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This  paper  deals  with gas–liquid mass transfer  in an aerated stirred  tank  containing Newtonian  or  shear

thinning  fluids. The  aim is to  demonstrate that, for  a given  mixing  system, an  unique  dimensionless

correlation  gathering all the mass  transfer rates  (150 kla measurements)  can  be obtained if and  only if  the

variability  of the  rheological  material  parameters  is correctly  considered  when implementing  the theory

of  similarity.  More  particularly,  it  is  clearly illustrated that a too gross  simplification  in  the  relevant  list

of  the  parameters  characterizing  the  dependence of  apparent viscosity  with shear rates  leads  to pitfalls

when  building  the �space  set. This is  then  a striking  example showing that  a robust  predictive correlation

can  be  established  when the  nonconstancy  of fluid physical  properties  ceases to be neglected.

1. Introduction

The  dispersion of a gaseous phase in a liquid phase for mass

transfer purposes is involved in many processes, in the field of

chemical reaction engineering (e.g. for chlorinations, hydrogena

tions, oxidations, alkylations, ammonolysis and so forth)  but also

in biochemical engineering (including fermentation, waste water

treatment). The use of  agitated tanks is a widespread practice for

operating such absorption processes as  offering the advantages to

generate high interfacial areas and intense mixing of liquid phase.

Understanding and modelling mass transfer between phases is of

importance, because it may often become the critical step deter

mining the achievement of the application, and thus may give the

main guidelines on which the design and the scaleup of  the pro

cess will be based. The transferred mass quantity depends on the

solute solubility in the liquid phase, but above all on  the interfacial

area, a, and on the  overall liquidphase mass transfer coefficient, Kl.

The product of  these latter parameters is commonly called absorp

tion rate coefficient or overall volumetric gas–liquid mass transfer

coefficient (Kla or  kla for low soluble gases). The factors influ

encing of such unit operation (in particular Kla) are very large,
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including tank geometry and dimensions, impeller type, dimen

sions and rotational impeller speed, aeration system and gas flow

rate, physical and rheological properties of  gas and liquid phases,

temperature, and pressure. In an  attempt to elucidate the effects

of the latter parameters on the absorption rate coefficient, a great

amount of  published investigations are encountered in the litera

ture; some interesting overviews are given in [1–5]. They provide

improved knowledge on gas–liquid mass transfer through experi

mental data, empirical correlations, mechanistic analysis or more

recently numerical simulations.

Most of  them deal with the cases when the liquid  phase is a

Newtonian fluid with low viscosities. From various sets of  experi

ments carried out at labscale and/or at larger scale, some empirical

correlations for kla are  proposed, involving either dimensional or

dimensionless parameters. At present, the most frequently used

dimensional correlation remains the one of Van’t Riet [6] or  some

variants in which the constant and exponents have been modified.

They are expressed such as:

kla = C ·  (Ug)C1 ·

(

P

Vl

)C2

·  (�)C3 (1)

where  the constant C  is strongly affected by the geometrical param

eters of the agitation system, and � is the Newtonian viscosity.

GarciaOchoa and Gomez [3] recently summarized the different

exponents associated with Eq. (1)  that are available in the literature.



Nomenclature

a specific interfacial area (m−1)

CO2
concentration in  dissolved oxygen (kg/m3)

C∗
O2

concentration in  dissolved oxygen at saturation

(kg/m3)

d  air sparger diameter (m)

D  impeller diameter (m)

D  oxygen diffusion coefficient in  the liquid  phase

(m2/s)

G/Vl mass throughout per unit of liquid volume (kg/s/m3)

g gravity acceleration (m/s2)

H Henry’s constant (Pa)

Ht tank height (m)

kl liquidside mass transfer coefficient (m/s)

K consistency index from the model  of  Ostwald–de

Waele  (Eq. (14)) (Pa snost )

Kl overall mass transfer coefficient (m/s)

kla overall volumetric gas–liquid mass transfer coeffi

cient (s−1)

KMO Metzner–Otto constant (Eq. (5))

m Henry’s constant

nost flow index from the model of Ostwald–deWaele

(Eq.  (14))

nw flow index from the model of Williamson–Cross (Eq.

(15))

N rotational impeller speed (s−1)

P/Vl power dissipated per unit of  volume (W/m3)

Ps pressure in the system (Pa)

Qg gas flow rate (m3/s)

t  time (s)

tw time parameter from the model of

Williamson–Cross (Eq. (15)) (s)

Tl temperature of  the liquid phase (K)

Tt vessel diameter (m)

Ug superficial gas velocity (m/s)

V tank volume (m3)

Vl liquid tank volume (m3)

Greek letters

ε  mean standard deviation (Eq. (50))

̇ shear rate  (s−1)

̇o reference shear rate (s−1)

̇av average shear rate defined from the Metzner–Otto

concept  (Eq. (4))  (s−1)

�  dynamic viscosity (Pa  s)

�a apparent viscosity (Pa s)

�o reference apparent viscosity parameter defined at

reference shear rate (Pa  s)

�w viscosity parameter from the model of

Williamson–Cross  (Eq. (15)) (Pa s)

�  cinematic viscosity (Pa s)

� density (kg/m3)

�  surface tension (N/m)

Dimensionless  numbers

Fr  Froude number (Eq. (27))

kla* dimensionless volumetric mass transfer coefficient

(Eq. (25))

�*  dimensionless viscosity (Eq. (29))

�i dimensionless number deduced from the theory of

similarity

�* dimensionless density (Eq. (28))

�* dimensionless surface tension (Eq. (30))

Sc Schmidt number defined according to gas phase

properties (Eq. (31))

t∗
w dimensionless time number issued from the

Williamson–Cross’s model (Eq. (45))

U∗
g dimensionless superficial gas velocity (Eq. (26))

Subscripts

g  gas phase

l  liquid phase

Another approach is to use correlations with dimensionless

groups; contrary to dimensional correlations, they guarantee firm

basis for process scaleup, provided that they must be established

with respect to  the theoretical context of  the theory of similarity.

The pioneer work’s of  Zlokarnik [7] has established the relevant

list of  influencing intensive parameters and proposed the following

dependence between dimensionless numbers:

(kla)
∗

= f1

{(

P

Qg

)∗

,

(

Qg

Vl

)∗

,  �∗,  Sc, Si∗
}

where











(kla)
∗

= kla ·

(

�l

g2

)1/3

,

(

P

Qg

)∗

=

(

P

Qg

)

·  [�l · (�l · g)
2/3

]
−1

,

�∗ =  � ·  [�l · (�4
l

· g)
1/3

]
−1

,

(

Qg

Vl

)∗

=

(

Qg

Vl

)

·

(

�l

g2

)1/3

(2)

Note  that,  in Eq. (2), Sc  is the Schmidt number and Si* is  a  material

dimensionless parameter which describes coalescence behaviour

of solutions (i.e. ionic strength, electrical charge of  ions,  .  .  .). Thanks

to this approach, Zlokarnik [7] could  rigorously distinguish dif

ferent process relationships depending whether the system is

coalescent or noncoalescent.

Few  years later, Judat [8] has critically examined the existing

publications on gas–liquid mass transfer (coalescing systems) in

stirred vessels. Description of experimental data with the aid of

intensive parameters has leaded this author to  (±30% deviation):

(kla)∗
= 9.8 × 10−5

·
(P/Vl)

∗0.40

B−0.6 +  0.81 × 10−0.65/B
(3)

where  B = (Qg/T2
t )  · (�l · g)−1/3,  the others numbers being defined

as  in [7]. Judat [8] has then shown that a  monoparametric represen

tation of (kla)* versus (P/Vl)* is inadequate, and that only a �space

representation containing both dimensionless power per unit vol

ume  and superficial gas velocity can satisfactorily correlate (kla)*.

This author has  also put  forward that another �space, contain

ing non intensive parameters (rotational impeller speed instead

of power per unit liquid volume) could be used to  describe the

measures of (kla)*, but this �ispace is larger than the previous one.

Few authors (for example [9,10]) have conserved the dimen

sionless group (kla)∗
= kla ·  (�l/g

2)
1/3

defined by  these two  pioneer

works for modelling absorption processes. Most of them  have

adopted, with or without theoretical backgrounds, others defini

tions for making dimensionless kla [11–17]. They include notably

a modified Sherwood number (kla ·  T2
t /D)  or Stanton number

(kla · Vl/Qg) [3].

When shearthinning fluids are involved, two additional ques

tions arise unfortunately in a point of  view of  the theory of

similarity:

 How should we proceed to guarantee that the results obtained

with  Newtonian fluids can be extended to these nonNewtonian

liquids?  The spatial distribution of  liquid viscosity in the tank, due

to its dependency with shear rates, constitutes a major difficulty

with  regard to the choice of a representative viscosity.



Table 1

Dimensions of the experimental setup.

Tank size Tt =  0.212 m

Ht =  0.316 m

V  =  10  L

Hl = 0.212 m

Vl =  7.4  L

Baffles  wb = Tt/10 (width, in m)

bb =  Tt/50 (distance from walls, in m)

Impeller (sixconcaveblade

turbine)

D  =  0.4·Tt (impeller diameter, in m)

Ds = 3·Tt/4  (disk diameter, in m)

C = Tt/4  (clearance from the  bottom, in  m)

b =  D/5  (blade height, in m)

w  =  0.5 D/5 (blade width, in  m)

l  =  D/4  (blade length,  in m)

Sparger d  =  D  (sparger diameter, in m)

 How should we proceed to  guarantee that the results obtained at

labscale will be also scalable at industrial scale?

