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In this work we test a methodology for PIV measurements when a large field of view is required in planar

confined geometries. Using a depth of field larger than the channel width, we intend to measure the in-

plane variations of the velocity of the fluid averaged through the width of the channel, and we examine in

which operating conditions this becomes possible. Measurements of the flow through a narrow channel

by PIV are challenging because of the strong velocity gradients that develop between the walls. In partic-

ular, all techniques that use small particles as tracers have to deal with the possible migration of the trac-

ers in the direction perpendicular to the walls. Among the complex mechanisms for migration, we focus

on the so called Segré–Silberberg effect which can lead to transverse migration of neutrally buoyant trac-

ers of finite size. We report experimental PIV measurements in a Hele-Shaw cell of 1 mm gap, which have

been carried out by using neutrally buoyant tracers of size around 10 lm. By considering steady flows, we

have observed, in particular flow regimes, the effect of an accumulation of the tracers at a certain distance

to the wall due to the so called Segré–Silberberg effect. The particle migration is expected to occur at any

Reynolds numbers but the migration velocity depends on the Reynolds number. A significant migration

therefore takes place each time the observation duration is large enough compared to the migration time.

For a given observation duration, the tracers remain uniformly distributed at low Reynolds numbers

whereas they all accumulate at the equilibrium position at large ones. When using volume lighting,

the PIV algorithm provides the average velocity of the flow through the gap at low Reynolds number,

while it leads to the velocity of the flow at the equilibrium position of the tracers at large Reynolds num-

bers. By considering unsteady flows, we have observed that the migration does not occur if the timescale

of flow variation is short compared to the time required for the parabolic flow to develop across the gap.

In this case, there is no transverse velocity gradient and the PIV algorithm provides the fluid velocity.

Altogether, these results allow us to propose guidelines for the interpretation of PIV measurements in

confined flow, which are based on the theoretical predictions of the tracer migration derived by Asmolov

[1].

1. Introduction

With the recent development of micro-reactor engineering, the

experimental study of transport and mixing phenomena in narrow

channels is a new technical challenge [2,3]. Conventional PIV

investigations use light sheet illumination ([4–6] in microchannel).

For narrow channels however, the lack of optical access leads to

front illumination (or volume illumination) of the flow [7,8]. Using

this technique, all tracers distributed over the channel width are

lighted. There are two ways of filming these seeding particles with

the aim of performing PIV measurements. One consists in using

camera optics with a depth of field that is small compared to the

channel thickness; in that way the optical acquisition system must

be adjusted to detect only the tracers located at a given distance

from the walls [7,9]. The drawbacks of this method are its limita-

tion to small measurement windows and a possible lack of tracers

in the measuring plane. A more convenient solution is to use cam-

era optics with a depth of field larger than the channel width. In

this case, all the tracers laying in the field of view of the camera

are well-focused and contribute to the velocity measurement [8].

Two other difficulties however arise, which have to be considered

to make sure that the PIV measurements are relevant. The first

concerns the PIV algorithm: while the fluid velocity ranges from

zero at the wall to the maximum velocity at the middle of the

channel width, velocity gradients at the scale of the PIV interroga-

tion domain may decrease the amplitude of the displacement cor-

relation peak and enlarge its width, reducing its detectability and
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generating random errors on its localisation [10]. The second and

major difficulty comes from a possible migration of the tracers in

the direction perpendicular to the walls, which has been observed

even for neutrally-buoyant particles because of the non-uniformity

of the velocity [11].

Experimental tests are therefore required to assess the use of a

PIV technique when volume lighting is used together with a large

optical depth of field. In this article, we investigate the liquid flow

within a Hele-Shaw cell by using a frontal lighting and an optical

depth of the camera larger than the cell gap. Contrasted configura-

tions are investigated by varying the Reynolds number of the chan-

nel and the timescale of flow variations. The article is organized as

follows. The experimental set-up and the PIV system are described

in the next section. Results concerning the case of a steady flow are

first presented. Then, the response of the PIV system to time-vary-

ing flow is investigated. Finally, the results obtained about the

influence of velocity gradients and tracer migrations will allow

us to draw guidelines for the use of the PIV technique is such

configurations.

