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Spatial mode estimation for functional random fields

with application to bioturbation problem

Sophie Dabo-Niang • Anne-Francoise Yao •

Laura Pischedda • Philippe Cuny • Franck Gilbert

Abstract This work provides a useful tool to study the

effects of bioturbation on the distribution of oxygen within

sediments. We propose here heterogeneity measurements

based on functional spatial mode. To obtain the mode, one

usually needs to estimate the spatial probability density.

The approach considered here consists in looking each

observation as a curve that represents the history of the

oxygen concentration at a fixed pixel.

Keywords Spatial mode � Density estimation �
Functional data � Heterogeneity � Bioturbation

1 Introduction

In aquatic ecosystems a crucial control on carbon pro-

cessing is exerted by the animals inhabiting the sediments,

which extensively rework and oxygenate sediments while

e.g. feeding and moving, a global process referred to as

bioturbation. In particular, macrofauna, through their

feeding, burrowing and ventilation activities, have an

important influence on microbial activity and sediment

metabolism in marine sediments (Aller and Aller 1998;

Kristensen 2001). Subduction of oxygen into and removal

of metabolites from otherwise anoxic sediments, as well as

relocation of organic particles by the infauna, create a

heterogeneity, which can result in several-fold enhanced

rates of organic matter decomposition and solute fluxes

(Aller and Aller 1998; Kristensen and Holmer 2001,

Nielsen et al. 2003). Overall, bioturbation plays a key role

in the ecosystem functioning. One way to investigate this

role is to study the related oxygen heterogeneity (Pischedda

et al. 2008). For this purpose the use of planar optodes

makes possible high resolution measurement of two-

dimensional vertical distribution and spatial heterogeneity

of oxygen in the sedimentary column (Glud et al. 1996;

Hulth et al. 2002).

In the frame of our study, we have used such an optical

method to collect 2-D oxygen distribution on different

times in order to quantify the spatio-temporal dynamics of

the oxygen concentration. More precisely, the dataset is

composed of 121 images (sequence of pixels) of the

intermittently irrigated U-shaped burrow of the polychaete

worm Nereis diversicolor, which were recorded every

2 min during 4 h (See Fig. 1).

Now that such complex spatio-temporal data can be

produced, bioturbation quantification strongly requires

tools that can take into account the specificity of the data
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that (then) constitute a time series set of images. Such a

tool could be very useful for example to compare the

effects of bioturbation on oxygen distribution (i) in dif-

ferent regions within the sediments or (ii) as a function of

various macrofauna species that differ in the way to pro-

vide oxygen into the sediments (e.g. Foster and Graf 1995).

In this paper, we propose to quantify spatial heteroge-

neity induced by a burrow-irrigating organism by means of

a measure based on functional spatial mean, median and

mode estimation. Indeed, the data can be seen as spatially

dependant curves since for each pixel, i, we can summary

the evolution of the oxygen concentration on this pixel on a

curve: Xi = (Xi(t), 0 B t B 120); (Xi(t) being the oxygen

concentration at the date t). If the estimation of the spatial

mean and the median is relatively simple, the mode esti-

mation is based on the estimation of a probability density

for spatial functional random fields proposed by Dabo-

Niang and Yao (2008). This last is a recent theoretical

contribution on a crucial field, spatial modeling of func-

tional data. Indeed, spatial modeling of functional or non-

functional data has become one the most interesting and

important areas of natural sciences, see for example

Fernández de Castro and González Manteiga (2008),

Angulo and Ruiz-Medina (2008), Porcu et al. (2008)...

Note that the approach proposed here is complementary

with the study done by Pischedda et al. (2008) that pre-

sented an estimation of oxygen heterogeneity in biotur-

bated sediments using a simple index based on oxygen

horizontal variations. We will measure the spatial depen-

dency by means of mixing condition and give theoretical

results (weak convergence) concerning the mode estimate

on Sect. 2. On Sect. 3 we give the heterogeneity mea-

surements derived from the mode estimate. The last part is

devoted to conclusion and discussion.