Until now, most of works encountered in the literature did not

take care about these questions: they simply consist in  replacing

the Newtonian viscosity by an apparent viscosity defined from  the

Ostwald–deWaele’s model in  which an  average shear rate is con

sidered according to the wellknown concept of Metzner–Otto:

̇av = KMO ·  N (4)

where  the constant KMO depends on  the agitation system. Such

choice of apparent viscosity is  in many cases questionable, in  par

ticular when (i) the flow regime is  not  laminar (the use of  Eq. (4)

becomes then quite haphazard) and (ii) the rheological behaviour

of fluids cannot be described in the whole range of  shear rates by

the Ostwald–deWaele’s model.

The present paper aims at rigorously answering these two lat

ter questions, starting from the theoretical background underlying

the dimensional analysis and extending it  to the cases of variable

material properties. More accurately, the objective is to show how

to proceed: (i) to construct a complete list  of relevant parameters

able to consider variable rheological parameters, and consequently

(ii) to elaborate, without pitfalls, a set of dimensionless numbers

characterizing all the factors governing absorption rate coefficients

(kla)  in an aerated stirred tank where purely viscous fluids with

or without shearthinning properties are  involved. To support this

theoretical approach, a  set  of  experiments was carried out to mea

sure kla in a stirred tank aerated in  volume. Different operating

conditions (rotational impeller speed, gas flow  rate) were covered

as well as various fluids (seven purely viscous fluids of  which four

have shearthinning properties).

2.  Materials and methods

2.1.  Experimental setup

As  shown in Fig. 1, the experimental setup consisted of  a cylin

drical PMMA vessel of  10 L with a curved bottom. It was equipped

with a square double jacket (27.2 cm × 27.2 cm)  and four  baffles in

stainless steel mounted perpendicular to the vessel wall. Table 1

presents the geometrical details of  the tank. The agitation system

was composed of a homemade sixconcaveblades disk turbine

which dimensions were respectful for the ones implemented in

commercial CD6 Chemineer® impellers. The rotational impeller

speed (N) was regulated by  using an electrical motor (Ikavisc MR

D1 Messrührer, Janke & Kunkel, Ika®), and varied from  200 to

1000 rpm.

Gas (air or  nitrogen) was fed  into the tank using a ring sparger

with a diameter equal to  the impeller diameter, as recommended by

[18]. The latter was  composed by 20  holes of 0.5 mm  in  diameter.

The  sparger was  located 30 mm from the bottom of  the tank, in

the axis  of  the impeller. The gas flow rate  (Qg) was  regulated by

using a  manometer (Samson® 47 081155) and measured with

a volumetric flow meter (Brooks® R225C) with an accuracy of

0.05 L/min. Ranged from 0.33 to 3.33 L/min, these values remained

quite narrow when compared to the available literature, they were

initially imposed by  the application underlying this work (namely

the Autothermal Thermophilic Aerobic Digestion of sludge, see

[19]). In terms of gas–liquid regime, it  can be noticed (visual obser

vations) that the operating conditions under test (N, Qg, fluids)

leaded to a  complete dispersion regime, meaning thus that bub

bles were almost uniformly distributed throughout the tank. One

exception was for N  = 200 rpm where the loading regime took place

(presence of  bubbles only in the upper part of  the tank).

2.2.  Methods of overall volumetric gas–liquid mass transfer

coefficient measurement

2.2.1.  Standard dynamic method

For implementing the standard dynamic method, the liquid

phase was  deoxygenated by flushing with nitrogen. Then, after

replacing nitrogen by air, the variation in dissolved oxygen con

centrations with time was  measured until reaching the saturation.

For that, two probes (InPro6050, MettlerToledo®) and an acqui

sition card were implemented, as well as the LabView® software

for data acquisition. The positions of the probes are represented in

Fig. 1: they are located vertically at 4 cm and 18 cm above the bot

tom of the vessel, and horizontally at 1.5 cm from  walls. Assuming

a well  mixed liquid phase, the mass balance in dissolved oxygen

concentration is given by

dCO2

dt
=  Kl · a  · (C∗

O2
− CO2

) (5)

where  Kl is the overall mass transfer coefficient in the liquid side

and a  is the interfacial area between gas and liquid phases. The two

film theory of Lewis and Whitman [20] assumes that Kl is the result

of two local mass transfer coefficients (kl and kg):

1

Kl
=

1

kl
+

1

m · kg
(6)

where  m  is the Henry’s constant (m =  H/Ps). The solubility of

oxygen is low: H is equal to  4.05 × 109 Pa (corresponding to

C* = 9.09 mg  L−1) in deionised water at 293  K  in equilibrium with

air under atmospheric pressure. So, all the resistance to oxygen

mass transfer is located in the liquid film, leading to Kl ≈ kl.

As a  consequence, the volumetric gas–liquid mass transfer coef

ficient, kla, can be directly deduced from the slope of  the curve

relating ln(C∗
O2

− CO2
) to  time, obtained when integrating Eq. (5).

The dynamics of the oxygen probe can be described using a first

order differential equation [21] as:

dCp

dt
=

1

tp
(CO2

− Cp) (7)

where  Cp is the dissolved oxygen concentration inside the probe.

The time constant of the oxygen probe, tp,  was measured using a

method based on probe response to  negative oxygen steps [22]

and found equal to 16 s. This latter value remained small when

compared to mass transfer characteristic times, 1/kla.  As the tem

perature Tl slightly varied (20 ± 3 ◦C)  with power dissipation, the

usual temperature correction was  applied [23]:

kla20 = klaTl
· 1.024(20−Tl) (8)



Fig. 1. Experimental setup.

For a  given operating condition (N and Qg), the mean kla in  the tank

was calculated by averaging the values measured by the two probes

and for the three runs (N′ = 3), such as:

kla =< kla >=
1

N′
·

∑

N′

|klatop +  klabottom|

2
(9)

The axial homogeneity (h) of volumetric gas–liquid mass transfer

coefficients was also evaluated by using the criterion h  defined as

follows [24]:

h  =
1

N ′′ ·

∑

N′′

|klatop −  klabottom|

<  kla  >
(10)

where N′′ was the  number of experiments (N′′ =  60 for each liquid

phase).

2.2.2. Chemical method

When  applying the latter dynamic method in viscous fluids, the

impact of  the probe dynamics and  of the liquid  film in front of  the

membrane on the probe can no  more be ignored, as possibly bias

ing the measurements of kla [25]. In addition, in such fluids, the

gas holdup structure is known to be very  different from the one

observed in water and other lowviscosity liquids: many tiny  bub

bles appear to accumulate during aeration and circulate with the

liquid while large bubbles are  also observed (bimodal bubble popu

lation). These tiny bubbles can  actively contribute to mass transfer,

depending whether they are in equilibrium with the level of dis

solved solute in the liquid  phase (high residence times) or not [26].

For these reasons, it  has been  chosen to implement a second

method for kla measurement. It will then enable to test the valid

ity and accuracy of the dynamic method in the viscous fluids

involved. This alternative method was the chemical method devel

oped by [27], based on a  mass balance on  sodium sulphite (Na2SO3)

concentrations during a given aeration time. Nitrogen was  firstly

injected into the liquid phase in  order to eliminate the dissolved

oxygen present in the tank. When the concentration of dissolved

oxygen reached nearly zero, an adequate amount of  Na2SO3 was

introduced; air  was then introduced in  the tank and will react,

during  an aeration time taeration,  with the small quantity of  Na2SO3

introduced:

Na2SO3 +
1

2
O2 →  Na2SO4 (11)

The mass of Na2SO3 to initially introduce (mt) must be chosen

carefully, as it  should enable to keep  a  zero oxygen concentration

during the aeration time (taeration)  while avoiding an excessive use

of Na2SO3. Indeed, it is important to guaranty that the coalescing

properties of  the liquid phase were not affected by the presence

of Na2SO3. A  good compromise was to maintain an initial concen

tration below 0.5 g/L (i.e. mt <  3.5 g with Vl =  7.4 L) [25]. Note that

to minimize mt, it was  also possible to play on the aeration time

(taeration), which was here typically ranged from 1.5 min to 9  min.

The optimization of both mt and taeration was made easier by  the

fact that the orders of  magnitude of kLa were known thanks to the

measurements issued from  the dynamic method.

When such conditions are respected, Painmanakul et  al. [27]

have shown that the overall volumetric gas–liquid mass transfer

coefficient can be deduced from:

kla =
(1/2)(MO2

/MNa2SO3
)  · (mt −  mr)

taeration · Vl ·  C∗
O2

(12)

where mt is  the total mass of  Na2SO3 initially introduced, mr is

the mass of Na2SO3 remaining in the tank after an aeration period

taeration,  and C∗
O2

is the concentration in dissolved oxygen at satura

tion. For glycerine solutions, C∗
O2

was by default considered equal to

8.8 mg L−1 as in  deionised water at 20 ◦C. An  identical assumption

was made for CMC  and xanthan gum solutions in agreement with

the data reported by [28] who  showed that, in  the range  of  con

centrations here involved, no  major variation of C∗
O2

occurs when

compared to water.

At  last, for each condition, three samples (10 mL)  were taken in

the tank, immediately mixed with 10 mL of  standard iodine reagent

at 0.12 equiv./L. The titration of these samples with a sodium thio

sulphate solution (0.05 equiv./L) and a starch indicator (iodometry

titration) gave access to the concentration of  Na2SO3 remaining in

the tank after an aeration period taeration, and thus to mr.



2.2.3. Surface and volumeaerations

The  overall volumetric gas–liquid mass transfer coefficient mea

sured by the latter methods is in reality the global result of both

contributions:

 the surfaceaeration: it  corresponds to the mass transfer occurring

at  the free surface which importance depends strongly on the

surface  motion. It also includes the aeration associated with the

bubbles  entrained from the surface into the liquid bulk;

 the volumeaeration: it  is  induced by  the bubbles generated at the

sparger  directly inside the liquid bulk.

