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Vincent Thevenot · Lionel Arnaud · Gilles Dessein · Gilles Cazenave-Larroche

Integration of dynamic behaviour variations in the stability lobes method:

3D lobes construction and application to thin-walled structure milling

Abstract Vibratory problems occurring during peripheral

milling of thin-walled structures affect the quality of the fin-

ished part and, to a lesser extent, the tool life and the spindle

life. Therefore, it is necessary to be able to limit these problems

with a suitable choice of cutting conditions. The stability lobes

theory makes it possible to choose the appropriate cutting con-

ditions according to the dynamical behaviour of the tool or the

part. We introduce the dynamical behaviour variation of the part

with respect to the tool position in order to determine optimal

cutting conditions during the machining process. This general-

ization of the classical lobes diagram leads us to a 3D lobes

diagram construction. These computed results are compared with

real experiments of down-milling of thin-walled structures.

Keywords 3D stability lobes · Dynamic behaviour · Peripheral

milling · Thin walled structures ·

Notation

αyy Directional dynamic milling coefficient in the y direc-

tion

αi(t) Weight function of the considered mode

φex Exit angle

φst Start angle

Φ i(x) Natural displacement of the considered mode

ξ Damping ratio

ξi Modal damping ratio of the considered mode

ωc Chatter pulsation

ω0 Natural pulsation
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Ae Radial depth of cut

Ap Axial depth of cut

F c Cutting force

Fr Radial force

Ft Tangential force

G y(iωc) Transfer function of the machining system in the y di-

rection

k Stiffness

ki Modal stiffness of considered mode

Kr Radial milling force coefficient

Kt Tangential milling force coefficient

m Whole number of full vibration cycles between pas-

sages of two teeth

mi Modal mass of the considered mode

M Application point of the cutting force

M0 Normalization point of the considered mode

n Number of normal modes under consideration

N Spindle speed

u(x, t) Displacement field of the workpiece considered as de-

formable

U(t) Displacement of the workpiece considered as a rigid

body

z Number of teeth

1 Introduction

During some machining operations, vibrations may occur be-

tween the part and the tool. This is particularly true in the case of

milling when long tools with small diameters are used, or in pe-

ripheral milling of thin-walled structures. This phenomenon gen-

erates dimensional and geometrical inaccuracies and a poor sur-

face finish (Fig. 1). A reduction of tool life and spindle life is also

observed. Therefore, it is necessary to be able to understand the

phenomenon, and to control it. Research into machine tool chat-

ter vibrations go back to the 1950s with Tobias [1], Tlusty [2] and

Merrit [3], who explained the regenerative chatter vibrations in

orthogonal cutting and developed the stability lobes theory. This

theory makes it possible, for a given spindle speed, to predict the



Fig. 1. Vibratory problems encountered in peripheral milling

engaged length of the cutting edge from which the vibrations will

appear. This first model is particularly well-adapted to the tool

chatter vibrations in turning, where the direction of the cutting

force, chip thickness and dynamic parameters do not change with

time. Orthogonal milling stability analysis (with a tool without a

helix angle) appeared at the end of the 1960s [4, 5], and is used to

study the vibrations of the tool. In the middle of the 1990s, Alt-

intas [6] presented an analytical form of the stability lobes theory

for milling. This theory can be applied to the study of tool vi-

brations, because its dynamic characteristics do not change with

time. On the other hand, when a thin-walled structure is machined,

one realizes that the dynamic behaviour of the tool-workpiece sys-

tem depends on the tool position in the workpiece [7, 8]. We will

show in this article how to integrate the behaviour variations of the

workpiece during machining.

2 Stability lobes theory

This study is mainly based on the work of Altintas and Budak [6,

9, 10]. Here, we only give the equations that allow us to trace the

lobes.

The stability lobes theory is based on a regenerative chat-

ter model. It aims to predict the oscillations due to tooth n + 1

compared to tooth n (Fig. 2).

2.1 Initial assumptions

• The workpiece is mobile compared to the tool, which is much

more rigid than the workpiece.

• The workpiece can be considered as a rigid body in the ma-

chined zone.

• The material removal is neglected.

