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Granular flows down inclined channels with a strain-rate dependent
friction coefficient. Part I: Non-cohesive materials

Alain de Ryck · Renaud Ansart · John A. Dodds

Abstract The flow of a granular material down an incline of
finite width with a strain-rate dependent coefficient of friction
and a conical yield criterion is semi-analytically obtained
using a characteristic method for flows on a deep layer of
grains. This analysis leads to a flow field with three distinct
zones: a Bagnold-flow zone below the free surface, a dead-
zone and a matching zone between the two, linked to slippage
at the wall. A good agreement between the computed flow
field and experimental data is obtained.

Keywords Granular materials · Surface flows

1 Introduction

The description of dense granular flows is a subject of impor-
tance in process engineering and geophysics, including when
there is no fluid-particles interactions [7]. Some progress has
been made using the lubrication approximation and a Mohr–
Coulomb failure criterion [10] or a viscoplastic constitutive
equation [1] for the description of non-steady gravitational
flows of a finite mass of bulk solids [11]. For a full three-
dimensional description, Jop et al. [6] have recently propo-
sed the rheology obtained by introducing a strain rate law in
the constant friction model proposed by Jenike [5], leading
to:

σi j = −Pδi j + µ(I )P
γ̇i j

|γ̇ | , (1)

A. de Ryck (B) · R. Ansart · J. A. Dodds
École des Mines d’Albi, UMR CNRS 2392,
Route de Teillet, 81000 Albi, France
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where the apparent coefficient of friction µ depends on an
inertial number [3,9]:

I = |γ̇ |d√
P/ρ

, (2)

which compares the collisional stress with the mean pressure
P = σi i/3, where σ is the stress tensor. d is the diameter of
the particles, ρ the bulk density, γ̇ is the strain rate tensor
and |γ̇ | = √

γ̇i j γ̇i j/2 its second invariant.
This model supposes that the stress and stain rate tensors

are co-axial, and a conical yield criterion since we have:

|σi j + Pδi j | = µ(I )P. (3)

It also supposes the conservation of the volume since γ̇i i = 0,
which may restrict its application to shear at the so-called
critical state.

With a coefficient of friction dependent on the strain rate,
the model is able to predict the flow field since equilibrium
or Navier–Stokes equations give a value for the coefficient
of friction and therefore to the strain rate. This is not the case
of the constant friction model. Nevertheless, some calcula-
tions have been performed in this case and Jenike [5], then
Cleaver and Nedderman [2], proposed a solution in the case
of a radial stress field. In that case, the flow field is obtained
within a constant, which is determined using a Bernouilli-like
heuristic argument [8].

We propose here a semi-analytical modeling of a straight
cylindrical flow identical to the one studied by Partial Diffe-
rential Integration by Jop et al., based on the characteristic
method as in Refs. [5] and [8]. In Sect. 3, we study and com-
ment the Jenike-constant friction solution and in Sect. 4, the
general solution is presented for flows on a static layer of
grains.
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Fig. 1 Sketch of the axis on the incline

2 Mathematical formulation

Let us consider a layer of particles of thickness D flowing
stationary on a chute of width 2a and inclined by an angle θ
from horizontal, as shown in Fig. 1. For a steady-state flow,
in the frame sketched on it (x cross co-ordinate, y depth
co-ordinate downwards and z along the incline downwards;
the origin of the co-ordinates are at the free surface of the
granular layer, midway from the walls), the velocitiesw(x, y)
are along the z direction and do not depend on z. Therefore
the streamlines are straight lines of constant velocity, there
is no convective term in the Navier–Stokes equations which
reduce to:

∂P

∂x
= 0, (4)

∂P

∂y
− ρg cos θ = 0, (5)

∂

∂x

(
µP

∂w

∂x
/|γ̇ |

)
+ ∂

∂y
(µP

∂w

∂y
/|γ̇ |)+ ρg sin θ = 0.

(6)

From the first two equations, we obtain that the pressure is
hydrostatic:

P = ρg cos θy. (7)

To solve the equilibrium equation along z, it is convenient
to define an angle α, such as:

sin α = −
∂w
∂x

|γ̇ | and cosα = −
∂w
∂y

|γ̇ | . (8)

α is the local angle that the iso-velocity curve does with
respect to the x-axis. By symmetry, for x = 0, we have
∂w
∂x = 0, i.e., α = 0.