This  can be expressed such as:

kla|t = kla|surf + kla|
vol (13)

Some measurements are  made with mechanical agitation and with

out bubbling at the sparger. They enable to get an idea of  the relative

importance of each contribution.

2.3. Fluids

The  application underlying this study dealt with investigations

on aeration performances in an Autothermal Thermophilic Aero

bic Digestion (ATAD) process for treating sludge issued from  waste

water treatment plant [19]. As sludge was a very complex mate

rial, it was decided in a first step to work with model fluids instead

of sludge. Their formulation was chosen so as  to obtain rheologi

cal behaviours as close to sludge as possible, in particular in terms

of shearthinning properties. For these reasons, and with regard

to literature, aqueous solutions of carboxymethylcellulose (CMC)

and xanthan gum were selected. The use of  two types of  fluids

offered the advantage to cover a wider range of  combinations of

flow and consistency indexes. To ensure their stability in  time (dur

ing several days), NaCl was added at 0.1%  (w/v) to the solutions

of xanthan gum solutions [29] and NaHCO3 (0.1 mol/L) + Na2CO3,

10H2O  (0.1 mol/L) to the solutions of  CMC  [30]. Various concentra

tions of CMC  and xanthan gum were tested, and finally converged

towards the following ones: 4 and 6 g/L for CMC, and 1  and 2 g/L for

xanthan gum. In addition to these nonNewtonian fluids, deionised

water and two aqueous solutions of  glycerine (50% and 70%, v/v)

were also chosen as Newtonian fluids.

The rheology of these fluids was measured, at 20 ◦C,  by a

rotational stresscontrolled rheometrer (MCR500, PAAR Physica®)

equipped a  coneplate device (50 mm  in diameter, 3 degree in cone

angle). Their density and surface tension were determined using

a densimeter ERTCO® and  a tensiometer involving the Wilhelmy

plate method (3S GBX®). The physical and rheological proper

ties of both Newtonian and nonNewtonian fluids are  collected in

Table 2.

The  rheological behaviours of the nonNewtonian fluids were

firstly characterised by measuring the variation of shear stress (�)

or apparent viscosity (�a)  as a function of shear rates (  ̇) which

range varied from 0.1 to 3000 s−1. When comparing the curves

obtained for increasing and decreasing shear rates, no difference

was observed whatever the nonNewtonian fluids: no  hysteresis

phenomenon then  existed. Shown in Fig. 2, the rheograms obtained

(issued from several trials) clearly illustrate the shearthinning

properties of these fluids. For  each fluid, the yield stress was  also

determined, by applying the method proposed by [31] which con

sisted in  oscillating stress sweep tests at a constant frequency

(1 Hz); the dynamic yield  stress was then defined at the end of  the

linear viscoelastic region, namely from  the abscissa correspond

ing to the intersection point between the tangent to the plateau

and the tangent to the inflexion point of  the curve linking complex

modulus and shear stress. Depending on the fluid, the yield stress
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Fig. 2. Rheograms: (a) xanthan gum at 1 g/L, (b) xanthan gum  at 2 g/L, (c) CMC  at

4 g/L, and (d) CMC  at 6 g/L.

was  found to vary between 0.1 and 1 Pa, and remained thus neg

ligible. To complete the rheological characterisation of  the fluids,

the viscoelastic properties were investigated, by means of creeping

tests, relaxation tests and/or dynamic oscillating measurements. In



Table  2

Physical and rheological properties of  the fluids.

�l (kg/m3) �l (Pa s) �  (N/m) Ostwald–deWaele’s model: Williamson–Cross’s model:

K  (Pa sn)  nost �w (Pa  s) tw (s)  nw

Air 1.18 1.85 × 10−5 –  –  – –  – –

Newtonian fluids

Deionised  water 998 0.001  0.0728 –  – –  – –

Glycerine  50% [Gly50] 1145 0.0109 0.0456 –  – –  – –

Glycerine  70% [Gly70] 1195 0.0349  0.0503 –  – –  – –

NonNewtonian fluids

CMC  4 g/L  [CMC4] 997 – 0.0717 0.1914 0.642 0.091 0.029 0.546

CMC  6 g/L  [CMC6] 1006 – 0.0771 0.9470 0.527 0.948 0.844 0.514

Xanthan  gum 1 g/L [XG1] 1013 – 0.0753 0.0890 0.543 1.885  57.85 0.411

Xanthan  gum 2 g/L [XG2] 1032 – 0.0767 0.5084 0.373 29.505 150.36 0.281

the range of shear rate investigated, no  major elastic property was

highlighted.

Based on these findings, some  rheological models were chosen

to mathematically describe the variation of apparent viscosity (�a)

with shear rates ranging from 0.1 to 3000 s−1.  Among the large

variability available in  the literature, two models were selected:

 the  Ostwald–deWaele’s model

�a = K · ̇nost−1 (14)

where K and nost are respectively the consistency and flow indexes

respectively.

  the Williamson–Cross’s model

�a =
�w

1  +  (tw · ̇)1−nw (15)

where �w is a  parameter describing a pseudoNewtonian

behaviour for the smallest shear rates, tw is a  time parameter

characterizing the transition between the “pseudoNewtonian”

and purely shearthinning behaviours, and nw is the consistency

index.

The  values of  K,  nost, �w, tw, nw are  reported in Table 2  for

each fluid; they have been obtained by multiparameter optimiza

tions using the software Auto2fit®. In terms of  consistency index,

the most shearthinning fluid appeared to  be the solution of  xan

than gum at 2  g/L. Based on the latter parameters, the apparent

viscosities predicted by Eqs. (14) and (15) were compared to the

experimental ones in Fig. 2. For  all the fluids, a better agree

ment with experiments was obtained with the Williamson–Cross’s

model, insofar as it  enables to describe the most faithfully possible

the shape of the  rheograms over  the whole range of shear rates. This

demonstrates that the fluids under test were not shearthinning on

the whole range of shear rates investigated, three parameters being

required to well describe their behaviour.

3. Dimensional analysis for Newtonian and  nonNewtonian

Fluids

3.1.  Generation of �isets governing aeration process for

Newtonian fluids

In  the present stirred tank, bubbles were directly generating

inside the liquid bulk by means of a  gas sparger. Surfaceaeration

was of course present, but its contribution remained minor when

compared to volumeaeration (see Section 4). Consequently, the

overall volumetric gas–liquid mass transfer coefficient, kla, can be

considered as the tractable quantity which is significantly influ

enced by aeration conditions: it  will be thus taken as target variable.

Remind that such choice is based on the following relationship

describing the physical absorption process according to the two

film theory:

G

Vl
=  kl ·  a  · 1C or kl · a  =

G

Vl · 1C
(16)

where G/Vl is  the mass  throughput per unit volume of  liquid and

1C is a characteristic concentration difference. Eq. (16) implicitly

assumes that (i)  the intensity of gas–liquid contacting is so high

that a quasiuniform system is produced, (ii) the gasphase mass

coefficient kg is negligible when compared to kl (low soluble gases),

(iii) the absorption rate  at the interface is  extremely fast, resulting in

an  equilibrium concentration of the dissolved gas at the interface C*

(e.g. 1C  =  C* − C). Hence, the establishment of the list of  parameters

influencing the main parameter kla should respect the following

rules [7]:  (i) kla must be independent of  all geometrical parameters

(i.e. diameters of stirrer and tank, etc.), (ii) kla must be independent

of the material parameters of gas phase, and (iii) kla  is an  intensive

quantity because of its volumerelated formulation.

As previously mentioned the number of  the parameters influ

encing kla,  even performed in  Newtonian liquids, is  large  and can

be decomposed according to:

• The  geometric parameters (see legend in  Table 1), characterizing

  the tank: Tt, Hl,  curvature radius and angle (for  tank’s bottom),

. . .
  the impeller: D, Ds,  C, w,  b, l,  . . .
  the sparger: d, number, diameter and shape of holes, . .  .

• The  material parameters:

�l, �l,  �g, �g,  s, D,  C*
• The  process parameters:

g,  N, Ug =
Qg

� · T2
t /4

,  Tl, Ps, .  .  .

Note  that, in the present study, all the experiments were con

ducted at room temperature and atmospheric pressure, inducing

thus that temperature and absolute pressure will not be listed. The

geometry of  the tank was also unchanged, as  well as the type and

position of  both sparger and impeller. As a consequence, the list

of individual physical quantities could be reduced: Table 3 shows

the dimensional matrix obtained with the reduced list of relevant

parameters.

It is voluntarily chosen to list the nonintensive parameters N

and D instead of power per unit of  liquid volume (P/Vl). The main

motivation is that P/Vl is an  intermediary variable which is  not

always available (in particular at industrial scale), and thus using

such intensive variable would restrict the field of applications of

the final dimensional correlation which will be  established.

In  Table 3, the columns are assigned to the individual phys

ical quantities and the rows to the exponents appearing when



Table 3

Dimensional matrix of the influencing parameters (Newtonian fluids).