2. Experimental facility and instrumentation

The cell consists of two vertical glass plates of 400 mm width,

800 mm height and 8 mm thick, which are separated by a thin

gap d = 1 mm (Fig. 1). It is filled with distilled water and open to

atmosphere at the top. At the bottom, evacuation valves have been

regularly distributed all along the cell. The valves are used to

empty the cell at various rates with the aim of generating a uni-

form flow in the central part of the channel. Capillary tubes of dif-

ferent diameters can also be inserted at the bottom in order to

inject bubbles of various diameters. In this article, both the uni-

form flow and that induced by a single rising bubble will be used

as reference configurations to investigate the role of tracer migra-

tion on PIV measurements.

The present PIV method uses front lighting of the measurement

window (Fig. 2). A Quantel multipulse Nd:YAG laser of 2 � 200 mJ

generates a light beam that is made divergent by means of a spher-

ical lens. The laser axis makes an angle of about 30° relative to the

perpendicular direction of the cell in order to avoid direct reflexion

of the light back to the laser cavity and direct light on the camera.

The whole liquid vein corresponding to the intersection of the cone

of light with the cell is illuminated. The lighted region is a disk of

400 mm diameter, much larger than the PIV measurement win-

dow, which is 59 mm width and 74 mm height. This ensures an

appropriate uniformity of the light intensity within the measure-

ment window, with variations smaller than 5%. The tracers are

fluorescent particles made of B-Rhodamine encapsulated in a

PMMA membrane. Fig. 3 shows their distribution of size measured

bymeans of a Malvern Mastersizer granulometer: the diameters 2a

range from 3 to 25 lm with a median value of 10 lm. The tracers

are therefore much smaller than the cell gap (2a/d < 0.01). They are

added to the water before the filling of the cell. Their sedimenta-

tion velocity, which has been measured inside the cell in the ab-

sence of any flow, is 3 � 10ÿ2 mm sÿ1. It is much smaller than

the characteristic flow velocities under consideration in this work,

which range between 1 and 200 mm sÿ1. When excited by the laser

light at 532 nm, the tracers fluoresce at a wavelength centered

around 570 nm. The tracer emission is recorded by means of a

PCO 12-bits CCD camera (1280 � 1024 pixel) that faces the cell.

The camera is equipped with a 580-nm high-pass filter in order

to reduce the noise generated by reflections of the incident light,

and with optics giving a depth of field larger than the cell gap.

All tracers belonging to the measurement window hence contrib-

ute to the light intensity of recorded images, whatever their loca-

tion within the gap. In other words, no distinction is made

between slow tracers that are close to the cell walls and rapid

Fig. 1. Schematic of the Hele-Shaw cell.

Fig. 2. Top view of the PIV set-up.
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Fig. 3. Distribution of the diameter 2a of the tracer particles.



tracers that are in the middle of the gap. The frequency of PIV mea-

surements was typically 5–10 Hz. The double-pulse laser system

was synchronized with the camera. The delay between the two la-

ser pulses was chosen for each measurement to satisfy accurate

displacement measurement. The laser shot duration (about 5–

7 ns) fixed the light acquisition. Indeed, the first image was ob-

tained with the camera open for a delay of 11 ls containing the

first laser-shot, and the second image, delayed of 1 ls from the first

one, was obtained with the camera open for the rest of time be-

tween two PIV measurements containing the second laser shot. A

raw image of the field of tracers seen by the camera is plotted in

Fig. 4. Individual tracers cannot be detected, because their size is

lower than a pixel, but the contrast and texture of this image is sat-

isfactory for PIV measurements.