In the following sections, this system will be integrated
with a non-slip condition at the wall, first in the case of a
constant coefficient of friction (Sect. 3), then in the more
general case (Sect. 4).

Fig. 2 Characteristics for a constant coefficient of friction and a ratio
R = tan θ/µ = 0.96 (dashed line) and 1.09 (continuous line)

3 Constant friction

With the hypothesis of constant friction, Eq. 6 reduces to:

y

(
cosα

∂α

∂x
− sin α

∂α

∂y

)
+ cosα − tan θ

µ
= 0, (9)

which can be integrated as an ordinary differential equation
along a s-parametric curve:

dx

ds
= cosαy and

dy

ds
= − sin αy. (10)

On this curve (which is an iso-velocity since ∇w is normal
to it), we have:

dα

ds
= R − cosα, (11)

where R = tan θ
µ

. Such a curve can be integrated from the
point (0, h) for which we have α = 0, or from the point (0, 1)
if the lengths x and y are scaled by h (we define X = x/h
and Y = y/h).
The integration of the system (Eqs. 10, 11) leads to the fol-
lowing parametric equations for the iso-velocity curve:

X = s + R
k sin(ks)

1 + R
, (12)

Y = R + cos(ks)

1 + R
, (13)

where k = √
R2 − 1. The detail of this derivation is presen-

ted in the Appendix A.

If the slope of the incline is less than µ, then k is a pure
imaginary number and the iso-velocity is curved downwards
(see Fig. 2, dashed line). Then the curve collides the wall,
leading to the conclusion that w = 0 everywhere.

If the slope of the incline is greater than µ, then the
iso-velocity is a cycloid (see Fig. 2, continuous line). It must



Fig. 3 Deadzone for R = tan θ
µ

= 1.09 and a granular bed of depth
greater than λ times the width

be noted that the curve does not attain the surface of the
powder and therefore there is no steady-state solution if the
iso-velocity curve does not touch the lateral walls before
α = π/2. As a conclusion, this constant friction model can
only define the dead-zone, where the velocity field is null. Its
shape may be characterized by the depth of the characteristic
tangentially touching the lateral walls. This depth, scaled by
the half-width of the channel writesΛ = h

X |α=π/2 , leading to:

Λ = 1 + R

1 + 1
k arccos(−1/R)

. (14)

If the depth D of the granular layer is higher than Λa,
the minimal dead-zone is obtained like in Fig. 3. We may
notice that the walls are not entirely included in the dead-
zone. The segments between the free surface (y = 0) and
y = a(1 − 1/R) are above the deadzone.

If the depth of the layer is lower than Λa, there is no
solution if the coefficient of friction at the bottom plate is not
equal to the slope of the incline.

In this modeling, the velocity gradient may take any value.
To fully achieve the resolution of the flow pattern, we need
to incorporate a strain-rate dependent coefficient of friction,
which is done in Sect. 4.

4 Strain-rate dependent friction coefficient: flows
on a layer of grains

4.1 Set of equations

If the coefficient of friction is strain-rate dependent, the equi-
librium equation along z (Eq. 6) writes:

µy cosα
∂α

∂x
− µy sin α

∂α

∂y
+ sin α

∂(µy)

∂x

+ cosα
∂(µy)

∂y
= tan θ. (15)

This equation may be integrated along the curve defined by:

dx

ds
= cosαµy and

dy

ds
= − sin αµy. (16)

On this curve, the velocity w is constant since we have
dw
ds = 0. We may define a parameter ξ for the indexation of
these iso-velocity curves. We have:

dw

dξ
= ∂w

∂x

dx

dξ
+ ∂w

∂y

dy

dξ
, (17)

then

dw

dξ
= − sin α|γ̇ |dx

dξ
− cosα|γ̇ |dy

dξ
. (18)