Core matrix Remnant matrix

�g �g g kla Ug N D �l �l � D

Mass, M (kg) 1 1 0  0  0 0 0 1 1  1 0

Length,  L (m)  −3 −1 1 0  1 0 1 −3 −1  0 2

Time,  T  (s) 0 −1  −2 −1  −1 −1 0 0 −1  −2 −1

each quantity is  expressed as an appropriate power product of

the base dimensions (mass, length, time). This table is  structured

in a core matrix and a residual matrix. The core  matrix regroups

the individual physical quantities put  forward by  the user  to form

the dimensionless ratios from other individual physical quantities

(namely kla,  Ug,  N, D,  �l,  �l, �, D).  Depending on the individ

ual physical quantities assigned in the core matrix, several set of

dimensionless numbers �i can be obtained. It has  been shown [32]

that all the �isets obtained from a  single and identical relevance

list are equivalent to each other from a  point of view of dimen

sional analysis, and can  be mutually transformed at leisure. The

final form for the �iset should be laid down by  the user  so as to be

the “best” suitable for evaluating and presenting the experimen

tal data. Contrary to what commonly found in the literature, the

gas properties �g and �g (and not the liquid properties) were here

chosen as individual physical quantities; the associated motiva

tion was to generate dimensionless numbers dependent of  a single

influencing parameter, the gas phase being kept unchanged in  this

study (air).

Generating the set  of dimensionless numbers (and possibly their

future transformation) represents an extremely easy undertaking

when compared to the drawing up of  a reliable and as accurate as

possible relevance list; this can be made by matrix transformation.

The starting point consists in  carrying out the socalled Gaussian

algorithm in order to obtain a unit core matrix by linear transfor

mations (zerofree main diagonal, beneath it  zeros). Table 4 reports

the unit core matrix associated with the dimensional matrix of

Table 3. The analysis of the unit core matrix leads to  the dimen

sionless ratios. Indeed, the rows of  residual matrix are assigned to

the exponents with whom the elements of the core matrix appear

when the individual physical quantities of  the residual matrix are

expressed as an appropriate power product of  the physical quanti

ties of the core matrix. Literature [33] offers detailed examples of

how to  handle matrix transformation and recombination in order

to quickly obtain the complete set of dimensionless numbers. This

aspect will be then only briefly described in this paper. For New

tonian fluids, the matrix analysis leads to the eight dimensionless

numbers, �1 to �8:

�1 =
kla

�
1/3
g ·  �

−1/3
g ·  g2/3

(17)

�2 =
Ug

�
−1/3
g ·  �

1/3
g ·  g1/3

(18)

�3 =
N

�
1/3
g ·  �

−1/3
g ·  g2/3

(19)

�4 =
D

�
−2/3
g · �

2/3
g · g−1/3

(20)

�5 =
�l

�g
(21)

�6 =
�l

�g
(22)

�7 =
�

�
−1/3
g · �

4/3
g · g1/3

(23)

�8 =
D

�−1
g · �g

(24)

Note that �1 is  nothing other that the dimensionless volumetric

mass transfer coefficient defined by  [7], the combination of  �4 with

(�3)2 leads to the Froude number, and �8 is the inverse of a Schmidt

number defined according to  gas phase properties. By introducing

the gas kinematic viscosity (�g =  �g/�g) and giving explicit nota

tions, the latter numbers become:

�1 = kla
∗ = kla ·

(

�g

g2

)1/3

(25)

�2 =  U∗
g =

Ug

(�g · g)1/3
(26)

�3 = Fr =
N2 · D

g
(27)

�5 = �∗ =
�l

�g
(28)

�6 = �∗ =
�l

�g
(29)

�7 = �∗ =
�

(�3
g · �4

g ·  g)
1/3

(30)

�8 =  Sc  =
�g

D
(31)

Thus, at a  given temperature, under a  given pressure, for the geom

etry of  the aerated stirred tank under test (in particular for Hl/Tt = 1,

D/Tt =  0.4,  Ds/Tt = 0.75 and for the other geometrical ratios char

acteristics of the system), the dimensional analysis states that,

when Newtonian fluids are involved, dimensionless volumetric

mass transfer coefficient (kla*) is  potentially affected by six dimen

sionless numbers, respectively describing the effects of superficial

gas velocity, rotational impeller speed, liquid density, Newtonian

viscosity, liquid surface tension and oxygen diffusivity:

kla
∗ = f

{

U∗
g, Fr,  �∗, �∗, �∗, Sc

}

(32)

Table 4

Unit  core matrix obtained by linear transformations of dimensional matrix (Newtonian fluids).

Core matrix Residual matrix

�g �g g kla Ug N D  �l �l �  D

M +  T + 2A 1 0  0 1
3

− 1
3

1
3

− 2
3

1 0 − 1
3

−1

3M  + L +  T + A 0 1 0 − 1
3

1
3

− 1
3

2
3

0 1 4
3

1

A  =  − 1
3

× (3M + L + 2T)  0 0 1 2
3

1
3

2
3

− 1
3

0 0 1
3

0



Such formulation of  dimensionless numbers offers the advantage to

enable the impact of  all influencing parameters to be studied sepa

rately, or in others words each dimensionless number is  defined for

a single influencing variable. This  is not the case in the literature

where, for example, most of the authors used the aeration num

ber, Na = Flg = Qg/(N · D3), in which the effect of gas flow rate is  not

decoupled from the one of  rotational impeller speed.

At  this state, the dependence of Eq.  (32) is all that can be con

tributed by the theory of similarity. The mathematical expression

for the function f,  namely for the process relationship, has  to  be

determined experimentally.

3.2.  Extension of  the  theory of similarity to the cases of variable

material  properties

When  using the dimensional analysis to  model system answers,

it is generally assumed that the material properties remain unal

tered in the course of the process. However, the invariability of

material properties cannot be assumed when nonNewtonian flu

ids are involved. Indeed, at the least one of the material properties,

the apparent viscosity, can no  longer be considered as a  constant

inside the whole volume of the aerated stirred tank, insofar as  the

dependency of  this latter with the shear rates (  ̇) generates a  spa

tial distribution of  the liquid viscosity. The underlying question

addressed to the dimensional analysis is now: how must the  space

of dimensionless numbers, �i, be built in presence of such variable

material property?

In  the case of materials with constant properties, no special pre

caution should be made to guarantee that a process relationship

correlating a set of dimensionless ratios is  also applicable to another

material. This is  not true for materials with variables properties, as

demonstrated by [34]. In this case, we should first ensure as prior

ity that a certain similarity exists for materials in  order to extend

the range of validity of  the process relationship to other materi

als. Despite that, the theory of similarity has little changed since

its beginning, and the dimensional modelling involving materials

with variable physical properties remains treated, in  most of the

papers, as the case with constant material properties. The authors

ignore then the fact that the spatiotemporal variability of mate

rial properties influences the course of  the process! One exception

is the modelling of  the transformation processes where a mate

rial having a  temperaturedependence in  viscosity is submitted to

heat transfer condition. Most of  attempts made to take into account

the variability of product properties in the reactor have consisted

in adding a new  ratio raised to a  certain exponent to character

ize the system response. This ratio is defined by the ratio between

the viscosities at bulk temperature and at wall temperature. How

ever, this kind of  enlargement of  the set of  dimensionless ratios

is theoretically valid only for few limited cases, that is to say only

if the material function (here viscosity versus temperature) sat

isfies specific criteria [34]. In other words, such method leads  to

biased predictions and thus, cannot be generalised when handling

other fluids. Despite this fact, this ratio remains systematically

used, whatever the products investigated, in  most of the studies

since [35].

The  theoretically consistent way of proceeding has been

introduced by Pawlowski in 1971 [34] and remembered by  [32,36].

The method consists in introducing some additional parameters in

the relevance list so as  to take into  account the variation in  the

flow domain of the physical property, noted s  (for example viscos

ity), as a function of  a parameter noted p (for example temperature

or shear rate); s(p) is called the material function (for example �(T)

or �( ̇)). This implies that the �ispace governing the process will

be extended in comparison to fluids having constant properties.

The guidelines to  introduce the right number of  additional dimen

sional parameters are detailed in  [34]. Hence, when  dealing with a

material function s(p) which is apparent viscosity �a( ̇), the

Pawlowski’s work [34] can be summed up, as follows:

• Firstly,  all the dimensional parameters defined in the relevant list

with fluids having constant properties (Newtonian case) should

be  conserved, except for the variable physical properties in ques

tion  (here apparent viscosity �a(  ̇)).
• Secondly,  the Newtonian viscosity should be replaced by a refer

ence  apparent viscosity, �o, calculated at a  reference shear rate,

̇o. It is  important to point out  that any value  for the reference

shear rate can be  chosen.
• Thirdly,  the reference shear rate should be added in the list of

relevant  parameters. At this stage, we can point out that some

exceptions to this rule exist.  Indeed, it  has been demonstrated

that adding the reference point is not  necessary when the mate

rial  function s(p), here �a(  ̇), can  be described by the following

family of  curves:

s(p)  = (A + B · p)c or s(p) = exp(A  + B · p)  (33)

where A, B and C  are three independent constants.
• Finally, a set of additional dimensionless numbers should be

added  in the relevant (dimensional) list to take into account the

dependency of  material function. These dimensionless parame

ters,  called �rheol,  correspond to all the dimensionless ratios �i

which appear in the expression of  the function u, except for the

ratio  ̇/ ̇0:

{�rheol} =

{

{�i} such as u = ( ̇ − ̇0)
1

�a(  ̇0)
·

[

d�a

d ̇

]

̇= ̇o

= g

(

̇

̇0
;  {�i}

)

}

(34)

When integrating the previous guidelines, the list of the influ

encing parameters established for Newtonian fluids becomes for

nonNewtonian fluids:

{kla, �g, �g, g,  Ug,  N, D, �l, �, D,  �a( ̇o), ̇o, �rheol}  (35)

The next step is to find the type of  material function describing the

rheological behaviour of  viscous fluids having shearthinning prop

erties. As presented in Section 2, two  models are well  adapted for

the investigated fluids: the Ostwald–deWaele’s model (Eq. (14))

and the Williamson–Cross’s model (Eq. (15)). As these models are

able to describe the variation of  viscosity with shear rate for all  the

aqueous solution of  CMC  and xanthan gum, each of them constitute

one possible material function.

