribution of the fibers
by analyzing the yarn’s picture and using the covariance concept adapted already by [8]:

C(x,x+h)=P{xed,x+hed} (2)

The covariance is defined as the probability of adherence of two points” x “and “x+h” in the same
phase d, and it can be valued by carrying out the Fourier’s transformation of the figure 2.
According to the works of P.Badel and al [7] the periodicity of the microstructure is presented by
the periodicity of the covariance.

ll. The micro scale modeling
1. The geometric model of RVE

The choice of the RVE, which is a cubic shape, was based on several researches works [10, 11, 12
and 13]. This RVE should have the smallest size which makes it representative of the yarn material.
We opted for this step of the simulation for two cubic cells shapes and we considered the fiber has a
cylindrical form. The first cell (figure 5-a) is periodic and the second is random (figure 5-b). The
volumetric fraction of the reinforcement is calculated by the report between the volume of the fibers
and the total volume of the basic cell:

Vi nd?
V — Fibers __ n (3)
VTotal 4a?

Where: d is the diameter of the fiber, a is the side of the basis cell, and n: is the number of fibers by
cell



Choosing the size of representative volume elementary must satisfy the following criteria:

1) It must be small enough to take into account the microscopic structure of material, and
sufficiently large to describe the overall behavior of material.

2) The properties must be independent of the location of the material where it was taken.

We have chosen to make statistical case to identify the yarn random representative volume
elementary. One varies the window size. We identify in each window, the minimum and maximum
fibers volume fraction by scanning the window in the photograph of the structure see Figure 3 and
4.

Fig. 3: Evolution of bounds for local volume fraction with window size
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Fig. 4: Variations in local volume fraction of fibres

Two types of representative volume elementary (RVE): periodic and random distribution of micro-
fibers in the yarn has identifying (figure 5):
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Fig. 5: The periodic representative elementary volume of the yarn, number of fiber N =
2 fibers (a) and v = 0.505. The random representative elementary volume of the yarn,
number of fiber N= 14 fibers and v¢= 0.475 (b)

2. The elastic constructive equations of the yarn’s homogenesation

The elastic properties, are calculated by a periodic homogenization via a finite element method
developed using ABAQUS software. It will give us the opportunity to study the elastic behavior of
the yarn and to calculate the elastic coefficients of the composite material. For 3D RVE (cubic
shape), submitted to a volumetric load, its elastic behavior can be presented as follow:

E=®co “4)
Where: ¢ is the strain tensor, o is the stress tensor, and @: the suppleness Matrix
Then, the stress distribution in the elementary volume can be written as follow:

o=_Ce (5)
Where @ =C "'

The mechanical behavior of the yarn is equivalent and it depends on the mechanical and geometric
properties of the different constituent: the fiber geometry, behavior, and distribution in the matrix,
the matrix behavior and the characteristic of the fiber-matrix interface. The process of
homogenization consists in assimilating a material characterized by an important heterogeneity by a
homogeneous one. This process was applied to the RVE.

The main step of the homogenization consists in the determination of the stress and displacement
fields within the RVE.

The average of the microscopic stress of this RVE can be expressed as follow:

1
(0) =1 [,0dv =7 (©)
In the same way, the average of the microscopic strain is give by:
1
(&) =7 [ edv=E (7)

Where E is the macroscopic strain and ) is the macroscopic stress

From equation (6) and (7), one can write the Hooke criteria:

(0:6) ={o):{e)=): E (3)



=>» The macroscopic stress (3, =(o))) is a linear function of the macroscopic strain (E =<2 >)

X =chomg ©)
Where C"™ represents the macroscopic tensor obtained by the homogenization method.

The calculation of the CE}Z?’ coefficients takes place while calculating the stress field that

corresponds to an imposed macroscopic displacement. Supposing that the yarn represents a
composite with orthotropic characteristic, the macroscopic elasticity relation is expressed as follow:

v [ClEmoclmockmo 0 0 0 ] g
Y22 Ciss  Cr53s  Ci93s 0 0 0 E,,
Yos|_|Clom clomochmo oo 0 0 ||Es
223 0 0 0 Cckm 0 0 |!Ez3
X13 o o0 o 0 cmooo ||Fs
E
2l Lo 0 0 0o 0 chemltz

For 1 ==k=1; 1, j, k, 1 €{1,2,3}, the Cl};%n coefficients, have been determined by imposing a shear
loading whose main directions correspond with the symmetry’s axes of the cell; that’s means:

E=E e Qe +Epe Qe +Eszes Qe (10)

