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INFLUENCE OF MATERIAL REMOVAL ON THE DYNAMIC BEHAVIOR

OF THIN-WALLED STRUCTURES IN PERIPHERAL MILLING

V. Thevenot & Turbomeca, Bordes Cedex, France

L. Arnaud and G. Dessein & Laboratoire Génie de Production, Ecole Nationale
d’Ingénieurs de Tarbes, Tarbes Cedex, France

G. Cazenave–Larroche & Turbomeca, Bordes Cedex, France

& Machining is a material removal process that alters the dynamic properties during machining
operations. The peripheral milling of a thin-walled structure generates vibration of the workpiece and

this influences the quality of the machined surface. A reduction of tool life and spindle life can also be
experienced when machining is subjected to vibration. In this paper, the linearized stability lobes
theory allows us to determine critical and optimal cutting conditions for which vibration is not appar-
ent in the milling of thin-walled workpieces. The evolution of the mechanical parameters of the cut-

ting tool, machine tool and workpiece during the milling operation are not taken into account. The
critical and optimal cutting conditions depend on dynamic properties of the workpiece. It is illustrated
how the stability lobes theory is used to evaluate the variation of the dynamic properties of the thin-

walled workpiece. We use both modal measurement and finite element method to establish a 3D rep-
resentation of stability lobes. The 3D representation allows us to identify spindle speed values at which
the variation of spindle speed is initiated to improve the surface finish of the workpiece.

Keywords Thin Wall Machining, Chatter, 3D Stability Lobes, Modal Vibrations, Variable
Spindle Speed

INTRODUCTION

During machining operation vibration between the tool and the work-
piece often occurs. Such vibration induced by chatter, influences the sur-
face quality, dimensional accuracy, and to a lesser extent the tool and
spindle lives. Therefore, it is necessary to prevent the vibration in machin-
ing operations. In the 1950s, S.A. Tobias (1), J. Tlusty (2) and H.E. Merrit
(3) studied the vibration of the tool in the case of orthogonal cutting
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operations and developed the linearized stability lobes theory. The theory
makes it possible to predict cutting conditions for which vibration may
appear. At the end of 1960, Sridhar (4, 5) developed the stability lobes
theory for the milling process, and in the middle of the 1990, Altintas
(6) presented geometrical formulation and analytical method to determine
the stability limits for the tool and=or the workpiece for milling operations.
This theory is mainly used to reduce the tool vibration, but can also be used
to study the vibration of the workpiece (7–12). When a thin walled struc-
ture is machined, its dynamic characteristics change with respect to discrete
time and hence the stability lobes are not valid for the entire machining
operation. We compute a 3D representation of the stability lobes, which
allows us to determine critical and optimal cutting conditions for every
moment of the machining operation. The first and second dimensions
are a representation of the classical stability lobes and the third dimension
represents the relative tool position with respect to the workpiece.

STABILITY LOBES THEORY

This work is mainly based on the stability lobes theory developed by
Y. Altintas and E. Budak (6, 10, 13, 14) and on the consideration of a
simplified regenerative chatter model with one degree of freedom. Our
main objective is to show how to compute the stability lobes for continuous
milling operation. The governing equations of the model provided us an
opportunity to plot the stability lobes. If a reader wants to understand
details of the classical procedures for computing stability lobes, the work
of Y. Altintas and E. Budak provides fundamental illustrations.

For the investigation the following assumptions are made:

(i) The workpiece is flexible as compared to the tool.
(ii) The workpiece can locally be considered as a rigid body in the zone

where the workpiece and the tool are in engagement.
(iii) The workpiece moves along the direction y, which is the direction out

of the plane of the thin wall.

The resulting governing equations of the displacement induced by the
vibration are of the form

€yy þ 2dx _yy þ x2y ¼ x2

k
F ð1Þ

where d ¼ c=ð2
ffiffiffiffiffiffi

mk
p

Þ and x2 ¼ k=m. In this equation, d is the damping
ratio, x is the undamped natural frequency of the considered mode (the
mode that governs the chatter instability), k is the stiffness and F is the



contribution of the cutting force Fc at the mode. The cutting force is made
up of tangential and radial cutting forces. We use the linearized form of the
cutting forces F t ¼ ktðapÞaðaeÞb and Fr ¼ krFt for a ¼ b ¼ 1 where Ft and Fr
are respectively the tangential and radial cutting forces. kt and kr are the
corresponding tangential and radial milling force coefficients and ap and
ae are the axial and radial depth of cut, accordingly.