• The workpiece moves along the y direction like a rigid body

in the machined zone, according to the following equation:

Ü +2ξω0U̇ +ω2
0U =

((

F c · y
)

ω2
0

)

/k (1)

Fig. 2. Regenerative chatter model with one degree of freedom

• We use a linear cutting law of the type Ft = Kt Ap Ae and

Fr = Kr Ft , where Ft and Fr are, respectively, the tangential

and radial cutting force, Kt and Kr the tangential and radial

milling force coefficients, and Ap and Ae are the axial and

radial depth of cut. We will avoid the cases where Ae ≪ fz ,

the feed per tooth, for which the linear cutting law is not very

accurate [7]. It is the most difficult assumption to satisfy, con-

sidering the relatively small real radial depth of cut.

These assumptions are the simplest possible; our aim is to show

how to construct the 3D lobes. This construction is applicable to

more sophisticated models (non-linear cutting laws, multi degree

of freedom, time domain simulations, etc.).

2.2 Calculation of the critical axial depth of cut according

to the chatter frequency

Here, we express the critical axial depth of cut, Aplim, for one

mode, with respect to the chatter frequency ωc (vibration fre-

quency of the workpiece). We use an orthogonal cutting model,

although the lobe shape is not exactly the same with an oblique

cutting model. But given the measurement inaccuracy for certain

parameters, we prefer to use an orthogonal cutting model, which

is easier to implement, and can be readjusted with tests. The dis-

placement is considered along the y direction, and we study the

down-milling mode.

Aplim =
1

(

z
2π

)

αyy KtRe
[

G y (iωc)
] (2)

where z is the number of teeth on the cutter.

αyy is the directional dynamic milling coefficient in y direc-

tion and is given by:

αyy =
1

2

[

− cos(2θ)−2Krθ − Kr sin(2θ)
]φex

φst
(3)

where θ is the engagement angle of the tool, φex is the exit angle

of the tool and φst is the start angle of the tool (Fig. 3).

Re
[

G y(iωc)
]

is the real part of the structural transfer func-

tion of a system with one degree of freedom:

Re
[

G y(iωc)
]

=
1

k

[

1−d2

(1−d2)2 +4ξ2d2

]

(4)



where d = ωc/ω0, ω0 is the natural pulsation, k is the stiffness

and ξ is the damping ratio.

Thus, we obtain the graph represented in Fig. 4.

2.3 Calculation of the spindle speed according

to the chatter frequency

Here, we seek to express the spindle speed N according to the

chatter frequency ωc.

In Fig. 2, we note that there exists, between the passage

of two teeth, m full vibration cycles, and a fraction ε/(2π) of

a cycle. When we express this phase angle according to the chat-

ter frequency and the tooth frequency, we obtain the following

expression:

N =
60ωc

z
[

2mπ +2π −2 arctan
[

d2−1
2ξd

]] (5)

Equation 5 allows us to plot the curves (Fig. 5), where for

m fixed, we obtain the spindle speed corresponding to a chatter

frequency with the same parameters as Fig. 4.

Fig. 3. Start and exit angle in down-milling

Fig. 4. Aplim as a function of d

Table 1. Parameters used to plot Fig. 4

Steel plate (S235) Ae = 0.1 mm
R = 4 mm z = 4
Kt = 2400 MPa Kr = 0.9
k = 45×109 N/m ξ = 0.033
ω0 = 592 Hz

Fig. 5. N as a function of d

2.4 Calculation of critical axial depth of cut according to the

spindle speed and a whole number of vibration cycles

At this stage, we have Aplim = f(ωc) and N = f(ωc). The func-

tion N = f(ωc) is not invertible analytically, so we adopt a para-

metric representation of the lobes, where ωc is the parameter

(Fig. 6). Each lobe represents the stability limit for a number of

full vibration cycles m. The same parameters as in Figs. 4 and 5

are used.

This calculation is applicable to each natural mode of vibra-

tion of the workpiece, when they are non coupled. The workpiece

Fig. 6. Characteristic plot of stability lobes

Fig. 7. Stability lobes for four modes



Table 2. Modal properties of the workpiece and cutting conditions used to
plot the graph in Fig. 7

Mode ω0 (Hz) ξ k (N/m)

1 592 0.033 44.497 ×109

2 1088 0.023 108.109 ×109

3 2100 0.01 803.759 ×109

4 3320 0.009 1.119 ×1012

Steel plate (S235) R = 4 mm z = 4
Kt = 2400 MPa Kr = 0.9 Ae = 0.1 mm

has several number of significant natural modes of vibration. The

stability limit is proportional to the modal stiffness and to the

damping ratio Eqs. 2, 4. In Fig. 7, we can see that the limit fixed

by the fourth mode is never reached.