Fori=k and j=1 i,k € {1,2} and j, 1 € {2,3}, the coefficients Cl-hj%’ln, have been determined by
imposing to the basic cell a macroscopic displacement of type "simple shear" which can be
expressed as follow:

E=Ej/2(e; ®ej +e Qei) (11)

In the order to have a periodic applied displacement’s filed, it is necessary that every cell satisfies
the following conditions [10]:

1. The continuity of the vector ¢.n

2. The compatibility of the strain fields ¢; therefore the neighboring should not be separated or
superposed.

The periodicity of the passage from a cell to its neighbor is equivalent to pass a face from one face
of the cell the cell to the opposite face. The condition (1) becomes: 6.7 must be on the first opposite
to that in the other face. The stress field o is called periodic on the cell while the field c.# is anti-
periodic on its contour.

lll. Homogenization of the yarn based on micro scale finite element model

1. The micro scale constructive finite elements models

The adapted method consists in applying three simple traction loads following the three main axes
(1, 2 and 3) and three simple shear loads in the directions 2-3, 1-2 and 2-3 (figure 4). In order to
apply this method, we should impose a displacement loading and put a specific boundary conditions
for each load, this method has been adopted by several authors [10, 14].



Fig. 6: The six different cases to be solved in order to calculate the homogenized elastic properties
of the RVE.

The calculation of }; is approximated by the summation of all the volumetric elements of structure
already calculated by elementariness integrations throw every finite element. Then we have the
following equation:

1 Yh=1Vk(0ij)
ij ={0) = [ odv = Z—0= (12)

n
k=1Yk

Where: V) is the volume of the k ™ element and o ij is the composing ij of the microscopic
constraint of the k ™ element.

The simulation is done on the Abaqus standard software. The tie boundary conditions it is imposed
between the fibers and the matrix.

The REV mesh form is tetrahedral for the matrix and hexahedral for the fibers. We have generated
2556 hexahedral mesh elements for the fibers and 14060 tetrahedral elements for the matrix.

2. Periodic representative elementary volume:

During the simulation, it is necessary to apply the loads as imposed displacements and to impose
boundary conditions to the limits for every load. At first, we have supposed that the material is
orthotropic. Then, the numeric simulation and the calculations by periodic homogenization gave the
rigidity matrix of the yarn:

198953,521 2916,098 2915,550 0 0 0
2916,099 10427,265 1874,303 0 0 0
2915,550  1874,303 10426,265 0 0 0
€= 0 0 0 5820,813 0 0
0 0 0 0 5960,149 0

0 0 0 0 0 5960,646

The calculation of the inverse rigidity matrix, will give the values of the suppleness matrix ®, so we
can determine the material parameters. These parameters are summarized, in the following table:

Table 2: The periodic RVE elastic parameters

The Young Modules (MPa) Poisson Coefficients Shear Modules (MPa)
E, =197570,919 va3= 0,176 Gyp= 5820
E,=10061,284 vi3=0,237 G5=5960
E; =10060,343 vi,= 0,237 G,= 5960




=>The yarn’s material is unidirectional and the results of the simulation of the periodic RVE using
Von Mises constraint are provided in figure 7.

The Von Mises constraint in the RVE structure is

N 3
o= /EZijSijSij:\/EZij O'ijaij_%(ZRO'kk)z (13)
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Fig. 7: Results of simulation of the RVE, Von Mises constraint in the different loads (plan y z),

3. Random representative elementary volume

By one applying the same boundary conditions and the same loads on the random cell, we can
determine the constants of the rigidity matrix C of the yarn and the suppleness matrix ®, and
consequently we can determinate the material random parameters which are shown in the following
table:

Table 3: The random RVE elastic parameters
The Young Modules (MPa) Poisson’s ratio Shear Modules (MPa)
E,=183019,394 vy3= 0,093 G,3;=4498
E, =11588,548 vi3 = 0,222 G;= 5354
E;=9951,280 v, =0,243 G,=5369

The results of the simulation of the random RVE using Von Mises constraint are provided in figure
8
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Fig. 8: The results of simulation of the RVE, Von Mises constraint in the different loads (plan y z).



4. Comparisons between periodic and random model

The results gotten for the periodic and random model are reported in table 4. We can identify a
fluctuation in the Young modules and the Poisson coefficients among the two models: the relative
error for E, reaches 13% and, for the Poisson coefficients vjsand v3 it is respectively 2, 47% and
6.76%.

These results converge with the 2D studies in simple traction following the (OY) axis achieved by
D.Trias [13], where the Young module present a differentiation of 12% and 6% for the Poisson
coefficient.