By defining a second family of characteristic (orthogonal to
the first one) by:

dx

dξ
= sin α and

dy

dξ
= cosα, (19)

we have on it: dw/dξ = −|γ̇ |(ξ). A particular ξ -line is
the y-axis. In this axis, ξ reduces to y-ordinate and we will
note φ(h) the gradient of the velocity profile on it. For a
iso-velocity curve starting from the point (0, h), we have:
|γ̇ |(ξ) = −φ(h).
Equation 18 reduces to:

dα

ds
= tan θ − d(µy)

dξ
. (20)

The last term of Eq. 20 may be expanded to gives d(µy)
dξ =

µ cosα + (
dµ

d|γ̇ |
d|γ̇ |
dξ + dµ

dy
dy
dξ )y. For the iso-velocity curve

starting from (0, h), this leads to:

dα

ds
= tan θ − µ cosα − dµ

d I
I

(
B(h)

y

h
− 1

2
cosα

)
, (21)

with B(h) = h φ′(h)
φ(h) , where the prime denotes the derivation

towards h.

For convenience, we may scale the spatial dimensions
writing X = x/λ, Y = y/λ and H = h/λ with λ =
φ2(h)d2/(I 2

o g cos θ), where Io is an arbitrary constant.The
inertial number then writes I = Io√

Y
. By commodity, since the

inertial number I only depends on the reduced co-ordinate
Y , µ(I ) will be now written µ(Y ) according to this relation.

The set of equations to solve in order to obtain the shape
of an iso-velocity line then writes:

d X

ds
= cosαµ(Y )Y, (22)

dY

ds
= − sin αµ(Y )Y, (23)

dα

ds
= tan θ − µ(Y ) cosα + dµ

dY
Y

(
2B(H)

Y

H
− cosα

)
.

(24)



The flow zone is obtained by computing the characteris-
tics going to the surface. In order they go upwards, we need
dα
ds > 0 when α= 0. This gives the condition B< Bmax, with:

Bmax = 1

2
+ tan θ − µ(H)

(
dµ
d I I )|I= Io√

H

, (25)

if dµ
d I > 0 and B > Bmax if dµ

d I < 0.

To go further, it is convenient to eliminate the variable α
by derivation and reintegration of the Eqs. 22, 23 and 24, in
a similar way than the one presented in the Appendix A for
the case of a constant coefficient of friction. We obtain:

d X

ds
= (Y − H) tan θ + 2

B

H

Y∫

H

Ŷ 2 dµ

dŶ
dŶ + µ(H)H, (26)

together with
(

dY

ds

)2

= µ2Y 2 −
(

d X

ds

)2

. (27)

From Eq. 26, we obtain the condition for an iso-velocity line
to attain the free surface. We need that d X

ds = 0 when Y = 0,
then that B = B∗ with:

B∗ = H2 tan θ − µ(H)
∫ H

0 Y dµ
d I I dY

. (28)

These last equations give a differential equation for the
velocity gradient φ(H) which can be studied more easily
defining a function ψ by:

φ(h) = − Io
√

g cos θh

d
eψ(h). (29)

Then, the phase diagram for ψ is implicitly given by:

ψ = −1

2
log H,

dψ

d log h
= B∗− 1

2
. (30)

Since the end of the resolution is dependent on the exact
shape of the ψ-phase diagram, it will be illustrated in the
next paragraphs using a particular strain-rate relation.

4.2 Resolution for a given µ(I ) relation

For the next calculations, we use the sameµ(I ) relation than
the one given in Ref. [6]:

µ(Y ) = µs + (µ2 − µs)√
Y + 1

with µs = 0.38,

µ2 = 0.64. (31)

With this expression, the phase diagram for ψ is given in
Fig. 4. A demonstration ab absurdo shows that the unique
physical solution is the fixed point. There is no solution for
ψ lower than the fixed point due to the fact that there is no

Fig. 4 Phase diagram for ψ for θ = 22.6◦ and µ given by Eq. 31. Left
to the cross, there is no solution (B∗> Bmax)

characteristics touching the free surface when B is greater
than Bmax. There is no solution for ψ greater than the fixed
point since in that case, there is an exponential divergence of
the velocity gradient before h attains zero.

Consequently the unique solution, for a given angle θ , is
given by the fixed point (ψ ≡ cst , dψ

d ln h ≡ 0). The velocity
gradient profile is then parabolic (Bagnold-like):

φ(h) = − Io

d

√
g cos θh

H∗ , (32)

where H∗ is the value obtained implicitly from Eq. 28 for
B∗ = 1

2 .