3 Obtaining model parameters

The stability lobes calculation requires the dynamic parame-

ters of the workpiece for each natural mode (natural frequency,

damping ratio, stiffness). The stiffnesses are determined by a fi-

nite element calculation. The damping ratio cannot be easily

calculated, so we determine it by measurement.

We use a laser vibrometer so as not to disturb the measure-

ment, because there is no contact between the workpiece and the

sensor. This sensor makes it possible to measure the natural fre-

quencies on the milling machine, and by exciting the workpiece

Fig. 8. Determination of dynamic parameters

Fig. 9. Stability limit with tolerance margin due to measurement inaccuracy

Table 3. Parameters used to plot the graph in Fig. 9

ω0 = 92±1 Hz
1134 MPa < Kt < 2880 MPa
0.675 < Kr < 0.9
0.0297 < ξ < 0.0363
41.8×109 N/m < k < 46.2×109 N/m
0.095 mm < Ae < 0.105 mm

with a modal hammer, we obtain the damping ratio (Fig. 8). This

measurement also allows us to verify the accuracy of the stiff-

ness calculation by comparing the measured frequencies and the

calculated frequencies.

Given the measurements inaccuracy, we define the stability

limit with a given tolerance margin. Thus, we obtain two curves

between which the real stability limit of the system lies (see

Fig. 9).

4 Influence of the tool position

on the dynamic behaviour of the workpiece

When a thin-walled structure is machined, we can see that

the machined surface is not homogeneous in terms of sur-

face quality. We can see strongly perturbed and slightly per-

turbed zones (Fig. 14). Thus, the workpiece cannot be consid-

ered as a rigid body in the machined zone, and the dynamic

behaviour of the workpiece depends on the position of the

tool. We thus introduce a third dimension in the stability lobes

diagram.

In the third dimension, we introduce the application point of

the cutting force, which determines how each mode is excited.

For example, the dynamic behaviour of a mode is very different

if the exciting force is in a node or in a loop.

The initial dynamic equation used for the stability lobes cal-

culation is:

Ü +2ξω0U̇ +ω2
0U =

((

F c · y
)

ω2
0

)

/k (6)

The displacement u of a point x of the structure, represented by

its n first modes, is defined by:

u
(

x, t
)

=

n
∑

i

u i

(

x, t
)

(7)

with

u i

(

x, t
)

= αi(t)Φ i

(

x
)

(8)

where Φ i

(

x
)

is the modal displacement of the mode i, and αi(t)

is a time function.

The modal equation for each mode is:

α̈i(t)+2ξiωi α̇i(t)+αi(t)ω
2
i =

∫

∂Ω

Φ i

(

x
)

f
(

x, t
)

dS

∫

Ω

ρΦ i

(

x
)

Φ i

(

x
)

dΩ
(9)



where ωi is the natural pulsation of the mode i, f
(

x, t
)

is the

force field and
∫

Ω

ρΦ i

(

x
)

Φ i

(

x
)

dΩ is the modal mass mi .

In fact, f
(

x, t
)

is comparable to a localized force in point

M(t), which is mobile along x 1. It is the cutting force Fc(t)

(Fig. 10).

So in Eq. 9,

∫

Ω

Φ i

(

x
)

f
(

x, t
)

dΩ = Φ i(M(t))F c(t) (10)

When the modes are normalized in displacement at point M0,

Φ i(M0) = 1 and, with Eqs. 7 and 8:

u i(M0, t) = αi(t) =
u i(M(t), t)

Φ i(M(t))
(11)

Therefore, by substitution into Eq. 9, we obtain in M(t):

ü i(M(t),t)+2ξiωi u̇ i(M(t),t)+u i(M(t),t)ω2
i =

Φ2
i(M(t))F c(t)

mi

(12)

Eq. 12 is similar to the Eq. 6, with:

U = u i(M(t), t) · x 2 (13)

ξ = ξi (14)

ω0 = ωi (15)

k =
ki

Φ2
i(M(t))

(16)

ki , ωi and Φ i(M(t)) are obtained with finite element calculus.