A two-dimensional velocity field UPIV(x,y, t) is computed from

the recorded pairs of images by means of the software PIVIS devel-

opped at IMFT, which is based on an iterative multi-pass PIV algo-

rithm [12,13], the precision of which has been checked to be better

than 0.1 pixel. The computation involves two steps. First, the inter-

correlation of the two raw images of each pair is calculated using

interrogation cells of 64 � 64 pixels. Second, an iterative subpixel

interpolation is performed and the final intercorrelation is com-

puted using interrogation cells of 32 � 32 pixels with an overlap-

ping of 50%. The measurement parameters have been adjusted to

optimize the accuracy of the PIV algorithm. The concentration of

tracers has been chosen in order to obtain about 15 tracers in each

final interrogation cell. Due to the PIV algorithm and the mean size

of the images of the tracers (around 3 pixels) we observed no peak

locking. The time interval between the two images has been ad-

justed to lead to displacements ranging between 1/20 and 1/8 of

the interrogation cell. We checked for all measurements that the

displacement correlation peak clearly emerged from the secondary

peaks and was sharp enough to allow unambiguous localisation of

the maximum. In an instantaneous PIV field, only displacement

vectors corresponding to a main correlation peak at least twice

higher than secondary ones have been validated, the few others

being removed and replaced by linear interpolations of validated

ones. For investigation of the flow around a bubble, measurements

obtained at less than 2 mm from a gas–liquid interface have been

discarded because of the noise induced by reflexion. The accuracy

of PIV measurement was estimated from r.m.s values during uni-

form flow generated by emptying. It is around ±3%.

3. PIV measurements in a uniform steady flow

3.1. Experimental procedure and results

Since the velocity of a tracer depends on its location zwithin the

gap, we do not a priori knowhow to interpret the velocityUPIV(x,y, t)

provided by the present PIVmethod. Our objective is to calibrateUP-

IV(x,y, t) in a situation where the true velocity field U(x,y,z, t) is

known. This reference flow is obtained by emptying the cell via

the discharging valves located at the bottom. The instant the valves

are open is hereafter considered as the origin of time. The opening

of the valve, operated manually, was rapid enough to be considered

as instantaneous for the present purpose. The camera and the laser

were started before we opened the valve in order to detect the in-

stant when the fluid is set in motion taken as the origin of time.

In the measurement window located in the middle of the cell in

the horizontal y direction and 560 mm above the bottom, the liquid

velocity U is uniform over the measurement plane (x,y). Its value

hU(t)i averaged over the z direction is equal to the vertical velocity

V of the free surface. The location of the gas–liquid interface is de-

tected by digital image processing of the same images that are used

for PIV; the velocity V is then obtained by time derivation with an

accuracy of ±2%. In the z direction, a Poiseuille flow develops since

we are considering laminar flows with channel Reynolds numbers,

Rec = hUid/m, less than 200. This flow takes a time Tp = (d/2)2/

m � 0.25 s to be developed. The circles in Fig. 5 show the time

evolutions of interface velocity V for two runs at Rec = 28 and 148.

Note that V is only known from the instant T when free surface

reaches the measurement window: T = 1.6 s for the largest dis-

charging rate and is larger for slower discharges. Due to the de-

crease of the liquid height H above the discharging valve, the

emptying velocity slightly decreases. However, the timescale of this

velocity variation, Tvar = U(dU/dt)ÿ1, is at least of 8 s. Finally, since T/

Tp P 8 we can conclude that a Poiseuille flow exists at T when PIV

and interface velocity are simultaneously measured, and as Tvar/

Tp P 32, this Poiseuille flow is quasi-steady. The calibration of the

PIV technique is therefore done in a case where U(z, t) adopts a par-

abolic profile with an average velocity, hUi = V, that slightly de-

creases with time.

This configuration is thus particularly suitable to investigate the

results provided by the PIV method in a steady flow. Fig. 5 also dis-

plays the value UPIV(t) obtained by averaging UPIV(x,y, t) over the

measurement window. The PIV velocity is in good agreement with

the reference velocity V for Rec = 28 (Fig. 5a) whereas it is much

smaller for Rec = 148 (Fig. 5b). Fig. 6 presents the evolution of the

ratio UPIV/V for all investigated values of Rec. The results show that

the PIV velocity is equal to the liquid velocity averaged over the

gap for Rec < 80 while it is much smaller for Rec P 150. This un-

der-estimation of the averaged velocity by the PIV method at large

Reynolds numbers may depend on the spatial distribution of trac-

ers within the gap. We discuss this point in the following part.

3.2. Interpretation

Even if the tracer concentration is uniform at initial time, there

is no guarantee that it will remain uniform all along an experiment.