Computation of the Stability Lobes

We use an orthogonal cutting model even though the lobes shape is not
exactly the same as an oblique cutting model. Given the measurement inac-
curacy for certain cutting parameters, we use an orthogonal cutting model
that is easily fitted with the experimental data. The stability lobes diagram
represents the critical axial depth of cut, (ap)crit and the spindle speed, X.
The lobes are plots of the parametric functions (ap)crit ¼ ap(xc) and
X ¼ X(xc), where the parameter xc is the vibration frequency of the work-
piece. The parametric functions are obtained from the regenerative model
shown in Figure 1. A systematic derivation of the functions can be found in
(13, 14). In those publications, the limiting condition of stability with
regard to the parametric function (ap)crit ¼ ap(xc), in particular, is given by

ðapÞcrit ¼
2p

zayykt<e½GyðjxcÞ�
ð2Þ

where z is the number of teeth on the cutter and <e½GyðjxcÞ� is the real part
of the structural transfer function of the vibrating system. Equation (2) is
simply obtained by solving the corresponding characteristic equation of
Equation (1) at criticality. ayy is the directional dynamic milling coefficient

FIGURE 1 Regenerative cutting model of a single degree of freedom system.



in the y direction, and this is described by

ayy ¼ÿ1

2
fcos2/ex þ2kr/ex þ kr sin2/ex ÿcos2/st ÿ2kr/st ÿkr sin2/stg ð3Þ

where /ex is the exit angle of the tool and /st is the start angle of the tool
(see Figure 2).

The expression for <e½GyðjxcÞ� is given by

<e½GyðjxcÞ� ¼
1

k

1ÿ d2

ð1ÿ d2Þ2 þ 4d2d2

" #

ð4Þ

where d ¼ xc=x, x is the natural frequency of the mode, k is the stiffness
and d is the damping ratio.

The limiting stability conditions with respect to the function X ¼ X(xc)
is given by

X ¼ 60xc

z 2npþ 2pÿ 2 arctan d2ÿ1
2dd

� �� � ð5Þ

where n is the number of full vibration cycle between the two teeth.

FIGURE 2 Start and exit angle in down milling.

FIGURE 3 Layout of linear stability lobes.



To plot the stability lobes, the parameter xc must be higher than the
natural frequency of the system. In this regard, we obtain for one natural
mode and for different values of n, the diagram shown in Figure 3.

VARIATIONS OF THE DYNAMIC CHARACTERISTICS

When a thin walled structure is machined, we often see that the
machined surface is not homogeneous in terms of surface quality. The
dynamic behaviour of the workpiece depends on the tool position and
moreover, the dynamic behaviour of the vibrating mode is different when
the excitation force is at a node or an antinode. Incidentally, we introduce
a third dimension in the stability lobes diagram, which is the direction x of
the machining operation (see Figure 4).

The modal representation of the displacement for the propose
vibration model is described by

yðx; tÞ ¼
X

1

i¼1

UiðxÞqiðtÞ ð6Þ

in which qi(t) represents a solution of the modal equation

mi€qqiðtÞ þ ci _qqiðtÞ þ kiqiðtÞ ¼ fi ð7Þ

and fi ¼ Uiðx0ÞFc . In these equations, Ui(x0) is the modal displacement at
the location x0 and Fc is the cutting force.

FIGURE 4 Machining configuration and application point of the cutting force in the test.



With the excitation of one mode by the localized cutting force at x0, for
instance, the displacement of the workpiece is given by

yðx0; tÞ ¼ Uiðx0ÞqiðtÞ ð8Þ

where the substitution of this equation and its derivatives into (7) yields

ki

U
2
i ðx0Þ

€yyðx0; tÞ þ
ci

U
2
i ðx0Þ

_yyðx0; tÞ þ
mi

U
2
i ðx0Þ

yðx0; tÞ ¼ Fc ð9Þ

and ki, ci, and mi are the modal stiffnesses, damping coefficients and masses,
respectively.