3.2.1.  Case No. 1:  Ostwald–deWaele’s model.

When the material function corresponds to the Ostwald–de

Waele’s model, the function u can be expressed as:

u  =

(

̇

̇0
− 1

)

(nost − 1) (36)

Consequently,

{�rheol} = {nost}  (37)

The Ostwald–deWaele’s model, defining as �a =  K  ·  ̇nost−1 (Eq.

(14)), verifies Eq. (33), implying thus that the reference shear rate,

̇o, can be removed from the relevance list. As  a consequence, for

purely viscous fluids having shearthinning properties, the addi

tional parameters is restricted to nost and the Newtonian viscosity

is replaced by  �a(  ̇o). Eq.  (32) established for Newtonian fluids

becomes then:

kla
∗ =  g

{

U∗
g, Fr, �∗, �∗, Sc, �∗ =

�a(o)

�g
, nost

}

(38)



         

Table 5

Dimensional results for kla  (expressed in s−1): Newtonian and nonNewtonian fluids.

N (rpm) Qg (L/min) Newtonian fluids NonNewtonian fluids

Water Gly50 Gly70 CMC4 CMC6 XG1 XG2

200 0.33  9.05 × 10−4 – – – – – –

0.9  1.91 × 10−3 – –– – – – –

1.6  3.35 × 10−3 7.75 ×  10−4 3.13 × 10−4 1.64 × 10−3 1.26 × 10−3 1.55 × 10−3 1.31 × 10−3

2.33 4.58 × 10−3 1.05 × 10−3 4.22 × 10−4 2.08 × 10−3 1.85 × 10−3 2.06 × 10−3 1.47 × 10−3

3 5.33 × 10−3 1.45 ×  10−3 5.15 × 10−4 2.58 × 10−3 2.01 × 10−3 2.68 × 10−3 2.16 × 10−3

3.33 5.88 × 10−3 1.77 ×  10−3 5.75 × 10−4 2.82 × 10−3 2.3 × 10−3 2.85 × 10−3 2.56 × 10−3

400 0.33  2.31 × 10−3 – – – – – –

0.9  4.91 × 10−3 – – – – – –

1.6  8.69 × 10−3 2.90 × 10−3 6.82 × 10−4 3.68 × 10−3 2.54 × 10−3 4.83 × 10−3 3.61 × 10−3

2.33 1.12 × 10−2 3.50 × 10−3 8.00 × 10−7 4.43 × 10−3 4.40 × 10−3 5.93 × 10−3 4.81 × 10−3

3 1.29 × 10−2 4.28 ×  10−3 9.99 × 10−4 4.98 × 10−3 4.98 × 10−3 6.59 × 10−3 6.51 × 10−3

3.33 1.31 × 10−2 4.63 ×  10−3 1.19 × 10−3 5.19 × 10−3 5.53 × 10−3 7 × 10 ×  10−3 8.01 × 10−3

600 0.33  4.30 × 10−3 – – – – – –

0.9  9.19 × 10−3 – – – – – –

1.6  1.62 × 10−2 4.72 ×  10−3 1.38 × 10−3 7.51 × 10−3 3.99 × 10−3 9.52 × 10−3 7.68 × 10−3

2.33 1.82 × 10−2 5.73 ×  10−3 1.77 × 10−3 8.60 × 10−3 6.90 × 10−3 1.13 × 10−2 9.57 × 10−3

3 2.06 × 10−2 6.39 ×  10−3 2.25 × 10−3 9.23 × 10−3 8.20 × 10−3 1.30 × 10−2 1.11 × 10−2

3.33 2.26 × 10−2 6.78 ×  10−3 2.55 × 10−3 9.44 × 10−3 9.05 × 10−3 1.39 × 10−2 1.20 × 10−2

800 0.33  4.94 × 10−3 – – – – – –

0.9  1.39 × 10−2 – – – – – –

1.6  2.26 × 10−2 6.87 ×  10−3 2.35 × 10−3 1.14 × 10−2 6.40 × 10−3 1.29 × 10−2 1.08 × 10−2

2.33 2.68 × 10−2 7.61 ×  10−3 3.31 × 10−3 1.32 × 10−2 8.30 × 10−3 1.51 × 10−2 1.28 × 10−2

3 2.81 × 10−2 8.14 ×  10−3 3.97 × 10−3 1.45 × 10−2 9.17 × 10−3 1.79 × 10−2 1.43 × 10−2

3.33 3.21 × 10−2 8.45 ×  10−3 4.46 × 10−3 1.48 × 10−2 9.75 × 10−3 1.87 × 10−2 1.57 × 10−2

1000 0.33  1.05 × 10−2 – – – – – –

0.9  1.43 × 10−2 – – – – – –

1.6  2.25 × 10−2 8.36 ×  10−3 4.41 × 10−3 1.54 × 10−2 8.90 × 10−3 1.70 × 10−2 1.38 × 10−2

2.33 2.70 × 10−2 8.87 ×  10−3 5.21 × 10−3 1.75 × 10−2 1.05 × 10−2 2.06 × 10−2 1.68 × 10−2

3 2.84 × 10−2 9.18 ×  10−3 5.74 × 10−3 1.88 × 10−2 1.17 × 10−2 2.36 × 1010−2 1.89 × 10−2

3.33 3.34 × 10−2 9.48 ×  10−3 6.21 × 10−3 1.90 × 10−2 1.29 × 10−2 2.61 × 10−2 2.06 × 10−2

When degenerated to the Newtonian case, the material function

associated with the  Ostwald–deWaele’s model leads to nost =  1  and

�* = �a/�g where �a = �l is  the Newtonian viscosity.

3.2.2.  Case No. 2:  Williamson–Cross’s model

When the material function corresponds to the

Williamson–Cross’s model, the function u can be expressed

as:

� =

(

̇ − ̇0

̇0

)

·
(nw − 1)  · (tw ·  ̇0)(−nw)

1 + (tw ·  ̇0)1−nw
(39)

Consequently,

{�rheol} = {nw, tw ·  ̇0}  (40)

The reference shear rate, ̇o, should be listed  as  the

Williamson–Cross’s model does not verify Eq. (33). Finally, the new

variables to add in the relevant dimensional list are:

{  ̇o, nw, tw ·  ̇0}  (41)

Nevertheless, as ̇o can theoretically take any value, it  is possible

to choose:

̇o =
1

tw
(42)

By this way, the supplementary variables are  restricted to:

{tw,  nw}  (43)

As a consequence, for the fluids described by the

Williamson–Cross’s model, the additional parameters are tw

and nw,  and the Newtonian viscosity should be replaced by

�a

(

1

tw

)

=  �0 =
�w

2
(44)

After introducing these variables in  the core matrix (Table 3)

and applying the linear transformations from Table 4,  the set  of

dimensionless numbers defining aeration process is enlarged by

two dimensionless numbers:

�9 = nw and �10 =  t∗
w =

1

tw
·

(

�g

g2

)1/3

(45)

Eq. (32) established for Newtonian fluids becomes then:

kla
∗ = h

{

U∗
g,  Fr, �∗, �∗, Sc, �∗ =

�a(1/tw)

�g
,  nw, t∗

w

}

(46)

Note that the Williamson–Cross’s model leads to a  Newtonian

behaviour for particular values of nw and tw : namely nw = 1 and

tw = 1. In this case, �l = �w/2.

4.  Results

4.1. Validation of kla  measurements

In  Table 5 are collected the set of  experiments which will serve

as database for the dimensional analysis. It is constituted by 150

measures of kla (including 70 values for the Newtonian case), car

ried out at five  rotational impeller speeds (200 ≤ N  ≤  1000 rpm)

and four flow rates (0.33 ≤  Qg ≤  3.33 L/min), and for several flu

ids (three Newtonian fluids, four nonNewtonian fluids). Note that

these overall volumetric mass transfer coefficients correspond to

the values obtained with the dynamic method, and averaged from

the measures for both probes and three runs (Eq. (9)).

Whatever the fluids, the criterion for axial homogeneity (defined

in Eq. (10)) has  been found varying from 6  to 8%  for N  = 200 rpm,

and from 1  to 3% for N  = 1000 rpm [19,37], the smallest value being

obtained for the probe  located at the top  of the tank. Then, no signif

icant spatial heterogeneity takes place in the tank, and these values

of kla can be considered representative of the aeration state in the

whole tank.
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Fig. 3. Comparison between chemical and physical methods for measuring kla (the

dotted lines correspond to a  deviation of ±15%; in the  legend, the first  number is N

in rpm, the number into brackets Qg in  L/min).

Fig. 3  presents, for some representative cases, a comparison

between the physical and chemical methods for measuring kla.  A

good agreement between both methods is  observed: the deviation

never exceeds 15% which corresponds to the order of magni

tude associated with the experimental uncertainty in the chemical

method [27]. As a  consequence, the values of kla reported in Table 5

can be assumed relevant as  validated by two methods.

The contribution of surface aeration to the overall volumetric

gas–liquid mass transfer coefficient has been estimated by mea

suring kla without bubbling at the ring sparger (see Section 2). For

200 ≤  N ≤  1000 rpm  and 1.6 ≤ Qg ≤ 3.33 L/min,  the following trends

have been obtained [37]:

 for  water, kla
∣

∣

surf
< 0.14 × kla

∣

∣

t
,

  for glycerine at 50%,  kla
∣

∣

surf
< 0.15 × kla

∣

∣

t
, and for glycerine at

70%, kla
∣

∣

surf
< 0.23 ×  kla

∣

∣

t
,

  for CMC  at 4  g/L, kla
∣

∣

surf
< 0.08 × kla

∣

∣

t
, and for CMC  at 6 g/L,

kla
∣

∣

surf
≪ kla

∣

∣

t
,

  for xanthan gum at 1 g/L, kla
∣

∣

surf
< 0.17 kla

∣

∣

t
,  and for xanthan

gum at 2  g/L kla
∣

∣

surf
< 0.14 × kla

∣

∣

t
.