Also, it can be obtained by measurement.

The regenerative model of vibration is valid for an estab-

lished mode. So, the time necessary for a significant variation

of ki must be much longer that the time necessary for the sys-

tem to reach the established mode. The cutting tests show that

the stability transition is very fast compared to the variation of k

(Eq. 16).

Thus, we can plot the stability lobes for each natural mode

and at any point of the tool trajectory. For one mode, since the

stability limit is proportional to the stiffness k given in Eq. 4, the

stability limit increases when the tool is at a node. The stiffness

k is theoretically infinite at a node (Eq. 16, Fig. 12). In short, it is

much more difficult to excite a mode when the excitation force is

near a node, so the stability limit is much higher.

5 Validation tests

We now consider the peripheral down-milling of a steel plate.

Its thickness is 1 mm; two perpendicular sides are embedded

(Fig. 10). The programmed radial depth of cut is 0.1 mm, and

the feed rate is 0.05 mm/tooth. We use a cylindrical mill; the

diameter is 8 mm with 4 teeth, and the helix angle is 45◦.

The stability lobes of this workpiece are represented (Fig. 11)

for the first and second modes. The same parameters as in Fig. 4

Fig. 10. Application point
of the cutting force in the
test workpiece

Fig. 11. Stability lobes for the first and second modes of the test workpiece

are used. It is plotted in point M0 of the workpiece, which is the

free corner.

A machining pass with a constant axial and radial depth of

cut is realized. We voluntarily use an unstable spindle speed

at point M0 to excite the second mode of the workpiece, i.e.

N = 9000 rpm and Ap = 12 mm. The stability lobes in three di-

mensions for the second mode of the workpiece are represented

in Fig. 12.

With a section of the stability lobes in three dimensions in

the plane (x1, Aplim) at N = 9000 rpm, we can determine where

the vibrations will appear in the workpiece (Fig. 13). We also

machined a workpiece while increasing the axial depth of cut

to determine the stability limit as a function of location on the

workpiece with the aim of readjusting the stability lobes along

Aplim.

We can see a good correlation between the position of the

predicted stability transitions and those observed in the machined

surface (Fig. 14).

Moreover, by comparing this surface with the modal de-

formation of the second mode given by finite element calculus

(Fig. 14), we can see the nodes (zone 4) and the loops (zones 1

and 7) of the mode. On the other hand, we observe different tran-

sition zones in the surface.

The fourth zone is in the node of the mode, and we can see

that the surface quality is relatively acceptable. In this zone, the

machining is stable as predicted by the lobes.

The first and seventh zones are in the loops of the mode; the

workpiece behaviour is strongly unstable and non-linear during



Fig. 12. Stability lobes in three dimensions for the second mode of the work-
piece

Fig. 13. Section at N = 9000 rpm in the plane (x1, Aplim)

Fig. 14. Position of the stability transitions in the machined surface and
correlation with the modal deformation of the second mode

machining, even if the surface quality seems acceptable. There-

fore, it is very difficult to predict the workpiece behaviour, since

the vibrations are so important that the tool doesn’t remain in

contact with the workpiece [11, 12].

The transition from unstable zone to stable zone (and con-

versely) is in two distinct stages. The first stage (second, sixth

and eighth zones) presents a very poor surface quality where

the marks show an attenuation of the vibration in term of am-

plitude and frequency compared to stable zones. These marks

are well-ordered, firstly because the tool leaves the workpiece,

and secondly because the vibration frequency tends to match

with a multiple of the tooth frequency. The second stage (third

and fifth zones) shows a softer behaviour of the workpiece. The

vibration frequency is stable, and the tool does not leave the

material. We observe only an attenuation (or increase) of the

amplitude.

We will not pursue the study of the different marks observed

in the machined surface, because the information given by them

(amplitude and frequency) can be obtained by other methods,

which will be discussed in the next section.

As stated earlier, the surface quality of the unstable zones can

be compared to that observed in the stable zone, and is found to

be even better than the surface quality of the stable zone. Nev-

ertheless, in the unstable zones, it is very difficult to control the

radial depth of cut and thus, the dimensional constraints. More-

over, the emergence of unstable zones necessarily goes through

very perturbed transition zones around the modal nodes of the

workpiece. These transition zones do not respect the constraints

of surface quality, so we do not try to get some benefit from un-

stable zones.