Imposing Equation (9) onto Equation (1), we thus obtain

m ¼ mi

U
2
i ðx0Þ

; c ¼ ci

U
2
i ðx0Þ

; k ¼ ki

U
2
i ðx0Þ

ð10Þ

where ki, mi, and Ui(x0) are obtained by determining the natural modes
using finite element method. For different step position x of the tool
and for each natural mode, we determine the modal displacement in the
cutting zone Uiðx0Þ. Then, with the determination of the stiffness k using
Equation (10), the stability lobes are constructed.

According to the expression for the stiffness in Equation (10), it can be
seen that k is larger when the tool is at a node than when it is at an anti-
node. Also, it can be seen that the critical axial depth of cut is higher at
a node than at an antinode (see Equations (2) and (4)). The variation of
the apparent stiffness k of the second mode of the workpiece is shown in
Figure 5.

FIGURE 5 Variation of the apparent stiffness of the second mode of the test during machining.



For each position x in Figure 6, a crossectional 2D stability lobes can be
constructed (see Figure 3). The 3D stability lobes represent the second
mode of the test and the parameters in Table 1 have been used in the com-
putation. There are infinitely many stability lobes for the modes.

Variation of Natural Frequencies and Dynamic Parameters

Machining is a chip removal process. When the material removal is
significant, the dynamic properties of the workpiece change according to
the tool position. The material removal influences mainly the natural fre-
quencies. In this regard, the critical axial depth of cut and optimal spindle
speed will vary as the tool moves with respect to the workpiece. This can be
seen in Equations (2), (4) and (5). Figure 8 illustrates the 3D lobes of the
second mode and the impact of varying the natural frequency. For a real

FIGURE 6 3D lobes of the second mode of the test with variation in the apparent stiffness.

TABLE 1 Parameters of the Second Mode of the Test During Machining

Parameters Values

x0 12560 rad=s
n 0.00406
Kt 1414MPa
Kr 0.8
z 4
D 12mm
Ap 20mm
Ae 1mm
X 80mm



machining operation one has to take into account the other modes. For the
construction of the stability lobes in Figure 8, the parameters for Figure 6
are used with the exception of x0. The values for x0 vary with the machin-
ing operation. The variation of the values of x0 for the second mode is
represented in Figure 7 and this has been obtained for ap ¼ 20mm. This
illustrates the fact that the variation of the natural frequency is dependent
on ap. Three dimensional lobes for each value of ap can be constructed as
well. The variation of the natural frequency is evaluated by creating new
finite element models for multiple tool locations and with variation of
the wall thickness of the machined surface. Ten step finite element models
are used. Taken into account of the variation of the natural frequencies and
the variation of the apparent stiffnesses, 3D lobes for the second mode of
the test are constructed (see Figure 9). In most cases, one has to take into

FIGURE 8 3D lobes of the second mode of the test with variation in the natural frequency.

FIGURE 7 Variation of the natural frequency of the second mode during machining.



account these two types of variations because it is usually not possible to
find a constant optimal spindle speed.

To obtain the variation of the dynamic parameters of the workpiece, we
carry out a parametric finite element analysis with the parameter of the tool
position shown in Figure 10. For each step of the analysis and for each mode,
we determine the natural frequency, modal stiffness and displacement of
the tool position. In this way, the variation of the natural frequencies and
the apparent stiffnesses for the machining operation are evaluated. The
stability lobes are adjusted by using the measured natural frequencies before
milling.

TEST VALIDATION

We consider the peripheral down-milling of an aluminium plate as
shown in Figure 4. Its thickness is 2mm and has two perpendicular sides
that are embedded together. The programmed radial depth of cut is
1mm and the feed rate is 0.05mm=tooth. We use a cylindrical milling cut-

FIGURE 9 3D lobes of the second mode with variation in the apparent stiffness and natural frequency.