2 Spatial mode estimate for curves

We deal with a measurable strictly stationary spatial pro-

cess Xi; i 2 ðN�ÞN
ÿ �

;N� 1; defined on a probability space

ðX;A;PÞ such that the Xi
0s have the same distribution as a

variable X with values in an infinite dimensional separable

semi-metric space ðE; dÞ (d(.,.) is the semi-metric). We

assume that X has an unknown density f with respect to

some given measure l. We aim to estimate the spatial

density from data, Xi, observed on some rectangular

region In ¼ i 2 N
N : 1� ik � nk; k ¼ 1; . . .;N

� 	
where

n = (n1,…,nN). We write n? ?? if mink=1,…,N nk

? ?? and
nj
nk

���
���\C for some constant 0\C\? and

Vj, k [ {1,…, N}. We will set bn ¼ n1 � � � � � nN :

As in the i.i.d. case, in order to control the size of the set

C; in which we look for the mode, we choose this set such

that C � Cn ¼
Sdn

k¼1 Bðxk; rnÞ; where dn[ 0 is some integer

and for k ¼ 1; . . .; dn; B(xk, rn) is the opened ball of center

xk 2 E and radius rn[ 0. Really, the set Cn; which can

always be built, is here to ensure the existence of the set C:

We assume that the mode of f:

x ¼ arg sup

C
o

f ð1Þ

exists, where C
o

is the interior of C: We will set

A� ¼ x 2 C; f ðxÞ ÿ f ðxÞ\�f g:

We are interested in this section to introduce an estimate

of x derived from an estimate of f. Hence, we need to study

the uniform consistency over C of the estimate of the

density.

For a seek of simplicity, we look at some special case

where the probability distribution of X satisfies some

concentration condition (see Dabo-Niang et al. (2006)) and

when the density estimate is of the simple usual Parzen-

Rosenblatt form.

Let w(.) be some increasing function taking values in

]0, ??[ such that limt!0 wðtÞ ¼ 0: Then, we propose the

following kernel density estimator:

8x 2 E; fnðxÞ ¼
1

bnCðK;w; hnÞ
X

i2In

K d Xi; xð Þ=hnð Þ; ð2Þ

where CðK;w; hnÞ ¼ ÿ
R 1

0
K 0ðtÞwðhntÞdt and where hn is a

sequence of positive numbers that converges to zero. Note

that this constant C(K, w, hn) does not depend on x. So, the

functional mode estimate x̂n can be defined as any solution

of the equation

x̂n ¼ arg sup
C

fn; ð3Þ

which is very easy to calculate in practice. To give an

almost sure convergence result of x̂n; we introduce the

following assumptions.

Fig. 1 Example of images on 3 dates



2.1 Assumptions

For seek of simplicity, we consider only kernels satisfying

the following classical assumptions:

H1ÿ suppðKÞ ¼ ð0; 1Þ;Kð1Þ ¼ 0 and

ÿ1\s1 �K 0 � s2\0:

H2ÿ dn ¼ bnb and rn �
log bn

bnðwðhnÞÞj
� �1

2

where j\ ÿ 2b1 þ 1; b [ 0; b1 [ 1:

The nonparametric model is defined by means of the next

assumptionon the density function f,which is basically the same

as in the standard multivariate case (see Abraham et al. 2003):

H3ÿ f is uniformly continuous on C; infx2Cf ðxÞ[ 0

and lim
�!0

diameterðA2Þ ¼ sup
x2A2;y2A2

dðx; yÞ ¼ 0:

We also need some standard assumptions on f and w

used in nonparametric functional mode estimation model

(see Dabo-Niang et al. 2006).

H4ÿ9c[ 0; 9e0 [ 0; 8e\e0;

Ze

0

wðzÞdz[ cewðeÞ:

H5ÿ lim
t!0

sup
x2C

PðX 2 Bðx; tÞÞ

wðtÞ
ÿ f ðxÞ

����
���� ¼ 0:

2.2 Dependency conditions

As it often occurs in spatial dependent data analysis, one

needs to defined the type of dependence. Here, we will

consider the following two dependence measures.

