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We introduce a model of the Relentless Congestion Control proposed by Matt Mathis. Relentless Congestion
Control (RCC) is a modification of the AIMD (Additive Increase Multiplicative Decrease) congestion control
which consists in decreasing the TCP congestion window by the number of lost segments instead of halving it.
Despite some on-going discussions at the ICCRG IRTF-group, this congestion control has, to the best of our
knowledge, never been modeled. In this paper, we provide an analytical model of this novel congestion control
and propose an implementation of RCC for the commonly-used network simulator ns-2. We also improve RCC
with the addition of a loss retransmission detection scheme (based on SACK+) to prevent RTO caused by a
loss of a retransmission and called this new version RCC+. The proposed models describe both the original RCC
algorithm and RCC+ improvement and would allow to better assess the impact of this new congestion control
scheme over the network traffic.

Relentless Congestion Control, Performance Evaluation

1. INTRODUCTION

Relentless Congestion Control (RCC) is a proposal from
Matt Mathis which consists in a simple modification of
the AIMD (Additive Increase Multiplicative Decrease)
congestion control algorithm (7). Basically, instead of
halving the TCP congestion window after a loss, RCC
decreases the current congestion window by the number
of lost segments. This behaviour can be modeled
as a strict implementation of van Jacobson’s Packet
Conservation Principle (this principle suggests that a
new packet should not be placed into the network
until an old packet leaves). Indeed, during recovery,
new segments are injected into the network in exact
accordance with those that have been delivered to the
receiver (8).

RCC is not an AIMD-friendly protocol and as a result,
requires that the network allocates capacity through
Fair Queuing or Fair Dropping queue management (2).
RCC could perform efficiently over network architectures
that enable Quality of Service (QoS) guarantees such
as (3). Indeed, a decade of research in QoS has
shown that the standard TCP reaction to congestion
events (which is to halve its congestion window) can
be counterproductive over these QoS networks (4),

(6). The principle to decrease the current congestion
window by the number of lost segments can also be
implemented inside current congestion controls such
as CUBIC, Newreno or Compound. Intuitively, RCC
might enhance the performance of standard congestion
controls when losses are not due to congestion (over very
noisy wireless links) or large bandwidth-delay product
networks (LBDP). In the first case, RCC would prevent
large congestion window decrease due to error link
losses while in the context of LBDP networks and long
delay links, RCC might achieve a higher throughput.
However, whatever the context of use, there is no
existing analytical model of RCC allowing to estimate
the expected rate that would achieve this protocol over
a given network. In order to clearly assess the impact of
a deployment of such TCP modification, it is obviously
essential to model this TCP variant.

In this paper we introduce two models. The first one
presented in Section 2 does not take RTO into account.
Our second model described in section 3 is an extension
that integrates the RTO effects on congestion window
evolution. To prevent RTO triggering, we combine RCC
algorithm with a lost retransmission detection scheme
based on SACK+ (5). Thus, we implemented in ns-2 an
improvement of RCC algorithm that we called RCC+



corresponding to our first model. Our second model
corresponds to the original RCC algorithm that do not
avoid RTO (also implemented inside ns-2). We present
RCC+ in Section 4 and evaluate the accuracy of both
models in Section 5 with ns-2 simulations. Finally, we
conclude this work in Section 7.

2. ANALYTICAL MODEL

In this section, we develop a stochastic model of TCP
Relentless Congestion Control algorithm coupled with
the algorithm of selective acknowledgement (SACK).
This leads to a simple analytic expression for the
throughput of a TCP Relentless sender as a function
of loss rate p and the average round trip time (RTT ).
Our RCC model is built on the well-known Padhye et al.
TCP model (9) from which we borrow the notations and
the scheme given in Fig. 1 to ease the understanding.

The notations are presented in Fig. 1. The period
denoted TD defines an elementary cycle (corresponding
to TDP in (9)), delimited by two consecutive decreases
of the window Wi where i refers to the ith TD.

Figure 1: Evolution of the congestion window size over time.

In the model, we adopt the following rule for all random
variables: Vi corresponds to the value of the random
variable V in TDi and its expected value computed on
all TDi is noted E[V ].

Let Yi be the number of packets sent in TDi; αi the
index of the first lost packet; βi the amount of packets
sent after αi to complete the round (corresponding to
an RTT ) and Ni the number of retransmissions done
in TDi. We also define Xi the number of rounds in
TDi and

1
b
the acknowledgement generating frequency.