It is well-known that a buoyant particle in a vertical channel expe-

riences a lift force, which results of the combined effects of the par-

ticle slip velocity and of the shear stress [14]. However, even a

neutrally buoyant particle migrates laterally in a Poiseuille flow

under the action of inertial forces, as it was observed first by Segré

and Silberberg [11]. This effect depends on the channel Reynolds

number Rec and on the ratio a/d of the particle size over the chan-

nel thickness (or tube diameter). It was described theoretically by

Schonberg and Hinch [15] and then Asmolov [1], and investigated

experimentally in a pipe flow by Matas et al. [16] for
Fig. 4. Image of the field of tracers to be processed by PIV algorithm (100 � 100

pixels, 60 grey levels).



67 6 Rec 6 1700. For a review of the literature in microchannels,

the reader is referred to Kim and Yoo [17].

We will use the predictions provided by Asmolov [1] to inter-

pret the present results. Asmolov used asymptotic expansions by

assuming that the Reynolds number based on the tracer size and

the strain rate, Rep = Rec(a/d)
2, is small while the channel Reynolds

number Rec remains finite. Two contributions to the lift force are

identified. First the disturbance generated by the particle breaks

the symmetry of flow on both sides of the particle, which generates

a lift force that pushes the particle towards the walls. Note that this

first lift force requires that the curvature of the velocity profile is

non-zero. The second contribution to the lift force is due to the

presence of the wall. In the layer between the wall and the particle,

wall-induced inertia becomes significant and pushes the particle

towards the middle of the channel. The first contribution is pre-

dominant in the middle of the channel while the second one is pre-

dominant close to the wall. Whatever its initial position, a particle

migrates towards an equilibrium location zeq where the two oppo-

site lift forces are balanced. It is interesting to notice that the loca-

tion where the particles accumulated in the experiment of Matas

et al. [16] are in good agreement with the theory for a/d = 1/42

while it is moved towards the pipe axis for a/dP 1/17. In the pres-

ent work, considering that the median value of the size distribution

is a/d = 1/200, we may expect that the particles are small enough

for the theory to be valid. Fig. 7 shows the Asmolov prediction of

zeq for the present range of Reynolds number (our origin of zeq cor-

responds here to the middle of the channel). We observe that zeq/d

monotonically depends on the Reynolds number and that it in-

creases (i.e. equilibrium position moves towards the wall) from

0.32 to 0.40 as Rec increases from 13 to 200.

To compare this prediction with the PIV measurements, we

need to compute the tracer velocity, Vtr. Assuming that all tracers

have accumulated at the equilibrium position and that the liquid

flow is parabolic yields

V tr

hUi
¼

3

2
1ÿ 4

zeq
d

� �2
� �

: ð1Þ

The theoretical result (1) is represented by the curve added on

Fig. 6. It is in very good agreement with the PIV measurements for

Rec P 150. For Rec < 100, it is lower than the PIV velocity, which is

itself close to the bulk fluid velocity. This suggests that the migra-

tion of the tracers had not enough time to take place at low Rey-

nolds numbers.
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Fig. 5. Time evolution of the liquid velocity in the cell during emptying

experiments for two different Reynolds numbers: + PIV measurements UPIV, �

reference velocity V.
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We thus have to consider the time needed by the tracers to at-

tain their equilibrium position. Asmolov [1] obtained the trans-

verse lift force exerted on a particle as a function of its position z

F lift ¼
9

4
lahUiReÿ1=2

c Re3=2p fRec ðz=dÞ: ð2Þ

The transverse migration velocity,W, of the particle can be esti-

mated from the equilibrium between the lift and the Stokes drag

force. It writes

W

hUi
¼

3

8p
Reÿ1=2

c Re3=2p fRec ðz=dÞ: ð3Þ

The function fRec ðz=dÞ, which cannot be expressed analytically, is

drawn on Fig. 8 of the article of Asmolov [1] for various values of

the channel Reynolds number ranging from 15 to 3000. In order

to facilitate discussion, we have redrawn fRec ðz=dÞ from Asmolov

in the present system of coordinates in Fig. 8 for two Reynolds

numbers. As observed on Fig. 7, the value of zeq depends on Rec.