FIGURE 10 Parametric computation of the second mode.



ter with diameter 12mm, 4 teeth and helix angle being 45�. The length of
the machining operation is 80mm and the axial depth of cut is 20mm. Two
identical workpieces are machined under the same dynamic conditions. To
minimize the occurrence of errors, the stiffness, damping coefficient and
other essential dynamic parameters are measured for each workpiece. Dur-
ing the machining operation, we observed that the first five modes are the
most violent modes. The 3D stability lobes representing these modes for
each workpiece are depicted in Figure 11. The most influential parameter
for the selection of spindle speed is the natural frequency. The frequencies
are found to be identical for both workpieces.

It can be seen from Figure 11 that one cannot find a constant spindle
speed for which the dynamic behaviour of the workpiece is stable during
the entire milling operation. For this reason, we use different spindle
speeds in order to maintain the stability of the milling operation. During
the first phase of milling operations, we use the spindle speed values as pre-
sented in Table 2. Figure 12 contains the resulting surface finish generated
by the spindle speeds.

With the table drives of the machine tool being at the locations
x ¼ 20mm and x ¼ 35mm, we observe changes in spindle speed and

FIGURE 11 3D lobes for the five first modes of the test.

TABLE 2 Variation of Spindle Speed with Respect to the Tool Position

Location X (mm) Spindle speed X (rpm)

0–20 14,000
20–35 16,000
35–80 21,000



surface finish. Modulation of the spindle speed results to the stopping of
the linear axis of the CNC machine tool. Although the marks at the loca-
tions x ¼ 20mm and x ¼ 35mm have adverse implications with respect
to surface finish and spindle speed fluctuation, they however, provide an
opportunity to identify regions where spindle speed values are different.

For the second phase of the milling operation the variation of the
apparent stiffness and frequencies are not taken into consideration. The
stability lobes for this situation are presented in Figure 13. The modulation
of spindle speed is initiated at 14,000 rpm.

To compare the first and second phases of milling operation of the thin
walled workpieces, we stop the linear axes at the same locations of the table
drive along the x axis, namely x ¼ 20mm and x ¼ 35mm. The resulting
surface finish is shown in Figure 14.

Between x ¼ 20mm and x ¼ 35mm, one can see that the quality of
the surface finish for the two phases of the milling operations are similar.

FIGURE 12 Resulting surface finish with variable spindle speed.

FIGURE 13 Standard representation of the stability lobes for the test.



However between x ¼ 35mm and x ¼ 80mm, the resulting quality of the
surface finish for the first phase milling operation is better than the surface
quality of the second phase milling operation. This shows, in particular, the
significant of taking into account the variations of the dynamic parameters.
We have shown that standard procedures of stability lobes are not sufficient
for appropriate selection of the cutting conditions as the tool moves with
respect to the workpiece.

Furthermore, it is observed that regenerative model vibration analysis is
valid in an established mode. The time necessary for a significant variation of
the stiffness and frequency must be longer than the time required for the
system to reach such an established mode. The cutting tests show that the
stability transition is faster than the variation of the dynamic parameters.

CONCLUSIONS

In this article, we have shown that standard procedures for the con-
struction of stability lobes are not sufficient if one is interested in investigat-
ing the dynamics of thin walled structures. The dynamic properties of thin
walled structures vary as the tool moves with respect to the workpiece. We
introduce a third dimension in the stability lobes to denote the tool pos-
ition. First, the apparent stiffnesses of the thin walled workpiece are varied
during milling and when the tool passes from nodes to antinodes. The criti-
cal axial depth of cut is not constant for each natural mode. Second, the
natural frequencies of the workpiece are varied with the tool passing from
nodes to antinodes. The 3D stability lobes are constructed for both cases,
and from the lobes non constant optimal spindle speed are derived.

The modulation of the spindle speed is initiated at 14,000 rpm. The
experimental tests show that the variation of frequency and stiffness has
a significant influence on the quality of the surface finish of the workpiece.
It is found that milling with spindle speed variation does illustrate an
important solution for the dynamic analysis of thin walled machining.

FIGURE 14 Resulting surface finish with constant spindle speed.



Further investigation of the dynamic stability of thin walled milling
operation will focus on the continuous variation of the spindle speed in
order to avoid the marks due to the stopping of the linear axes. Nonlinear
stability lobes will be constructed for a wide range of cutting conditions and
spindle speed variations.
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