Table 4: Computation of effective properties for the periodic and random model of the yarn

Young Module The share Module The poisons ratio
Variables
E, E, E; Gas Gis G V23 Vi3 Vi2
Periodic RVE 197570,919 | 10061,284 | 10060,343 5820 5960 5960 | 0,176 | 0,237 | 0,237
Random RVE 183019,394 | 11588,548 | 9951,280 4498 5354 5369 | 0,093 | 0,222 | 0,243
Relative error (%) 7,95 13,18 1,096 29,39 11,32 11,01 | 89,25 | 6,76 | 2,47

Our survey in 3D simulation will give some results more advanced than [13]. The difference
between the random and the periodic RVE in Shear Modules G;; and Gy, is roughly 11% and
29.39% for G,3. Concerning the Poisson coefficient v,3 the relative error between the two models is
around 89%.

In the numerical results, for the periodic REV, we observe a like value of YOUNG modules E2 and
E3 (E2=10061, 284 MPa and E3=10060,343 MPa) and a regular behavior in the tow transverse
directions. But for the random model, a small difference between the value of the two YOUNG
modules (E2=11588, 548 MPa and E3=9951,280 MPa), this difference is generally due to the
proposed arrangement of fibers and the irregular distances inter-fibers in the REV (see figure 3a-b).
Also a variation of the value of E2 of 13% and the value of G23 of 29,39 % has been observed in
the two cases random and periodic REV. This deference is due to the closeness between fibers in
the random REV who will give a more resistance.

The results of the distribution using Von Mises constraint in the matrix and the fibers (figure 5 and
6) present a huge difference between the two types of REV. Indeed, the random model gives a more
real response than the periodic model.

5. Analytic results

In order to calculate the analytic value of homogenized coefficients by the micromechanics theory,
many theoretical and experimental results are available to estimate and describe properties of
unidirectional long fiber composites, resulting from the work of Hashin (1965) and Hill (1964):
homogenized coefficients obtained by a simplified approach resulting from the implementation, in
parallel or in series, fibers and matrix.

The Voigt model (1889) and the Reuss model (1929) are expressed by [16 and 17]:
Reuss model (transverse model):

Ee = [V/Er + Vin/Epn 17" (14)



The Voigt model (longitudinal model):
E, = Ep. Vi + Ep. Vi (15)
Shear Module and poisson’s ratio are calculated by the mixtures law as follow:
Ve = V. Ve + U Uy (16)
G = [Ve/Gr + Vi /Gy 171 (17)

Halpin and Tsai (1969) have proposed equations designed to achieve a simple synthetic
formulation, this empirical law has to admit that a good approximation of the actual modules of a
unidirectional composite material is given by:

v" Young modulus E; and poisson’s ratio v, they are given by mixtures law
v" Young modulus Er, Gy and vy they are given by the empirical formula:

M _ 1+envy

[T w—— (18)
_ Mg/Mpy -1 (19)
Mg/Mpm + @

Where: M, M,, and My, denote the modulus of the composite strength, modulus fibers and the
modulus of the matrix.

The ¢ factor is a measure of reinforcement provided by the fibers. Its value depends on the
geometry and arrangement of fibers.

The analytical results bases in empirical law are:
E,=197000 MPa ;

E;=E;=7918.718 MPa ;

v=0,175

Particularly, the analytic results prove the numerical prediction in periodic model of E;, poisons
coefficient v,3, but we observe a small variation of the values of E,, Es, vi> and v;3, this difference is
due to the theoretical morphological approximation of the material model, that not appropriately
represent the reality of the composite morphological.

Conclusions:

The micro scale modeling adopted in this work has permitted to extract the elastic features of the
composite yarn and the simulation of the periodic and random RVE gave that the yarn material is
unidirectional. According to the works of D.Trias [13] where two types of 2D representative models
(random and periodic) were compared, we can conclude that the periodic models could be used in
some cases when the observed error is considered like negligible and no assessment for the
material’s security. But this type of model cannot be adopted to calculate accurately the material
properties. The uses of periodic models could cause misjudge estimation (crack in the matrix and
initiation of the damages), contrarily to the random models which can provide useful information
for reliability analysis not achieved with periodic models. We have confirmed the numerical
simulation by classical analytic models (Reuss and Voigt) but it necessitates developing an
appropriate law for our composite yarn. The results gotten using the random RVE will be implanted



shortly in the meso-scale modeling of our woven fabric composite. This study is promotive and it
requires an advance model in damage and the rupture problems and to define the constitutive law of
the yarn.
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