This demonstrates that  the surface aeration remains small when

compared to  volume aeration, confirming thus  that kla|t is the ade

quate target parameter to tract in  the dimensionless analysis for

qualifying the aeration state in  the tank.

When analysed in  detail [19], Table 5 points that, for a given

fluid, the overall volumetric mass transfer coefficients logically

increase for increasing rotational impeller speeds and gas flow

rates. The relative contributions of  gas sparging (Qg) and mechan

ical agitation (N) on the variations of  kla are comparable, even if

the rotational impeller speed plays a more pronounced role. The

present investigations are  then performed under the intermediary

condition defined by  [13,14], namely the condition ranged between

the bubblingcontrolling condition (at relatively high gas flow

rates) and the agitationcontrolling condition (at relatively high

rotational impeller speeds). More important is the major reduc

tion in kla observed in presence of  viscous fluids (Newtonian and

nonNewtonian) when compared to water. To better appreciate

this phenomenon, the following ratio can be defined:

R =
kla|

viscous  fluid

kla|water
(47)

For instance, at Qg = 3 L/min and for 200 ≤ N  ≤ 1000 rpm, the latter

ratio R varies:

 from  27 to 32% in  glycerine at 50%,  and from 9.7 to 20% in glycerine

at  70%,

  from  43 to  66% in CMC  at 4  g/L, and from  38 to  43% in CMC  at 6  g/L,

 from  50 to 83% in xanthan gum at 1 g/L and from 40 to 66% in

xanthan  gum at 2 g/L.

The  comparison of such values of  kla, or any other attempts

for their modelling, is  usually made (see Section 1)  by calcu

lating the apparent viscosity basing on the wellknown concept

of Metzner–Otto and the Ostwald–deWaele’s model (Eq. (14)).

When applying this method [19], it  is possible neither to explain

nor to  understand satisfactorily these results, confirming thus the

requirement to  perform more  consistent investigations on the

influencing parameters.

4.2.  Dimensionless results for  Newtonian fluids

The oxygen diffusivity, D,  was  unknown for the viscous

Newtonian and nonNewtonian fluids under test. Indeed, such

information remains unavailable in the literature, and the usual

correlations (for example the Wilke–Chang one) cannot be applied

by lack of  some required data (for example the association fac

tor of  solvent). So, the contribution of  Schmidt number in the

process relationship (Eq. (32)) cannot be rigorously sought. By

default, whatever the liquid phases, the oxygen diffusivity, D,  will

be assumed equal to the one in  water at 20 ◦C (i.e. to  2 × 10−9 m s−2).

In this case, the Schmidt number Sc (defined with respect to gas cin

ematic viscosity, Eq. (31)) is  then equal to 7850. As a consequence,

it seems reasonable to assert that the process relationship estab

lished will be insured for values of  Schmidt numbers close to this

latter. In addition, the variation of density for the fluids investigated

is not important (Table 2), implying thus that the change in  �* is

weak (847 < �* <  1015). As a  consequence, for securing the process

relationship, it is chosen to ignore the possible alterations of �*  and

Sc in Eq. (32), leading to:

kla
∗ = f ′{U∗

g, Fr, �∗,  �∗} (48)

Having no  mechanistic indication on the form  of the f′relation, the

simplest monomial form is  looked for:

kla
∗ =  ̨ ·  (Fr)a

· (U∗
g )b

· (�∗)c
· (�∗)d (49)

where ˛, a, b, c and d are respectively the constant and the

exponents to which the dimensionless Froude, gas velocity, vis

cosity and surface tension numbers are  raised. The dimensionless

viscosity, �*, is calculated using the Newtonian viscosity (�l)

reported in Table 2. The software Auto2fit® is  used to perform

the multiparameter optimization required to determine ˛, a, b, c

and d. Different mathematical algorithms are systematically tested

(global Levenberg–Marquardt, global QuasiNewton, standard dif

ferential evaluation, genetic  algorithm) to verify the stability of the

results and their independency with initial conditions. The mean

standard deviation is calculated from:

ε =
1

N

∑

i=1,N

∣

∣

∣

∣

(kla)∗
exp,i − (kla)∗

mod,i

(kla)∗
exp,i

∣

∣

∣

∣

(50)

In a first  time, it is interesting to  visualize the effect of  Newto

nian viscosity (�*) on (kla)* separately from the other variables.

The problem is  that the graphic representation associated with Eq.

(49) requires five dimensions as (kla)* depends on Fr, U∗
g , �* and

�*. A simple way to sidestep this problem is  to come down to a 2D

representation, in which the impact of �*  on (kla)* is neglected and

an identical exponent is imposed for the Froude and dimensionless

superficial gas velocity numbers. This is illustrated in Fig. 4,  where

(kla)* is plotted as a function of  (U∗
g · Fr)2/3 for  Newtonian fluids.

The value of  2/3  is chosen as a  first  approximation for the exponent



Fig. 4. Effect of  dimensionless Newtonian viscosity, kla
∗ = kla · (�g/g2)

1/3
,  versus

(U∗
g · Fr)

2/3
(the dotted/continuous lines correspond to the values predicted by  Eq.

(51)).

on Fr and U∗
g ,  as already encountered in the literature (see review of

[3]). Thus, Fig. 4  offers the advantage to  easily appreciate the neg

ative effect of �* on aeration performances: whatever (U∗
g · Fr)2/3,

an increase of �* from 54 (water) to 1886 (glycerine 70%) leads to

a drastic reduction of  (kla)* (more than 85%).

When imposing the exponent 2/3  to (U∗
g · Fr), the best fit

ting between experimental data and Eq. (49) without taking into

account �* leads to:

kla
∗ = 0.1420 ·  (Fr  ·  U∗

g )2/3
· (�∗)−0.591 (51)

The associated mean standard deviation is equal  to  17.1%. To  test

the robustness of such correlation (in particular of the exponents

found), several cases are now tested when implementing the multi

parameter optimization:

  Case No. 1:  all the exponents in Eq. (49) are kept free and �* is

neglected;

  Case No. 2: the exponents of Fr  and of U∗
g are imposed identical

without  any specified value, and �* is  neglected;

  Case No.  3: the exponents of Fr and U∗
g are imposed equal to  2/3

(as  in Eq. (51)), but now the effect of �*  is taken into account.

In Table 6 are collected, for each case, the constant and expo

nents of Eq. (49) deduced from the multiparameter optimization.

In a general point of  view,  no  major difference appears between the

different cases: the exponent of  �*  remains close to −0.59 (devia

tion < 1.3%), and the exponents of Fr and U∗
g do not vary significantly

whether they are imposed identical or not (deviation < 6.5%). These

findings confirm that the orders of  magnitude of the exponents

found in  Eq. (51) are  relevant, and thus, that this correlation is

mathematically robust. Note that, even if Fr and U∗
g have the same

exponent, the contribution of N is  two times higher than the one

of superficial gas velocity, as the Froude number is expressed in

squared rotational impeller speed (Eq. (27)); this is  coherent with

these observations made on the dimensional results (Section 4.1).

The cases No. 1  and No.  2  leads to a slight improvement (smaller

than 1%) of  the mean standard deviation (ε); however, the expo

nents of Eq. (51) will be thereafter conserved, insofar as they  lead to

the most simple formulation, and also as  the value of 2/3  is already

Table 6

Dimensionless modelling for Newtonian fluids using Eq. (49) (in  bold the  case

retained).

Case ˛  a b c d ε  (%)

No. 1 0.02125 0.747 0.66  −0.605 – 16.1

No. 2  0.01535 0.683 0.683 −0.592 – 16.8

No. 3 0.2097 2/3  2/3  −0.591 −0.245 16.8

(k l a )*exp

(k l a )*mod

Water 

Gly50  

Gly70

[µ * = 54, σ * = 73385]

[µ * = 58 9, σ * = 45066]

[µ * = 18 86, σ * = 50704]
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Fig. 5.  Experimental dimensionless overall gas–liquid mass transfer coefficient

versus  kla* predicted from Eq. (52)  (Newtonian fluids). The dotted lines correspond

to a  deviation of ±20%.

encountered in  the literature. Based on that, the effect of surface

tension, �∗ =  �/(�3
g ·  �4

g ·  g)
1/3

,  has been added in Eq. (51) (Case

No. 3):  the constant is in return increased and a negative exponent

appears for �* (−0.245).  This latter logically confirms the positive

impact of  decreasing surface tension on aeration: when surface ten

sion is reduced (for example when adding surfactant or alcohol in

the liquid phase), smaller bubble sizes are  generated, leading to a

rise in interfacial area and thus in overall volumetric mass trans

fer coefficient. In the literature [7], this usually results  in positive

exponents for the Weber number.

