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Summary. The flow at high Reynolds number in the entrance of distorted channel is con-
sidered. We analyse the anticipated fluid responds to a downstream wall distortion, and we

find that the non linear upstream length∆ = O(R1/7
e ), using either a new asymptotic approach

called Successive Complementary Expansions Method (SCEM) with generalized asymptotic
expansions and a modal analysis of the perturbed flow. Comparisons with Navier-Stokes so-
lutions show that the mathematical model is well founded.

1 Introduction

This paper considers the upstream interaction of flows in a two-dimensional channel
at high Reynolds number with wall deformations. An asymptotic model using the
successive complementary expansion method with generalized asymptotic expan-
sions, called GIBL for Global Interactive Boundary Layer [1, 3], is used. The aim is
to analyse the non linear asymptotic length∆ of the upstream influence of anacci-

dent at x = x0 at the walls. As Smith [2] we found that∆ = O(R1/7
e ), whereRe is the

Reynolds number. The only hypothesis on the wallaccident is that it is significant
enough to perturbe the Poiseuille flow, so that the Poiseuille flow is no more a good
approximation in the boundary layer.
Then by assuming an exponential variation inx of the perturbed flow, in order to
obtain the Poiseuille flow asx → −∞ (i.e. far upstream the wall deformations), we
perform an eigenvalue analysis. We thus found that the first mode is related to non-
symmetric wall deformations. Two kind of wall deformations are considered (local
and global distortions) and comparisons between GIBL, Navier-Stokes solutions and
eigenmodes show that the model is well founded.

2 Geometrical configuration

Two kind of geometrical configuration have been considered for theaccident: (i) a
local wall perturbation as in figure 1, or (ii) a global wall curvature as in figure 2.
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Fig. 1. (i) case: Local wall perturbation; location of the accident atx = x0.

In the test case (i), the walls are deformed in a domainx0 ≤ x ≤ x0 + L such as:

F =
hl

2

(

1+cos
2πx
L

)

; G = −
hu

2

(

1+cos
2πx
L

)

. (1)

wherehu andhl are small parameters.
In the test case (ii), we use a generalized system of coordinates, whereX andY are
distances along and perpendicular to the lineH = 0. We call it the median line if the

upper (or inner) and lower (or external) walls are respectively given byY = ±
1
2

.

For a pointM with general coordinatesX andY , we can write
−−→
OM =

−−→
OM0 +Yn,

wheren is the unit normal vector. Then,
−→
dM = dX (1+ KY)τ + dYn, whereτ is

the unit vector tangent atM0 to the median line in such a way that(τ,n) is direct;
K(X) is the algebraic curvature of this line. Thus,K < 0 in the case of figure 2. The
curvatureK and its variation inX are small. We thus describe the channel variable
curvature forX > 0 byK = δk(X) , whereδ is a small positive parameter. LetU and
V denote the velocity components parallel and perpendicular to the lineH = 0, then,
asV = Uτ+Vn, the full equations of motion written in generalized coordinates are
given in [4]. These equations must be solved with boundary conditions:U = V = 0

for Y = ±
1
2

.
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Fig. 2. (ii) case: Global wall curvature; location of the accident atX = X0.
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3 Fully established flow in a curved channel

For a channel of constant curvatureδ, the fully established flowU0 is solution of

(1+ δY)
d2U0

dY 2 + δ
dU0

dY
−

δ2

1+ K0Y
U0 = −GRe (2)

whereG = −
∂P
∂X

is constant, and withU0 = 0 forY = ±
1
2

. Notice that forδ = 0 we

retrieve the equation for the Poiseuille flow:
d2U0

dY 2 = −2.