However, as shown in Fig. 8, fRec adopts an almost similar evolution

on both sides of zeq whatever the channel Reynolds number. The

migration velocity is zero on the axis, which is an unstable equilib-

rium position for the tracers. Increasing z, fRec becomes positive

(migration towards the wall), increasing first before to decrease

and vanish at zeq. The larger the Reynolds number, the flatter is

the profile of the migration velocity in the central region and the

smaller is its magnitude, which can be characterized by its maxi-

mum value: 1.5 6 fmax1(Rec) 6 5.2 for 10 < Rec < 200. Increasing z

beyond zeq, fRec becomes negative (migration towards the center)

and decreases quickly to reach a maximum fmax2 � 28 independent

of Rec at the wall. On both sides of zeq, the tracers migrate toward

the equilibrium position but the migration velocity is lower in the

central region of the channel than in the wall region (fmax1(Rec) <

fmax2). Moreover, zeq is moved towards the wall as Rec increases,

which makes the central region larger and larger while the wall

region shrinks. A rough estimation of the time Tm taken by all

the tracers to reach the stable equilibrium position can thus be

estimated by taking fRec = fmax1 � 1 as the magnitude of the migra-

tion velocity and zeq as the distance of migration:

Tm ¼
zeq
W

¼
8p
3

zeq
hUi

Re1=2c Reÿ3=2
p : ð4Þ

The migration time Tm has now to be compared to the time T

elapsed between the instant the flow is started by opening the dis-

charging valve and the beginning of the calibration tests. We recall

that T ranged between 2 s and 16 s, depending on the discharging

velocity. Fig. 9 shows the evolution of the ratio Tm/T against Rec for

particles of three different diameters belonging to the range of the

present tracer size distribution: 2a = 10, 15 and 30 lm. For a given

tracer size, the ratio Tm/T is observed to decrease strongly with the

Reynolds number. For Rec 6 80 and whatever the tracer size, Tm/T is

larger than 40, which might explain that the migration of the tracer

does not affect the PIV measurements (Fig. 6). However, the esti-

mated values of Tm/T for Rec P 150 are still too large to argue that

the migration has yet taken place at the instant the measurements

are done. Indeed, it is only for the largest considered particles

(2a = 30 lm) and for a Reynolds number close to 200 that Tm/T be-

comes smaller than 10. The theoretical prediction of the migration

time is therefore overestimated. The exact effect of Rec on the pre-

diction of Tm/T from [1] is complex. Taking the upper limit of fmax1

(fmax1 � 5 at Rec = 15) divides by 5 the value of Tm/T consistent with

the migration observed at high Rec. Several other reasons could

also explain that migration modifies the velocity estimation at

large Reynolds numbers while Tm/T is still of importance. First of

all, it is important to note that the migration time decreases very

strongly with the particle size since it scales as (a/d)ÿ3. Also, be-

cause the light fluoresced by a tracer particle is proportional to

its volume, the contribution of a given tracer to the light intensity

recorded on a PIV image is proportional to a3. The larger particles,

which are those that migrate the most rapidly, are therefore ex-

pected to influence the most the PIV measurements. Moreover,

numerical simulations of inertial migration in a dilute particle sus-

pension by Chun and Ladd [18] have shown that clusters of parti-

cles may appear for Rec > 200. Since it has been observed that the

present tracers can agglomerate when they are in contact, it is thus

possible that the present particles agglomerate while they flow

through cell to form larger tracers that migrate more rapidly. This

effect is however expected not to be dominant because it was ob-

served at higher tracer concentration as compared to our experi-

mental conditions.

The present experiments conducted in a steady flow within a

Hele-Shaw cell lead to the following conclusions. Inertial migration

affects or not the PIV measurements depending on the time T

elapsed after the Poiseuille flow has achieved its development

across the gap. The migration time Tm decreases strongly when

either the channel Reynolds number or the particle size increases.

Fig. 8. Transverse profile of normalized lift force calculated by Asmolov. This graph

has been constructed from the data of Fig. 8 of Asmolov [1]. (The origin z/d = 0 is at

the channel center.)
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In the present case, the PIV velocity is very close to the bulk fluid

velocity V through the gap for Rec 6 80. The tracers remain thus

probably almost uniformly distributed across the gap, they move

at different velocity and the PIV algorithm provides the average

flow velocity. Note that the PIV velocity is actually slightly larger

than V for this range of Rec, which may be due to the fact that slow

particles close to the wall are expected to join quickly the equilib-

rium position since their migration velocity is large and indepen-

dent of Rec. On the other hand, for Rec P 150, the PIV velocity

corresponds exactly to the fluid velocity at the equilibrium posi-

tion predicted by the Asmolov theory. In this case, the migration

of the tracers is achieved and all the tracers have the same velocity,

which is that of the flow at z = zeq.