At last, at a  given temperature, under a given pressure, for the

geometry of the aerated stirred tank under test (in particular for

Hl/Tt = 1,  D/Tt = 0.4, Ds/Tt = 0.75 and for the other geometrical ratios

characteristics of the system), the dimensional analysis states that

the process relationship for Newtonian fluids is expressed by:

kla
∗ = 0.2097 ·  (Fr ·  U∗

g )
2/3

·  (�∗)
−0.591

· (�∗)
−0.245

valid for

{

0.096 <  Fr < 2.4, 0.0029 < U∗
g < 0.029, 54 <  �∗ <  1886

847 < �∗ <  1015, 50704 < �∗ < 73385, Sc = 7850

(52)

Fig. 5 compares the experimental data with the dimensionless

overall volumetric gas–liquid mass transfer coefficients predicted

by Eq. (52). A good agreement is observed, as  the mean standard

deviation remains smaller than 17%. It can been observed that some

data corresponding to  the smallest kla* (obtained for low speeds in

glycerine) tends to move away from  the straight lines representing

(kla
∗)exp =  ±20% · (kla

∗)pred. This should be linked  to the fact that,

in such conditions, the gas–liquid regime corresponds to a  loading

regime, and not to a  complete dispersion regime characterizing all

the other operating conditions. The mechanical agitation is not then

sufficient to disperse uniformly the bubbles in the whole volume of

tank, in particular in the lower part of the tank (below the impeller).

Hence, the relative contributions of the mechanisms controlling kla

(mechanical agitation against sparger aeration) deviates from the

ones acting when a complete dispersion regime takes place. When

such changes in regime occurs, it  becomes then difficult to define

an unique and accurate process relationship able to describe the

entire range of  operating conditions. Some deviations can be also

observed for the highest vales of kla; they can be here  associated

with an  increasing contribution of the surface aeration (mass trans

fer occurring at the free  liquid surface) when rotational impeller

speed rises. Indeed, for the highest N, a  significant vortex appears

in the centre of the tank and entrains many bubbles. In such condi

tions, the mechanism (or  regime) of  aeration is deviated to a pure

volumeaeration, and thus, the choice of kla
∣

∣

t
(and not kla

∣

∣

surf
) for

tracting volumeaeration state is  less representative.

To conclude, it should be kept in mind that the validity of Eq.

(52) can  be  at present guaranteed only in  the range of dimensionless



         

Table  7

Dimensionless numbers characteristics for liquid properties.

�* �*  nost �∗
ost nw t∗

w �∗
w

Water 848  73385 1 54 1 1 108

Gly50 973 45966  1 589 1 1 1178

Gly70 1015  50704 1 1886 1 1 3773

CMC4  861  75905 0.642 1866 0.546 0.201 4944

CMC6  877  77316 0.527 5309 0.513 6.84 ×  10−3 5.12 × 104

XG1 847  72276 0.543 539 0.411 9.98 ×  10−5 1.02  × 105

XG2 855  77719 0.373 1366 0.281 3.84 ×  10−5 1.59 × 106

numbers above mentioned, at given temperature and pressure, and

in the geometry defined in Section 2.

4.3. Dimensionless results for nonNewtonian fluids

4.3.1. When considering the  model of  Ostwald–deWaele

As any value can be considered (see Section 3.2), the refer

ence shear rate, ̇o, has been arbitrary chosen equal to 120 s−1. The

dimensionless numbers describing the rheological properties asso

ciated with the  Ostwald–deWaele’s model  (Table 2) and such ̇o

are collected in  Table 7  (fourth and fifth columns). It  can be logi

cally observed that the flow index (nost) decreases when increasing

the concentration, the smallest value being obtained for the most

concentrated solution of  xanthan gum. Dimensionless apparent

viscosity (�∗
ost)  are higher for aqueous solutions of  CMC than the

ones of  xanthan gum.

Basing  on the  reasons mentioned in the case of  Newtonian fluids,

the possible changes in �* and in Sc will be neglected in  Eq. (38)

previously established when the model  of Ostwald–deWaele is

considered. Thus, Eq. (38) becomes:

kla
∗ =  g′

{

U∗
g, Fr, �∗, �∗ =

�a(o)

�g
,  nost

}

(53)

The simplest monomial form is here also looked for the g′relation

(no mechanistic information available):

kla
∗ =  ˛′ ·  (Fr)a′

· (U∗
g )b′

·  (�∗)c′

· (�∗)d′

· (nost)
e (54)

where ˛′, a′,  b′,  c′, d′ and e  are respectively the constant and

the exponents to  which the dimensionless Froude, superficial gas

velocity, viscosity, surface tension and flow index numbers are

raised (Auto2fit®). However, it is important to keep in  mind that

the modelling for Newtonian fluids is a degraded case of the one

for nonNewtonian fluids. As a consequence, the exponents of  Fr,

U∗
g ,  �* and �* (namely a′, b′,  c′,  d′) are already defined, and will be

thus taken equal respectively to 2/3, 2/3, −0.591 and −0.245 as in

the Newtonian case (Table 6, Case No.  3).

Fig. 6.  Effect of dimensionless apparent viscosity and flow index when the

Ostwald–deWaele’s model is considered: (kla)*  versus (U∗
g ·  Fr)

2/3
.

In Fig. 6, (kla)* is plotted as a function of  (U∗
g · Fr)2/3 for all the

fluids. Such figure is particularly important as the effects of  �* and

nost can be visualized separately. Indeed, at a  given  �*, an decrease

in nost clearly induces an  increase in  (kla)*, or in  other words,

the shearthinning character of  fluids favours the aeration perfor

mances, probably due to the spatial heterogeneity of viscosity. This

is illustrated when comparing either (i) the glycerine at 70% and

the aqueous solutions of  CMC  at  4  g/L which have almost the same

dimensionless apparent viscosity (1886 against 1866), but differ

ent flow indexes (1 against 0.642), or (ii) the glycerine at 50% and

the aqueous solutions of xanthan gum at 1 g/L which have almost

the same dimensionless apparent viscosity (589 against 538), but

different flow indexes (1 against 0.543). The impact of nost seems

however less pronounced than the one of �*.

Fig. 7  compares the dimensionless overall volumetric mass

transfer coefficients measured in presence of  nonNewtonian fluids

with the ones predicted using the process relationship estab

lished for Newtonian fluids (Eq. (52)). The points related to each

nonNewtonian fluid are regrouped along individual straight lines

which are  parallel to each others and to the curves previously

obtained for Newtonian fluids. This illustrates that the introduc

tion of  nost into the dimensionless modelling (Eq. (54)) could be

a mean for differentiating the nonNewtonian fluids from each

others and from the Newtonian ones. Nevertheless, this group of

four straight lines (one  for each fluid) is not classified according

to the values of flow index, in particular the associated nost are

not decreasing when deviating from the Newtonian curve (nost = 1).

Indeed, the straight line the closest from the Newtonian curve

corresponds to nost =  0.543 (XG 1  g/L), followed by nost = 0.373 (XG

2 g/L),  then nost =  0.642 (CMC 4 g/L), until reaching the most distant

line, nost = 0.527 (CMC 6 g/L). This finding tends to show that gather

ing all the data related to nonNewtonian fluids over  the Newtonian

ones will be difficult by adding only the flow index nost in the

relevant list. In others words, this would mean that the material

function associated with the model of  Ostwald–deWaele could be

insufficient and/or unsuitable for describing completely the effect

of the shearthinning properties on (kla)*.
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Fig. 7. Modelling using the Ostwald–deWaele’s model: comparison between the

experimental (kla)* and the  values predicted by Eq. (52) for Newtonian fluids. The

dotted lines correspond to a deviation of ±20%.
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Fig. 8.  Modelling using the Ostwald–deWaele’s model: comparison between the

experimental (kla)* and the values predicted by Eq. (55). The dotted lines correspond

to a deviation of  ±20%.

The fitting between Eq. (54) and experimental data (determina

tion of the constant ˛′ and the exponent of  nost,  the other exponents

being the ones of the Newtonian case) leads to:

kla
∗ =  0.2284 ·  (Fr · U∗

g )
2/3

· (�∗)
−0.591

· (�∗)
−0.245

·  nost
−1.341

valid for

{

0.096 < Fr < 2.4, 0.0029 < U∗
g <  0.029, 54 <  �∗ <  5309

847 <  �∗ < 1015, 50704 <  �∗ <  77719, Sc  = 7850, 0.37 <nost <1

(55)

The  associated mean standard deviation is equal to 25%.  In Fig. 8,

the experimental dimensionless mass transfer coefficients (kla)*

are reported as a  function of the ones predicted by Eq. (55). The

exponent of nost is  found negative, and is then coherent with Fig. 6

where the decrease of  (kla)* with increasing nost has  been clearly

observed. More important, this figure confirms what already sug

gested in Fig. 7: adding nost as  the single dimensionless ratio in

the relevant list (when compared to the Newtonian case) does not

enable to gather all  the data over the Newtonian curve; in  particu

lar, the points related to  aqueous solutions of  CMC  strongly deviate

from the others. Thus, the set  of  dimensionless ratios involved with

the Ostwald–deWaele’s model is not able to describe all the com

plexity of  the rheological behaviours encountered in the present

aeration experiments (namely the dependency of  viscosity with

shear rate for the range of  fluids under test).

For securing the  latter process relationship (Eq. (55)) in a math

ematical point of  view, two additional cases are tested when

implementing the multiparameter optimization: the first one

(Case No. 5) in which �* is not taken into account, and the second

one (Case No. 6) in which �* is taken into account with a  non

imposed exponent. The results are collected in Table 8 (Case No.  4

corresponds to Eq. (55)). Whatever the cases, the exponent of nost,

e, remains almost constant, about −1.34 (deviation below 2.6%),

and validates thus the robustness of the modelling. The occurrence

of a exponent of �* (d′) has no  major effect on  the mean standard

deviations obtained (25.6% against 25.0%), showing thus  that this

parameter is  neither the one controlling the process relationship

nor the additional one enabling to gather all the data.