The exact solution is given by:

U0(Y ) =
1
64

GRe
f (δ,Y )

(δ2(1+ δY))
(3)

where

f (δ,Y ) =
[

δ3(1−4Y2)+8δ2Y (2Y −1)+4δ(−4Y2 +8Y −3)+16(1−2Y)
]

ln

(

2− δ
2δ

)

+

[

−δ3(1−4Y2)+8δ2Y (2Y +1)+4δ(4Y2 +8Y +3)+16(1+2Y)
]

ln

(

2+ δ
2δ

)

−

32
(

2δY + δ2Y 2 +1
)

ln

(

1+ δY
δ

)

As shown in figure 3, the corresponding exact solutionU0(y) bends towards the in-
ternal wall of the bend. Notice that, for a small constant curvatureδ and for a flow

−0.5 0 0.5
0

0.05

0.1

0.15

0.2

0.25

External wallInternal wall

Fig. 3.Velocity profileU0(Y ); Poiseuille flow (dashed line); profile forδ = 1 (straight line).

rate of 1/6, an approximate solution O(δ) is U0 =

(

1
4
−Y2

)(

1−
2δ
3

Y

)

, which

implies a skin friction ofC f
Re

2
= 1∓

δ
3

.
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4 Global Interactive Boundary Layer (GIBL) model

According to the SCEM, a Uniformaly Valid Approximation (UVA) for the velocity
and pressure fields(U,V,P) is obtained by complementing the core approximation
(U1 = u0 + δu1,V1 = δv1,P1 = p0 + δp1) such as:

U = u0(Y )+ δ [u1(X ,Y,δ)+UBL(X ,η,δ)]

V = δ [v1(X ,Y,δ)+ εVBL(X ,η,δ)]

P = p0(X)+ δ [p1(X ,Y,δ,ε)+ ∆(ε)PBL(X ,η,δ,ε)] (4)

where lim
η→∞

UBL = 0, lim
η→∞

VBL = 0 and lim
η→∞

PBL = 0 (see [4] for more details).

Thus, we obtain Uniformaly Valid Approximation (UVA) equations:

∂U
∂X

+
∂V
∂Y

= 0

U
∂U
∂X

+V
∂U
∂Y

= −
∂P1

∂X
+

1
Re

∂
∂Y

[

(1+ KY)
∂U
∂Y

]

with the following boundary conditions,U = V = 0, forY =±
1
2

. The core equations

being:

u0
∂V1

∂X
−Ku2

0 = −
∂P1

∂Y

−u0
∂V1

∂Y
+V1

du0

dY
= −

∂(P1− p0)

∂X

A simplified model for the pressure gives
∂P1

∂X
=

dp0

dX
+δ

(

A′′′ + k′
)

Z η

ηc

u2
0(η

′) dη′ +

δB′(X). At the medline, i.e. forη = ηc, since the UVAV should match the core
approximationV1, we impose the coupling conditionV = V1 = −A′(X)u0.
For more details about GIBL, see the companion paper [5].

5 Upstream interaction

5.1 Upstream length

In a straight channel, upstream of the wallaccident, for x < 0, the GIBL and core
equations become:

U
∂U
∂x

+V
∂U
∂y

= −
∂P1

∂x
+

1
Re

∂2U
∂y2 (5)

∂U
∂x

+
∂V
∂y

= 0 (6)

−U0
∂V1

∂y
+V1

dU0

dy
= −

∂(P1−P0)

∂x
(7)

U0
∂V1

∂x
= −

∂(P1−P0)

∂y
(8)
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We now consider perturbations of the following form:U = U0 + εu, V = εv and
P1 = P0 + λp1.

If the critical unknown streamwise length scale is∆, then, withx =
x
∆

and thus

V = ∆V , we obtain from (5,6,7,8) the following perturbation equations:

∂u
∂x

+
∂v
∂y

= 0 (9)

U0
∂u
∂x

+ v
dU0

dy
+ ε

(

u
∂u
∂x

+ v
∂u
∂y

)

= −
λ
ε

∂p1

∂x
+

∆
Re

∂2u
∂y2 (10)

−U0
∂v1

∂y
+ v1

dU0

dy
= −

λ
ε

∂p1

∂x
(11)

U0
∂v1

∂x
= −

λ∆2

ε
∂p1

∂y
(12)

If ε is the boundary layer thickness, the first significant perturbation is such as

U0 = O(ε), v = O(ε) in the boundary layers, which implies from (10) thatε,
λ
ε

and

∆
ε2Re

are of same order.