Thus:
Yi = αi + βi +Wi (1)

and

E[Y ] = E[α] + E[β] + E[W ] (2)

We now have to derive E[α] and E[β]. If we consider
uniform and independent losses, αi = k means that
the first k− 1 packets are successfully sent and the kth

packet is lost. The packet loss probability is denoted p.
We can compute E[α] as follows:

P (α = k) = (1 − p)k−1p −→ E[α] =
∑

∞

k=1(1 −

p)k−1p.k

E[α] =
1

p
(3)

βi evolves from 1, if the losses occur at the end of the
window, to Wi −

1
b
, if losses occur at the beginning of

the window. The uniform aspect of losses implies the
uniform distribution of βi in [1,Wi−

1
b
]. It follows that:

E[β] =
Wi + 1− 1

b

2
≃

E[W ] + 1− 1
b

2
(4)

The relation between window size in TDi−1 and TDi

can be written as follows:

Wi = Wi−1 −Ni−1 +
Xi − 1

b
(5)

as a consequence:

E[N ] =
E[X ]− 1

b
(6)

The expected value of N can be evaluated with the
same assumptions. Basically, if we consider uniform and
independent losses with the elementary probability of
p, then N follows a binomial law of parameters p and
E[β] (the mean amount of packets sent after the first
loss occurs). Thus, E[N ] = 1 + p(E[β]) and (6) leads
to:

E[X ] = 1+b.E[N ] = 1+b

(

1+p
E[W ] + 1− 1

b

2

)

(7)

The evolution of the window size can also be written
using slope 1

b
, which corresponds to the evolution pace

of W .

Yi =

Xi−1
∑

k=0

(

Wi−1 −Ni−1 +
k

b

)

= Xi

(

Wi−1 −Ni−1 −
1

2b

)

+
X2

i

2b
(8)

If we now take the mathematical expectation of (8)
assuming for a first approximation that Xi and Wi



are mutually independent sequence of i.i.d. random
variables and with V [X ] the variance of X we have:

E[Y ] = E[X ]

(

E[W ]−E[N ]−
1

2b

)

+
E[X ]2

2b
+

V [X ]

2b
(9)

If we combine (9), (2), (3), (4) and (7) we obtain:

bp(4−p)
8 E[W ]2 + (b− 1

2 + p2(1−b)−3p
4 )E[W ]− p+1

p

+ p(−2b2+b+1)
4b −

b2+1
2b + V [X]

2b + p2(b2−1)
8b = 0 (10)

By solving (10) and keeping only the positive root, we
obtain a literal expression of E[W ] (we do not provide
this long expression which is out of interest here).
Moreover, the duration of TDi, Ai, can be expressed
as the number of rounds in TDi, Xi, multiplied by
the average duration of a round, RTT : Ai = Xi.RTT .
Thus, E[A] = E[X ].RTT . Now, if we consider p near
zero and combine the expressions of E[W ], E[Y ] and
E[A], we obtain the average throughput of a Relentless
flow Tp :

Tp =
E[Y ]

E[A]
=

MSS

b.RTT.p
+ o

(

1

p

)

(11)

where MSS is the maximum segment size. Let C, be
the constant term in (11). We have a general expression
for the throughput of a Relentless flow which is:

Tp =
C.MSS

RTT.p
+ o

(

1

p

)

, C =
1

b
(12)

TCP retransmission time out (RTO) is not considered in
this model. Nevertheless, by combining RCC and SACK
retransmission scheme, we are mainly sensitive to one
type of RTO which is the loss of a retransmitted packet.
If the loss rate is low, this event can occur but can
be considered as rare. However, we present in the next
section an improvement of RCC allowing to prevent
RTO due to the loss of a retransmitted packet. As a
result, the model developed here allows to correctly fit
our current implementation (presented in the following
Section 5) and motivates why we do not need to take
into consideration the RTO.

3. ANALYTICAL MODEL WITH RTO

In this section, we further develop our previous model
to handle the case of RTO. We adopt a different
approach following the congestion window evolution
which behaves as shown in Fig. 2. One of the main

challenge of this model is that compared to the standard
halving congestion window scheme (9), we must take
into account the number of lost packets during a round.
This number, obtained following a probability model,
greatly complexifies the model.

Figure 2: Evolution of the congestion window size over time

in case of RTO.

The evolution of the congestion window can be
described as a repetition of slow start (SS) and
congestion avoidance (CA) phases. The SS phase is
the same as the one present in TCP Reno or Newreno.
This phase is left once the congestion window reaches
a threshold or when a loss is detected. In Figure 2, ws

represents the value of the congestion window at the end
of this phase. The second phase of the cycle corresponds
to the phase previously modelled (Section 2) in which
the window is increased by one minus the number of
losses after each RTT.