6 Measure of vibrations during machining

To measure vibrations during machining, Delio et al. [13] sug-

gest measuring the sound intensity, but this method requires

attenuation filters which are not compatible with a workshop.

Thus, it is very difficult to apply this method in these condi-

tions. Therefore, the measuring circuit described earlier, used to

determine the dynamic parameters of the workpiece, will allow

us to measure the vibrations of the workpiece during machin-

ing. On the other hand, this measure is incompatible with the use

of lubrication, since the beam is perturbed by the cutting fluid.

Therefore, we have to carry out machining without lubrication

to be able to measure the vibrations. From experience, we know

that the cutting fluid slightly increases the damping ratio of the

machining system. Thus, if a machining is stable without lubri-

cation, it will be more stable with lubrication.

To measure the vibrations, we record the signal in the time

domain during the machining thanks to signal processing soft-

ware. The software allows us to select the part of the signal

which corresponds to the zone under consideration and to display

an FFT in order to obtain the different vibration frequencies of

the workpiece in this zone. Thus we can characterize each zone

in terms of frequency and amplitude.

7 Discussion

By definition, machining is a forming process by material re-

moval. Therefore, when the material removal is significant, the

dynamic properties (natural frequencies, mainly) of the work-

piece change according to the tool position. Thus, we include the

variation of the dynamic parameters of the workpiece in the third

dimension of the stability lobes, on top of behaviour variation



of the nodes and the loops. The variation of the natural frequen-

cies of the workpiece during machining introduces a shift of the

lobes along the spindle speed axis. Consequently, if this shift is

rather significant, it is possible that no stable spindle speed ex-

ists throughout the machining process. Then, we must adjust the

spindle speed during machining in order to achieve a stable be-

haviour of the workpiece.

At the beginning of this article, we assumed that the tool is

much more rigid than the workpiece. In practice, this assumption

may not be true, and the tool and the workpiece may be mobile.

In this case, if the natural modes of the tool and the workpiece are

close, there can be coupling between them. The stability lobes

theory presented is no longer valid, and we have to rewrite the

equations according to the new configuration.

We also assumed that the tool is cylindrical with a constant

cutting speed at any point on its periphery, and with a constant

helix angle. Thus, the distribution of the cutting force is uniform

along the tool, and we know the resultant position of this dis-

tributed cutting force. A problem arises if we must use a tapered

end-mill with a non constant helix angle. In this case, the distri-

bution of the cutting force is no longer uniform, and the resultant

position of the cutting force changes.

Also, we will use a deformable taper end mill to machine

a thin-walled structure with a significant material removal (ma-

chining of a centrifugal impeller).

8 Conclusion

In this article, we show how to introduce in the stability lobes

theory the dynamical behaviour variation of the workpiece with

respect to tool position. A third dimension, the tool position, is

introduced in the stability lobes diagram. This 3D lobes construc-

tion is validated by an experimental approach. Thus, we can obtain

the optimal cutting conditions all through the machining process.

It is also necessary to integrate into the stability lobes model

the variation of the dynamic parameters of the workpiece during

machining due to material removal, and the use of a deformable

tool. This work is in progress and will be developed further. The

model thus obtained will have to be integrated with the CAD-

CAM system, or developed with specific software adapted to an

industrial context.
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Mécanique et Industrie 3(4):403–418

8. Davies MA, Balachandran B (2000) Impact dynamics in milling of thin

walled structures. Nonlinear Dyn 22:375–392
9. Budak E, Altintas Y (1998) Analytical prediction of chatter stability in

milling – part I: general formulation. Trans ASME 120:22–30
10. Budak E, Altintas Y (1998) Analytical prediction of chatter stability

in milling – part II: application of the general formulation to common
milling systems. Trans ASME 120:31–36

11. Fofana MS (2002) Effect of regenerative process on the sample sta-

bility of a multiple delay differential equation. Chaos Solitons Fractals
14:301–309

12. Minis I, Yanushevsky T, Tembo R, Hocken R (1990) Analysis of linear
and nonlinear chatter in milling. Ann CIRP 39:459–462

13. Delio T, Smith S, Tlusty J (1992) Use of audio signals chatter detection
and control. J Eng Ind 114:27–34