4.2.1 Construction of the Bagnold-flow field

For a given θ , the profile may be integrated using the Eqs. 26
and 27, from the point H∗.

In Fig. 6, the shape of an iso-velocity curve is given for
θ = 22.6◦ (continuous line). The flowing zone is given by
the set of concentric curves above the one touching the free
surface at the wall. These iso-velocities curves touch the free
surface with a finite slope given by:

dY

d X

∣
∣
∣
∣
Y=0

= −
√( µ2

tan θ

)2 − 1. (33)

From this last equation, we conclude that the depth of this
Bagnold-flowing zone hBagnold goes to 0 when the slope of
the incline goes to µ2 as shown in Fig. 5.



Fig. 5 Depth of the Bagnold-flowing zone hBagnold scaled by the half
width a versus the slope tan θ

Λa

Bagnoldh

maxh

Fig. 6 Flowing and non-flowing zones for θ = 22.6◦. Between the free
surface and the continuous line, there is a flow with a Bagnold velocity
profile. For a constant coefficient of friction, there is no flow below the
dashed line. For a strain-rate dependent coefficient of friction, we have
a flow zone associated with a slip at the walls between the dashed and
dotted lines. The axis are the same than in Fig. 3

The other point we observe from Eq. 33, and also in Fig. 6,
is that there is a region between the Bagnold flowing zone
and the deadzone which remains indefinite.

The integration the velocity gradient (Eq. 32) using the
no-slip condition at the wall gives the maximal velocity Vmax

attained at the surface, midway from the walls, and a further
integration the flux Q of granular material (per unit width
W = 2a). The Appendix B gives the analytical expressions,
and the quantities Q, Vmax and hBagnold, obtained for the
particular relation Eq. 31 with Io = 0.28 are represented in
the Figs. 7, 8 and 9 in dashed lines.

Fig. 7 Slope of the incline versus the scaled flux of granular material.
Dashed line no-slip at the wall. Continuous line with slippage at a
rough wall. Points: experimental data for different channel widths from
Ref. [6]

Fig. 8 Scaled maximum velocity versus scaled flux. Dashed line no-
slip at the wall. Continuous line the y-axis is a principal axis of the
stress tensor at the wall. Points: experimental data for different channel
widths from Ref. [6]

The conclusion is that the hypothesis of no-slip at the wall
leads to the good order of magnitude of the velocity field and
flux at low incline slopes but unrealistic surface flows when
the slope approaches µ2.



Fig. 9 Scaled maximum depth of the flowing zone versus the flux.
Dashed line no-slip at the wall (hBagnold/W ). Continuous line the y-axis
is a principal axis of the stress tensor at the wall. Points: experimental
data for different channel widths from Ref. [6]

4.2.2 With a matching between the flow and deadzone

If we relax the condition of no-slip at the surface, we may look
for a matching between the flowing zone and the deadzone.

In that case, the tangential and normal stresses at the
wall (respectively τw =µP sin αw and σw =µP) are rela-
ted by τw = min(µw,µ)σw. P is the local mean pressure,
µw the wall-powder friction and αw the value taken by α
at the wall. the iso-velocity lines then arrive with an angle
αw = arcsin[min (µw

µ
, 1)].

We present such a matching in the case of a rough wall, for
which the iso-velocity lines arrive tangentially at the walls.
With these hypothesis, we obtain an implicit Ordinary Dif-
ferential Equation for ψ(h) using the Eqs. 30, 22, 23 and
24, together with the condition α|x±a = π

2 , which writes
X |α= π

2
= a H

h . By integration of ψ , we obtain the velocity
profile for x = 0. The Fig. 10 gives the one obtained for
θ = 22.6◦ (continuous line) and the sliding velocity at the
wall (dashed line). The circle in the continuous line gives the
beginning of the matching (w = w(±a, 0)).

The variation of the velocity profile, for slopes ranging
from µs to µ2, is given in Fig. 11. We observe in particu-
lar that the surface velocity increases more rapidly than the
velocities in the bulk when the slope tends to the maximum
value µ2.