4. PIV measurements in rapidly varying flow

We will now consider PIV measurements of a flow which lasts

for a finite time T. Different situations may occur depending on

the relative magnitudes of T, of the viscous time scale Tp = (d/2)2/

m and of the migration time Tm. The previous results suggest to dis-

tinguish the following cases:

(1) If T < Tp, the parabolic velocity profile does not have time to

develop across the gap, the flow remains uniform in the z

direction (except very close to the walls where thin bound-

ary layers are present) and migration does not occur.

(2) If T < Tm, the migration of the tracers does not have time to

occur, the parabolic profile being developed or not.

(3) If T is both larger than Tp and Tm the tracers have time to

reach the equilibrium position zeq.

Case (3) is equivalent to the steady case investigated in the pre-

vious section for Rec P 150. Case (2) is similar to the situation of

the previous section for Rec 6 80 where the flow was actually

developed and steady but where the tracer migration was not com-

pleted. The purpose of this section is to deal with case (1) by inves-

tigating a flow that rapidly varies with time.

The reference situation chosen to test the response of the PIV

system is the flow generated by a bubble rising at a velocity Vb

in the Hele-Shaw cell. The bubble dynamics have already been

investigated in details in [19] by means of high speed imaging

for bubbles of equivalent diameter d ranging from 1 to 32.5 mm,

which correspond to bubble Reynolds numbers, Reb = Vbd/m, rang-
ing from 62 to 7500 and channel Reynolds numbers, Rec = Vbd/m,
from 62 to 230. Here we consider a bubble with a diameter

d = 17 mm rising at Vb = 0.165 m/s. The flow in the plane of the cell,

characterized by Reb = 2800, is dominated by inertia with a strong

production of vorticity at the bubble surface leading to the devel-

opment of an intense wake behind the bubble. The flow within

the gap is characterized by a Reynolds number Rec = 165 for which

inertial migration was observed to affect the PIV measurements in

the case of a steady flow. The time for developing a parabolic flow

across the gap, Tp = (d/2)2/m � 0.25 s, is larger than the duration of

the flow, T = d/Vb = 0.1 s, suggesting that the velocity profile re-

mains flat over the major part of the gap.

The flow field around the bubble has been measured by PIV as

the bubble was crossing the measurement window. The right half

of Fig. 10 shows an example of PIV velocity field. We observe that

the bubble is pushing the fluid in front of its nose and entraining it

at its rear. We will analyze separately the flows in the upstream re-

gion and in the wake because they are controlled by different phys-

ical mechanisms. Let us start by the flow upstream of the bubble. If

the velocity profile across the gap is really flat, the flow in the cell

plane (x,y) must be described well by the two-dimensional Navier–

Stokes equations. Moreover, upstream of a bubble rising at large

Reynolds number, the flow is potential except in a thin boundary

layer that develop at the interface. Also, it appears that the top half

of the bubble interface has an almost constant curvature and is

hence well described by a circle (dash line in Fig. 10). It is therefore

relevant to compare the PIV measurements (right half of Fig. 10)

with the two-dimensional potential flow generated by a circle

moving at the same velocity as the bubble (left half of Fig. 10).

Visual comparison of the map of velocity vectors shows a good

agreement between PIV and potential theory. A more accurate

comparison is proposed in Fig. 11, where the velocity profiles,

taken along the two lines drawn in Fig. 10, are plotted. The quan-

titative agreement is excellent and allows us to conclude that the

velocity profile across the gap is flat. There is therefore no ambigu-

ity concerning the PIV velocity.