Let XSS , XCA be respectively the number of packets
sent during the SS and CA phases and DSS, DCA the
respective duration of SS and CA phases. Throughout
in case of RTO, TRTO, can still be expressed as:

TRTO =
E[XSS ] + E[XCA]

E[DSS ] + E[DCA]
(13)

In the following, we develop each of the terms of (13):

E[XSS ] =

lim
∑

k=1

k.P (XSS = k) (14)

In (14), lim represents that XSS increases until the
reach of a threshold or when a loss occurs. As losses are
considered to be uniformly distributed, we consider in a
first approximation, lim to be in average equals to 1

p
.

To express the amount of sent packets, we consider the
congestion window in the CA phase as an arithmetico-
geometric sequence denoted (Wn

CA)n∈N. After an RTT,
the congestion window is increased by one and decreased
by the number of losses which depends on the size of
the previous congestion window value. Indeed, as the
number of losses follows a binomial law of parameters p
and Wn

CA, the average number of losses is pWn
CA. Thus,

the first term of this sequence is ws and the evolution
of WCA is given by Wn+1

CA = Wn
CA + 1 − pWn

CA. The



general term of this sequence can be written as follows:

Wn
CA(ws) = (1− p)n(ws −

1

p
) +

1

p
(15)

Let IRTO be the index of the RTO event in the CA
phase. IRTO evolves from 1 to +∞. E[XCA] depends
on ws and is given by:

E[XCA](ws) =
∑

∞

k=1

[

P (IRTO = k). (16)
(
∑k

j=1 W
j
CA(ws)−

Wk
CA(ws)

2

)]

In (16), the term −
Wk

CA(ws)
2 represents the fact that

when an RTO occurs, the end of the window is lost. In
average, we can consider that the RTO occurs in the
middle of the window leading to the loss of the second
half of the window. To trigger an RTO, a packet and
its retransmission have to be lost. The probability of
this event is p2. RTO can occur for any packet of the
window. As a consequence:

P (IRTO = k) = p2W k−1
CA (ws) (17)

Moreover, as the value of the congestion window is equal
to the amount of packets sent during SS phase, ws can
evolve from 1 to lim. Thus we have:

P (ws = k) = (1− p)k−1p

and (16) leads to:

E[XCA] =
∑lim

i=1

[

p(1− p)i−1
∑

∞

k=1

(

p2W k−1
CA (i)

(

(

∑k
j=1 W

j
CA(i)

)

−
Wk

CA(i)
2

))]

(18)

We now focus on the expression of phases duration.
During the SS phase, the amount of sent packets
increases as of power of 2. As a consequence, E[DSS ]
is given by:

E[DSS ] =

lim
∑

k=1

log2(k)P (XSS = k)

=

lim
∑

k=1

log2(k)(1 − p)k−1p (19)

and

E[DCA](ws) =
∞
∑

i=1

iP (IRTO = i)

=

∞
∑

i=1

i.p2W i−1
CA (ws) (20)

As a consequence the global average of DCA is:

E[DCA] =

lim
∑

j=1

P (ws = j)E[DCA](ws) (21)

=
lim
∑

j=1

p(1− p)j−1
(

∞
∑

i=1

i.p2W i−1
CA (j)

)

Finally, combining (13), (14), (17), (18), (19), (21) we
obtain:

TRTO = Θ
∑

lim
j=1

(

(p(1−p)j−1)(log
2
j+

∑
∞

i=1
i.p2W

i−1

CA
(j))

)

(22)
with:

Θ =
∑lim

i=1

[

p(1− p)i−1
(

i+
∑

∞

k=1

(

p2W k−1
CA (i)

((

∑k

j=1 W
j
CA(i)

)

−
Wk

CA(i)
2

)))]

Numerically, we observe that E[XCA](ws) does not
depend on ws leading to the following approximation
for TRTO:

TRTO ≃

CRTOMSS

RTT.p
+ o

(1

p

)

with CRTO = 0.49

We have verified that the last approximation is closed
to TRTO and thus considers in the following this latest
and simplified expression.

4. RCC+ IN A NUTSHELL

As basic RCC algorithm with SACK mechanism is not
RTO resistant, we propose to implement RCC with
SACK+ (5) in ns-2. SACK+ is a SACK extension
allowing to prevent RTO due to the loss of retransmitted
packets.

We have implemented an improvement of RCC in order
to prevent RTO caused by a loss of a retransmission. Of
course, if a packet is lost each time it is retransmitted
RTO cannot be avoided. For new connection requests,
the retransmission timer is initialized to 3 seconds
(1). By default, a segment with the SYN flag set, is
resent no more than three times. In other words, it
must be received before four RTTs elapse, which is
approximately the value of the retransmission timer. The
configuration of this timer is also possible to enable more
retransmission tries.