To  conclude, these findings have clearly demonstrated that the

use of the Ostwald–deWaele model is  not relevant for encom

passing all (kla)* values by  a unique process relationship. It is then

Table 8

Dimensionless modelling for nonNewtonian fluids when the  Ostwald–deWaele’s

model  is considered (Eq. (54)).

Case ˛′ d′ e ε  (%)

No. 4 0.2284  −0.245 −1.341  25.2

No. 5  0.01505 0 −1.377  25.6

No. 6 0.04964  −0.107 −1.306 25.0
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Fig. 9.  Modelling using the Williamson’s model: comparison between the experi

mental (kla)*  and the values predicted by Eq. (57). The dotted lines correspond to a

deviation of ±20%.

necessary to visit again the way of characterizing the rheological

behaviours, namely the choice of  the material function.

4.3.2. When considering the model of Williamson–Cross

As explained in Section 3.2.2, the reference shear rate, ̇o, is

here chosen equal to 1/tw where tw is a time parameter describing

the pseudoNewtonian behaviour for the smallest shear rates (Eq.

(15)). Using such ̇o and the parameters found when applying the

Williamson–Cross’s model to experimental rheograms (Fig. 2)  leads

to the dimensionless numbers collected in  Table 7 (sixth, seventh

and eighth columns). It can be observed that: (i) the flow index,

nw, have the same order of magnitude than the ones found for

the model of  Ostwald–deWaele nost, (ii) the dimensionless time

characteristic number, t∗
w ,  is a differentiating parameter between

the nonNewtonian fluids as being significantly smaller for aque

ous solutions of  xanthan gum than for the ones of CMC, and (iii)

the dimensionless viscosity, �*, are  now ranged between 108  and

1.59 × 106.

As for Newtonian fluids, the simplest monomial form is looked

for the hfunction in Eq.  (46), and the possible changes in �* and in

Sc are neglected. This leads to:

kla
∗ = ˛

′′

· (Fr)a
·  (U∗

g )b
· (�∗)c

· (�∗)d
· (nw)e′′

·  (t∗
w)f (56)

where the exponents of Fr, U∗
g ,  �* and �* are the ones determined for

the Newtonian case, namely a  = b  =  2/3, c  = −0.591 and d = −0.245.

The coefficient ˛′′, the exponents of  nw and of  t∗
w (e′ and f  respec

tively) are  determined by the multiparameter optimization. The

following process relationship is  then obtained:

kla
∗ = 0.02109 · (Fr · U∗

g )
2/3

· (�∗)
−0.591

·  (�∗)
−0.245

·  (nw)
−2.399

· (t∗
w)

−0.168

valid for







0.096 < Fr  <  2.4, 0.0029 <  U∗
g <  0.029, 108  <  �∗ < 1.6.106

847 < �∗ < 1015, 50704 < �∗ < 77719,

Sc  =  7850, 0.28 < nw <  1, 3.8.10−5 <  t∗
w <  1

(57)

The associated mean standard deviation is equal to  17.5%, and

is thus smaller than the one found when applying the model

of Ostwald–deWaele (Eq. (55)). Fig. 9 plots the experimental

dimensionless mass transfer coefficients (kla)* as a function of  the

ones predicted by Eq. (57). All the points are  remarkably grouped

together around the data of Newtonian fluids, demonstrating thus

the use of  the Williamson–Cross’s model  is  relevant for predicting

the effect of  the nonNewtonian fluids under test on  the aeration

performances. Then, when the �ispace is  enlarged by two dimen

sionless ratios to  describe the material function (namely nw and t∗
w),

all the aeration experiments can be gathered on a unique curve. This

clearly shows that that it  is  possible to  obtain a  suitable dimen

sionless correlation for describing the variations of kla  at various

operating conditions (N, Qg) and types of fluids, if and only if all the



Table  9

Dimensionless modelling for  nonNewtonian fluids when the Williamson–Cross’s

model  is  considered (in bold the case  retained).

Case ˛′′ d e′ f′ ε  (%)

No. 7  0.02109 −0.245 −2.399 −0.1682 17.5

No. 8 0.02090  0  −2.358 −0.1792 17.5

No. 9  0.3058 −0.2440 −2.470 −0.1732 17.4

rheological properties are  correctly taken into account (e.g. using

the three parameters involved in the model of  Williamson–Cross)

instead of  neglecting some of them (namely, by simple fitting with

the model of  Ostwald–deWaele).

Here  also, the mathematical robustness of Eq. (57) is  tested by

considering several cases when implementing the multiparameter

optimization: in the first case (Case  No. 8), the effect of �* is

neglected whereas, in the second case (Case No. 9), the effect of

�* is taken into account with a nonimposed exponent. The results

are collected in Table 9 (Case No.  7 corresponds to  Eq. (57)). They

reveal that the occurrence of an exponent of �* (d) has a major effect

neither on the mean standard deviations nor on  the exponents of

nw (e′)  and of t∗
w (f′)  which remain almost constant whatever the

cases (deviations below 2.4% and 3.2%  respectively). Note also that,

when the exponent of  �* is kept free in  the optimization, the value

found (d)  is  close to the one already obtained for the Newtonian

case. These tests clearly validate Eq. (57) in  a mathematical point

of view.

In addition, it  can be observed that  the exponent of t∗
w , and

thus the impact of  t∗
w on kla*, is negative. This is illustrated

in Fig. 10 where kla* is  plotted (U∗
g · Fr)2/3

·  �∗ −0.591 ·  nw
−2.399 ·

�∗ −0.245 (according to  the exponents found in  Eq. (57) or Case

No. 7 in Table 9).  The points related to each nonNewtonian fluid

are regrouped along individual straight lines which deviate more

or less from the curves previously obtained for Newtonian flu

ids. These straight lines are remarkably classified according to

decreasing t∗
w as far  as going far from the Newtonian points (t∗

w = 1).

Thus, at given dimensionless apparent viscosity and flow index, the

smallest is the time parameter of  the Williamson–Cross’s model

(tw)  the highest is the overall volumetric mass transfer coefficient

(kla).

All the findings demonstrate that the rigorous extension of  the

theory of similarity to  the case of variable material properties (e.g.,

dependence of viscosity with shear rate) and the choice of  an  appro

priate material function (here issued from the Williamson–Cross’s

model) have made possible an  accurate dimensionless modelling

of the impact of  the shearthinning character of  fluids on the aer

ation performances in a stirred tank. Such approach also enables

to understand how each parameter, either operating parameter

Fig. 10. Effect of  dimensionless time parameter of  the Williamson’s model: (kla)*

versus (U∗
g · Fr)

2/3
·  (�∗)

−0.591
· (nw)

−2.399
· (�∗)

−0.245
.

(such as  rotational impeller speed or gas flow rate) or material

parameter (such as surface tension, apparent viscosity, flow index

or Williamson–Cross time parameter), acts individually on the

overall volumetric mass transfer coefficient. The correlation estab

lished (Eq. (57)) is at present validated in the range of  dimensionless

numbers previously defined, for a given temperature, under a given

pressure and for the agitation/aeration system used (in particular

for Hl/Tt = 1,  D/Tt = 0.4,  Ds/Tt = 0.75 and for the other geometrical

ratios characteristics of  the present system). Further experiments

are now required to:

 to  evaluate the effect of the Schmidt number on kla*; for that,

the  diffusion coefficient of  oxygen in the viscous fluids under test

have to be experimentally measured.

  to definitively appreciate the validity of such process relationship

when  extending out of the domain investigated in the present

study  (for  example at larger tank, at higher gas holdup and for

different  types of  agitation systems).

5.  Conclusion

The present paper dealt with a  consistent dimensionless analy

sis of gas–liquid mass transfer in an  aerated stirred tank containing

purely viscous fluids with shearthinning fluids. More particularly,

this work showed how to proceed:

 to  construct a  complete list of  relevant parameters able to  build

an  unique �space which keeps unchanged for both Newtonian

and  nonNewtonian fluids.

 and consequently to  elaborate, without pitfalls, a set of

dimensionless  numbers characterizing all the factors governing

absorption  rate coefficients (kla) in  a  stirred tank where shear

thinning  fluids are involved.

This theoretical approach was  supported by a set of  kla mea

surements in  a tank stirred by a  sixconcaveblade disk turbine

and aerated by a ring sparger, under different operating condi

tions (rotational impeller speed, gas flow rate) and for various fluids

(water, glycerine 50% and 70%, solutions of CMC  at 4 and 6  g/L,

solutions of xanthan gum at 1 and 2 g/L). These measures were val

idated notably by means of  two  methods (physical and chemical).

At last, a suitable dimensionless correlation could be obtained for

describing all the variations of  kla  if  and only if all the rheological

properties were correctly taken into account (e.g. using  the three

parameters involved in  the model of Williamson–Cross) instead of

neglecting some of them  (namely, by simple fitting with the model

of Ostwald–deWaele. It was expressed by:

kla
∗ =  0.02109 ·  (Fr  · U∗

g )
2/3

·  (�∗)
−0.591

·  (�∗)
−0.245

· (nw)
−2.399

· (t∗
w)

−0.168

valid for

{

0.096 < Fr  < 2.4, 0.0029 < U∗
g < 0.029, 108  < �∗ < 1.6.106

847  < �∗ < 1015, 50704 <  �∗ < 77719,

Sc =  7850, 0.28 <  nw < 1, 3.8.10−5 < t∗
w < 1

In the future, further experiments will be required to

definitively appreciate the effect of  Schmidt number and the

validity of such process relationship when extending out of the

domain investigated in the present study (for example at larger

tank).

This paper constitutes then an  eloquent example demonstrating

how the variability of physical material parameters in a process

equipment should be integrated. The advantage of such approach

is to be perfectly transposable to  any other physical properties

and other unit operation involving material with nonconstant

properties.
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