The maximal depth of the flow hmax, the maximal velo-
city Vmax and flux Q for the different inclination slopes are
reported in Figs. 9, 8 and 7 using continuous lines. The results

Fig. 10 Scaled velocity profiles at the center (x = 0, continuous line)
and at the walls (x = ±a, dashed line). The circle gives the beginning
of the matching (w = w(±a, 0))

Fig. 11 Scaled velocity profiles for inclination slopes ranging fromµs
to close toµ2 (respectively, from left to right). The circles give the limit
of the Bagnold zone. The three last profiles on the right are for slopes
equal to 0.991, 0.994 and 0.997 times µ2

obtained are close to the experimental data obtained by Jop
et al. [6].

A final remark about this velocity field with slippage at
the wall is that the solutions obtained with the rheology given
by Eq. 1 are not regular since the depth of the flow hmax

is greater than the depth of the flow zone obtained in the



constant friction case Λa, with Λ given by Eq. 14. As it can
be observed in Fig. 6, the iso-velocity line obtained when
µ tends to µs does not correspond to the iso-velocity line
obtained for µ ≡ µs .

5 Concluding remarks

A generic method, based on the study of the characteristics, is
developed in order to obtain the steady-state parallel velocity
field of a granular media, whose friction coefficient depends
on the inertial number I and obeys a conical yield criterion.
This method is exemplified with a particular µ(I ) relation
and leads to a good agreement with the experimental data
if slippage is allowed at the wall and emphasizes the non-
regularity of the solution for finite coefficient of friction.

It leads to the conclusion that the flow field may be descri-
bed by a Bagnold zone below the free surface, followed by
a matching zone associated with slippage at the lateral walls
near the free surface and then a deadzone, in the case of a
granular layer deep enough.

In the case of a flow on a rough plate, i.e. the depth D
of the granular layer is lower than the depth of the Bagnold-
flowing zone hBagnold, the solution presented in Sect. 4 is no
more valid. This occurs for thin layers on a finite range of
slope if the width of the channel is finite, as demonstrated by
Fig. 5, or if the width of the incline goes to infinity. In this
latter case, there is the following solution for the flow field:

w(y) = 2Ie
√

g cos θy

3d
(D3/2 − y3/2), with

µ(Ie) = tan θ. (34)

The study of steady-state solutions for thin flows on rough
plate of finite size remains to be investigated.

We have extended this work to the case of cohesive pow-
ders as described in the companion paper [4]. Another issue
is the non-parallel flows but then, the normalized strain rate
tensor cannot be reduced to two components. In such a case,
two angles and not only one are necessary to describe the
flow, leading to a far more complicated mathematical treat-
ment.

Acknowledgments It is a pleasure to thank Olivier Pouliquen for
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Appendix A: Equations for the iso-velocity lines
for the constant friction case

The derivation of Eq. 10-left gives d2x
ds2 = R dy

ds , using the
Eq. 10-right and Eq. 11. By reintegration, this leads to:

dx

ds
= Ry + h(1 − R). (35)

In the same manner, by derivation of Eq. 10-right, we obtain
d2 y
ds2 = −R dx

ds +y. Using Eq. 35,this leads to the second-order
differential equation for y:

d2 y

ds2 =
(

y − R

1 + R

)
(1 − R2). (36)

Its integration leads to the parametric Eqs. 12 and 13 for Y
and X .

Appendix B: Calcul of the flux for the non-slip condition

The integration of Eq. 32 gives the velocity at the centerline
as a function of the depth:

w(0, h) = 2

3

Io

d

√
g cos θ

H∗

(
h

3
2
Bagnold − h

3
2

)
. (37)

The maximal velocity Vmax is obtained for h = 0. The
flux Q per unit width W = 2a writes:

Q = 1

W

hBagnold∫

0

w(0, h)LθW
h

hBagnold
dh, (38)

which gives:

Q = 1

7

Io

d

√
g cos θ

H∗ Lθ
(
hBagnold

)5/2
. (39)

where Lθ is the curvilinear length of the isovelocity line pas-
sing through the point (0,hBagnold), scaled by W . Lθ is found
to range between 1 and 1.025 for inclined slopes between µs

and µ2, when µ is given by Eq. 31.
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