In our implementation, we choose a discrete resolution
of the lost retransmission problem as in (5). However,



we could choose a continuous solution and set a timer
to each retransmitted packet. We could set this timer
to k ∗RTT , with RTT the current estimation of RTT
and k > 1 to prevent spurious retransmissions.

Figure 3: RCC+ behaviour

In our case, for each retransmitted packet, we
fix a trigger. This trigger corresponds to the
acknowledgement of the following regular packet
which is sent after the retransmission. By regular,
we refer to packets that do not correspond to
a retransmission. Actually, if the regular packet
sent after the retransmission is acknowledged before
the retransmitted one, we can suppose that the
retransmitted packet is lost. As shown in Fig. 3, when
packet i is retransmitted in round (n+1), the following
regular packet sent which is packet j, is used as a
trigger for an eventual new retransmission. Indeed, if
packet j is acknowledged and not packet i, packet i is
considered as lost and re-emitted. In this example, as
the first retransmission of packet i is lost, packet j is
acknowledged and not packet i. This leads to a second
retransmission of packet i in round (n + 2) and the
intialisation of a new trigger. Anyway, all these solutions
are only different by their implementation. In a general
manner, the result remains the same: RTO due to loss
of retransmission are avoided.

5. IMPLEMENTATION AND EVALUATION OF
RCC AND RCC+

Our first model without RTO consideration corresponds
to RCC+ implementation as detailed in Section 4. The
complete model presented in Section 3 corresponds to
the basic implementation of RCC algorithm. In this part
we first want to demonstrate the accuracy of our models
and underline the interest brought by RCC+.

Our models give simple approximations of the
throughput of an RCC flow as a function of the RTT
and the loss rate p.

The results obtained with the ns-2 implementation of
RCC are presented in Fig. 4(a) and those obtained with

the ns-2 implementation of RCC+ are presented in Fig.
4(b)

In Fig. 4, each point represents a simulation result
with the corresponding parameters. The duration of the
simulations is long enough to reach the steady state
and the computation of the throughput is done when
this steady state is reached. To verify the parameters
of the model, simulations are done with a loss rate
ranging from 0.03% to 5%. To estimate the maximum
throughput of the RCC flow, we ensure that we are
not limited by the link capacity between the source and
the destination. Thus, we set this capacity to 100Gb/s
which is much more than the maximum achievable
theoretical throughput for the chosen parameters.
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Figure 4: Comparison of theoretical and simulated

throughput of a Relentless flow

Fig. 4 shows that the model fits the simulation with
C = 1 which is the theoretical value of C. Note that we
have verified inside the simulation traces that there was
no retransmission timeout and confirmed that RCC+
correctly prevents RTO due to loss of retransmissions.

6. CONSTANT VALUE AND LOSS
DISTRIBUTION

In Section 5 and in our models, we have considered
uniform losses pattern. We now propose to investigate
the value of the constant of the models in the case
of bursty loss channel. We drive a set of experiments
to evaluate C and CRTO with an average burst size



(denoted B) ranging from 2 to 4 following a Gilbert-
Elliott channel. An important point is that RCC flow
throughput still evolves in 1

p
even with bursty losses.

Table 1 gives the results obtained.

Table 1: Impact of loss model on C

Loss Model RCC+
Uniform C = 1.0

Gilbert-Elliot
B = 2 C = 0.90
B = 3 C = 0.90
B = 4 C = 0.90

As RCC+ prevents RTO triggering, the constant
remains stable making the model robust (at least up
to B = 4). However, the slight decrease of the constant
value (from 1.0 to 0.9) might be explained by the
increase of the average number of losses at the end of
the congestion window. Indeed, if a loss occurs at the
end of the congestion window, its detection is possible
only two rounds after. As the pace of the sent packets
is driven by the pace of the received acknowledgements,
this implies that the number of packets sent in the round
following this loss is lower than the window size value.
More generally, we can state that, if there are n losses
at the end of the congestion window, the number of
packets sent in the next TD is reduced by n.

7. CONCLUSION AND FUTURE WORK

We have proposed a model of the Relentless Con-
gestion Control algorithm and an ns-2 implementation
(available for download at http://personnel.isae.fr/
remi-diana) based on SACK+. We confirm that RCC
evolves in 1

p
and our performance evaluation shows

the need to enable a fair-queuing algorithm to prevent
unfairness between other TCP variants.

As a next step, we propose to further assess the benefit
of using RCC as a potential solution for long delay link
and satellite communications. We also expect to use this
model in a larger performance evaluation study which
aims at evaluating RCC+ with various TCP variants.
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