2.2.1 Local dependence condition

We will assume that the joint probability density fi,j(.,.) of

(Xi, Xj) (with respect to l 9 l) exists and satisfies

fi;jðx; yÞ ÿ f ðxÞf ðyÞ
�� ���C; ð4Þ

for some constantC and for all x; y 2 E and i; j 2 N
N ; i 6¼ j; or

9�12ð0;1�;lim
t!0

sup
x2C

����
maxi 6¼jPððXi;XjÞ2Bðx;tÞ�Bðx;tÞÞ

wðtÞ1þ�1

ÿsup
i;j

fi;j;ðx;xÞ

����¼0:

ð5Þ

Such local dependency condition is necessary to reach

the same rate of convergence as in the i.i.d case.

2.2.2 Mixing conditions

Another complementary dependency condition concerned the

mixing conditionwhichmeasures thedependencybymeansof

a-mixing.We assume that Xi; i 2 N
N

ÿ �
satisfies the following

mixing condition: there exists a function u tð Þ # 0 as t??,

such that for E, E
0

subsets of NN with finite cardinals,

a BðEÞ;B E
0

� �� �
¼ sup

B2BðEÞ;C2B E
0ð Þ
P B\Cð ÞÿPðBÞPðCÞj j

� v CardðEÞ;Card E
0

� �� �
u dist E;E

0
� �� �

;

ð6Þ

whereB Eð Þ (resp.B E
0ÿ �
) denotes the Borel r-field generated

by (Xi, i [ E) (resp. (Xi, i [ E
0

)), Card(E) (resp. Card(E
0

)) the

cardinality of E (resp. E
0

), dist(E, E
0

) the Euclidean distance

between E and E
0

and v :N2!R
þ is a nondecreasing

symmetric positive function in each variable. Throughout

the paper, it will be assumed that v satisfies either

v n;mð Þ�Cminðn;mÞ; 8n;m 2 N ð7Þ

or

vðn;mÞ�Cðnþ mþ 1Þ
eb ; 8n;m 2 N ð8Þ

for some eb� 1 and some C[ 0. If v : 1, then, the process

(Xi) is said to be stronglymixing.Many stochastic processes,

among them various useful time series models satisfy strong

mixing properties, which are relatively easy to check.

Conditions (7–8) are weaker than strong mixing condition

and have been used for finite dimensional variables in (for

example) Tran (1990), Carbon et al. (1996, 1997) and Biau

and Cadre(2004). We refer to Doukhan (1994) and Rio

(2000) for discussion on mixing and examples.

Concerning the function u(.), as it is often done, two

kind of conditions will be assumed: the case where u(i)

tends to zero at a polynomial rate, i.e.

uðiÞ�Ciÿh; for some h[ 0 ð9Þ

or the case where u(i) tends to zero at an exponential rate:

uðiÞ ¼ C expðÿsiÞ; for some s[ 0: ð10Þ

Remark 1 The two dependence measures are link (see

Bosq 1998 for details).

2.3 A consistency result

Under unrestrictive hypotheses on the probability of small

balls, on the kernel, the bandwidth, the local ((4) or (5))

and the global spatial dependence condition (6), the prob-

ability convergence of the mode estimate ĥn follows in the

two cases of mixing (9) and (10).

Let

h1 ¼
h

2Nðbþ 1Þ ÿ h
; h2 ¼

hÿ 2N

2Nðbþ 1Þ ÿ h
;

h3 ¼
hþ N

Nð1þ 2bþ 2ebÞ ÿ h
; h4 ¼

hÿ N

Nð1þ 2bþ 2ebÞ ÿ h
:



We assume for the following two theorems that bnwðhnÞ=
ðlog bnÞ ! 1:

Theorem 1 Suppose that H1–H5 are satisfied, the mixing

coefficient satisfies (7) and (9) with h[ 2Nðbþ 1Þ; bn
wðhnÞ

ÿh1ðlog bnÞh2 ! 1 , then we have

lim
n!1

x̂n ¼ x; in probability: ð11Þ

Proof We have from assumption H3 that:

8e[ 0; 9g[ 0; 8x 2 C; dðx; xÞ� e ) f xð Þ ÿ f xð Þj j � g:

Hence, to get (11), it suffices to prove that

limn!1 supx2C jfnðxÞ ÿ f ðxÞj ¼ 0 a.s., since

f x̂nð Þÿ f xð Þj j� f x̂nð Þÿ fn x̂nð Þj jþ fn x̂nð Þÿ f ðxÞj j

� sup
x2C

f ðxÞÿ fnðxÞj jþ sup
x2C

fnðxÞÿ sup
x2C

f ðxÞ

����
����

�2sup
x2C

fnðxÞÿ f ðxÞj j:

The consistency of the bias supx2C E fnðxÞð Þÿ f ðxÞj j is the

same as in the i.i.d case of Dabo-Niang et al. (2006).

The main difference between this theoretical part and the

i.i.d case of Dabo-Niang et al. (2006) comes from the proof

of the consistency of the variance term supx2C fnðxÞÿj
E fnðxÞð Þj: The extension of the variance term result of

Dabo-Niang et al. (2006) to the spatial case is far from

being trivial and is proved in the following. We set:

QnðxÞ ¼ fnðxÞ ÿ E fnðxÞð Þ ¼
X

i2In

Zi;n;x; x 2 C;

where

Zi;n;x ¼
1

bnCðK;w; hnÞ
K d Xi; xð Þ=hnð Þ ÿ EK d Xi; xð Þ=hnð Þð Þ:

It is proved in Dabo-Niang et al. (2006) that
K d Xi;xð Þ=hnð Þ
CðK;w;hnÞ

�C=wðhnÞ:

Recall that C is covered by dn balls Bk = B(xk, rn) of

radius rn and center xk.

Define

S1n ¼ max
1� k� dn

sup
x2Bk

jfnðxÞ ÿ fnðxkÞj;

S2n ¼ max
1� k� dn

sup
x2Bk

jEfnðxkÞ ÿ EfnðxÞj;

S3n ¼ max
1� k� dn

jfnðxkÞ ÿ EfnðxkÞj:

Then,

sup
x2C

jfnðxÞ ÿ EfnðxÞj � S1n þ S2n þ S3n:

Using assumptions H1 and H2, one can easily show that

S1n and S2n are equal to o

ffiffiffiffiffiffiffiffiffiffi
logbn
bnwðhn

r� �
a.s., see proof of

Theorem 3 of Dabo-Niang et al. (2006). It remains to study

the consistency of S3n = max1 B j B dn|Qn(xj)|, by setting

without loss of generality that for 1; . . .;N; ni = 2pti for

some integers p C 1 and t1; . . .; tN and using the well

known spatial block decomposition of Tran (1990). We

group the random variables Zi, n, x into small and large

blocks of different sizes as follow:

Uð1; n; x; jÞ ¼
Xð2jkþ1Þp

ik¼2jkpþ1;1� k�N

Zi;n;x;

Uð2; n; x; jÞ ¼
Xð2jkþ1Þp

ik¼2jkpþ1;1� k�Nÿ1

X2ðjNþ1Þp

iN¼ð2jNþ1Þpþ1

Zi;n;x;

Uð3; n; x; jÞ ¼
Xð2jkþ1Þp

ik¼2jkpþ1;1� k�Nÿ2

X2ðjNÿ1þ1Þp

iNÿ1¼ð2jNÿ1þ1Þpþ1

�
Xð2jNþ1Þp

iN¼2jNpþ1

Zi;n;x;

Uð4; n; x; jÞ ¼
Xð2jkþ1Þp

ik¼2jkpþ1;1� k�Nÿ2

X2ðjNÿ1þ1Þp

iNÿ1¼ð2jNÿ1þ1Þpþ1

�
X2ðjNþ1Þp

iN¼ð2jNþ1Þpþ1

Zi;n;x;

..

.