An upstream interaction takes place if we have a generation of a significant transverse

pressure gradient in the core flow, which implies from (12) that
λ∆2

ε
= O(1). Thus,

we easily obtain (as did Smith [2] by regular asymptotic expansions) the following
crucial orders:

∆ = O(R1/7
e ), ε = O(R−2/7

e ) and λ = O(R−4/7
e ). (13)

5.2 Eigenmode analysis

For x < 0, the linearized UVA system of equations may be written as :



























U0
∂u
∂x

+U ′
0v = −

∂p1

∂x
+

1
Re

∂2u
∂y2

∂u
∂x

+
∂v
∂y

= 0

U0
∂v1

∂x
= −

∂p1

∂y

(14)

By replacingv1 by v in the transverse core momemtum equation, and by assuming
the following form foru, v andp1 :

u(x,y) = û(y)eθx, v(x,y) = v̂(y)eθx, p1(x,y) = p̂1(y)eθx (15)

we obtain for the perturbations:
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θ





U0 0 1
1 0 0
0 U0 0



 q̂ =









D2

Re
−U ′

0 0

0 −D1 0
0 0 −D1









q̂ (16)

where ˆq =





û
v̂
p̂1



, D1 =
∂
∂y

andD2 =
∂2

∂y2 .
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Fig. 4. (a) Profiles of the first mode eigenfunctions ˆu (straight line), ˆv (dashed line) and ˆp1
(dotted line) forRe = 1000; (b) Upstream influence of the first mode forRe = 103 (straight
line), 104 (black circle), 105 (dashed line), 106 (white square).

We just have now to find the eigenvalues and eigenfunctions of the matrixB−1A,
where :

A =









D2

Re
−U ′

0 0

0 −D1 0
0 0 −D1









andB =





U0 0 1
1 0 0
0 U0 0



 (17)

ForRe = 1000, the first positive eigenvalue found isθ1 ≃ 2.0441. The figure 4(a)
represents the eigenfunctions of this mode. As shown in figure 4(b), by computing
this first positive eigenvalue for different Reynolds number ranging from 103 to 106,

we obtain that the corresponding upstream influence∆ = O(R1/7
e ) as in the analysis

of the section 5.1.

6 Results

Both the order analysis of section 5.1 and the eigenmode analysis of section 5.2 show

that∆ = O(R1/7
e ). We now compute the flow field using the GIBL model described

in section 4 for different accident types atx = 0.
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First, we have considered a straight channel connected atx = 0 to a curved channel
of constant curvature. The figures 5 (a) and (b) represent the median curved length
evolution ofV (X ,ηc) for, respectively, a fixedδ = 0.2 at different Reynolds num-
bers, and a fixedRe = 1000 at different wall curvature. These two results confirm
that∆ = O(R1/7

e ).
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δ=0.333
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δ=1

X

(b)

Fig. 5. (ii) case: straight channel connected atx = 0 to a curved channel of constant curvature;
(a) δ = 0.2, Re from 100 to 10000; (b)Re = 1000,δ from 0.1 to 1

Then, we have considered an asymmetrically perturbed straight channel atx = 0
with L = 4H andhu = hl = 0.3. The figure 6 represents the streamwise evolution of

V (x,ηc), where we recover as previously∆ = O(R1/7
e ).

-1,5 -1 -0,5 0
0

0,5

1

1,5

V (x,ηc)

V (0,ηc)

x/R1/7
e

−6 −4 −2 0 2 4 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 6. (i) case: straight channel perturbed atx = 0 with L = 4H, hu = hl = 0.3; x-evolution of
the adimensionnalizedV (x,ηc) for different values ofRe (from 100 to 10000).

Finally, we have compared the Navier-Stokes, GIBL and eigenmode analysis
results. As shown in figure 7, all the results are very similar.
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Fig. 7. NS, GIBL, first eigenmode comparaison;Re = 1000,δ = 0.2; left: u profile; middle:v
profile; right: p1 profile.

7 Conclusion

The non linear upstream effect on a channel flow submitted to asymmetric distur-
bance has been studied. By using three differents tools, a new asymptotic approach
called Successive Complementary Expansions Method (SCEM) with generalized
asymptotic expansions, a modal analysis and direct Navier-Stokes computations, we

found that the upstream influence length∆ = O(R1/7
e ).
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