Let us nowconsider the flowbehind the bubble. Fig. 12 shows the

streamlines of the velocity field in the framemovingwith thebubble

computed from the PIV data. In contrast with the upstream region,

we have no theoretical prediction of the two-dimensional velocity

field in the wake. However, we observe at the bubble rear a closed

streamline which separates a recirculating region in which the li-

quid is risingwith the bubble from the outer flow. As a consequence,

the liquid velocity averaged on any horizontal line segments within

the attached wakemust be equal to the bubble rise velocity Vb. This

average velocity Uw has been calculated from the PIV velocity field

UPIV(x,y) by using the following equation:

UwðxÞ ¼
1

2YðxÞ

Z ÿYðxÞ

YðxÞ

UPIV ðx; yÞdy; ð5Þ

where ÿY(x) and Y(x) are the horizontal coordinates of the closed

streamline for the considered vertical coordinate x (the origin corre-

sponding to the bubble centre). For x = ÿ12, ÿ16 and 20 mm, we

obtain respectively Uw/Vb = 1.02, 1.03 and 1.01. Similarly to what

is observed from the local description of the flow upstream of the

bubble, the duration of the flow T = x/Vb 6 0.15 s is too short to al-

low the development of a parabolic profile across the gap and the

PIV provides the actual fluid velocity.

5. Conclusion

Methods for liquid velocity measurements in narrow channels

using particle as flow tracers have to deal with two major difficul-
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Fig. 10. Velocity field around a bubble of diameter d = 0.017 m rising at a velocity

Vb = 0.17 m/s in the cell. Left half (y < 0), two-dimensional potential velocity

generated by a moving circle. Right half (y > 0): PIV velocity.



ties: strong velocity variations occur on short distances in the

direction perpendicular to the walls and inertial migration may

cause non-uniform spatial distribution of the tracers. It is particu-

larly true for PIV when using volume illumination and an optical

depth of field larger than the channel thickness because the tracer

positions within the gap are not known. The purpose of the present

work was to test this particular PIV method by considering refer-

ence flows for which the velocity field is known by an independent

way. The results obtained here allow us to draw guidelines for the

use of this method in confined flows when using neutrally buoyant

tracers that are negligibly small compared to the gap d. Three con-

trasted situations have to be distinguished. On the one hand, when

the flow duration is short compared to the time, Tp = (d/2)2/m, re-
quired for the vorticity generated at the wall to diffuse into the

core of the flow, the velocity profile across the gap remains flat,

all the tracers travel at the same velocity, which is therefore the

one measured by the PIV method. On the other hand, when the

flow duration is long enough, a parabolic profile develops across

the gap and the tracers start moving towards a stable equilibrium

position located at a certain distance to the wall where they will

eventually accumulate. The PIV measurements will then be differ-

ent according to whether the tracers have time to migrate before

the instant the measurement is done. If the migration time is large,

the tracers do not have time to move and remain thus uniformly

distributed, which implies that each tracer moves at a velocity that

depends on its distance to the wall. In this case, the present exper-

imental results show that the PIV provides the liquid velocity aver-

aged over the gap. It is worth noting that this empirical result is not

trivial since the image intercorrelation used by the PIV algorithm is

not an average operator. If the migration time is short, all the trac-

ers have ceased their migration at the instant of measurement and

therefore all move at the same velocity, which is that of the flow at

the equilibrium position. The fluid velocity averaged over the gap

can then be determined with a good accuracy from the PIV mea-

surement by using the theoretical prediction of the equilibrium po-

sition derived by Asmolov [1]. Concerning the migration velocity,

the theory predicts that it strongly depends on both the channel

Reynolds number and the tracer size. That might explain why an

estimation of the migration time based of the theoretical migration

velocity does not allow us to discriminate between the two last
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Fig. 11. Velocity profiles upstream of the bubble along the lines marked on Fig. 10:

(a) vertical velocity along y = 0, (b) vertical velocity along x = 0.012 m and (c)

horizontal velocity along x = 0.012 m. Symbols denote PIV measurements while

curves represent potential theory.
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Fig. 12. Streamlines of the liquid flow around the rising bubble (represented in the

frame that moves with the bubble).



cases. Further work is needed to propose a reliable method to pre-

dict precisely the migration time for practical applications. How-

ever we showed that there are many situations in which tracers

migration did not occur. In particular the present method is well

suited to investigate the flow generated by confined bubbles.
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