Uð2Nÿ1; n; x; jÞ ¼
X2ðjkþ1Þp

ik¼ð2jkþ1Þpþ1;1� k�Nÿ1

Xð2jNþ1Þp

iN¼2jNpþ1

Zi;n;x;

and

Uð2N ; n; x; jÞ ¼
X2ðjkþ1Þp

ik¼ð2jkþ1Þpþ1;1� k�N

Zi;n;x:

Set T ¼ f0; . . .; t1 ÿ 1g � � � � � f0; . . .; tN ÿ 1g; and let for
each integer l ¼ 1; . . .; 2N ;

Tðn; x; lÞ ¼
X

j2T

Uðl; n; x; jÞ:

Then, we obtain the following decomposition

QnðxÞ ¼ fnðxÞ ÿ EfnðxÞ ¼
X2N

l¼1

Tðn; x; lÞ:

To prove that S3n ¼ O

ffiffiffiffiffiffiffiffiffiffi
logbn
bnwðhn

r� �
a.s., it is sufficient to

show that, for a given arbitrary large positive constant c,

there exists a positive constant C such that for any g[ 0

P max
1� j� dn

Tðn; xj; 1Þ
�� ��

[ g

ffiffiffiffiffiffiffiffiffiffiffiffiffi
log bn
bnwðhn

s" #
�Cdnðbnÿc þ b

1bnÞ:

Without loss of generality we will show this for l = 1.



Set �n ¼ g

ffiffiffiffiffiffiffiffiffiffiffi
logbn
bnwðhnÞ

r
(where g[ 0 is a constant to be

chosen later) and b
1bn ¼ wðhnÞ

ÿ1
vðbn; pNÞuðpÞ�ÿ1

n :

Let

Tðn; x; 1Þ ¼
X

j2T

Uð1; n; x; jÞ;

be the sum of bt ¼ t1 � � � � � tN of the U(1, n, x, j)’s. Note

that each U(1, n, x, j)’s is measurable with respect to the

r-field generated by Xi with i belonging to the set of sites

I i;j ¼ fi : 2jkpþ 1� ik �ð2jk þ 1Þp; k ¼ 1; . . .;Ng:

These sets of sites are separated by a distance greater than

p. Enumerate the random variables’s U(1, n, x, j) and the

corresponding r-field with which they are measurable in

an arbitrary manner and refer to them respectively as

V1; . . .;Vbt and B1; . . .;Bbt : Then, since Tðn; x; 1Þ ¼
Pbt

i¼1 Vi

with

jVij ¼ jUð1; n; x; jÞj\CpNðbnwðhnÞÞÿ1: ð12Þ

Lemma 4.5 of Carbon et al. (1997) allows us to

approximate V1; . . .;Vbt by V�
1 ; . . .;V

�

bt such that:

P Tðn; x; 1Þj j[ �n½ � �P
Xbt

i¼1

V�
i

������

������
[ �n=2

2
4

3
5

þ P
Xbt

i¼1

jVi ÿ V�
i j[ �n=2

2
4

3
5: ð13Þ

Now, using: Markov’s inequality, (12), Lemma 4.4 of

Carbon et al. (1997) and the fact that the sets of sites (with

respect to which Vi’s are measurable) are separated by a

distance greater than p, we get:

P
Xbt

i¼1

Vi ÿ V�
i

�� ��
[ �n

2
4

3
5�CbtpNðbnwðhnÞÞÿ1

� vðbn; pNÞuðpÞ�ÿ1
n � b

1bn : ð14Þ

Let

kn ¼ bnwðhnÞ log bnð Þ
1=2

; ð15Þ

then set,

p ¼
bnwðhnÞ
4kn

� �1=N
" #

�
bnwðhnÞ
log bn

� �1=2N

; ð16Þ

and kn�n ¼ g log bn:
If (9) holds for h[ 2N, then one can prove (by

following the same steps as those of the proof of Lemma

2.2 of Tran (1990)) by using our hypotheses H1, H4, H5

and Lemmas 4.2 and 4.3 of Carbon et al. (1997), that

k2n

Xbt

i¼1

EðV�
i Þ

2 �CbnwðhnÞðUnðxÞ þ RnðxÞÞ log bn\C log bn

where

UnðxÞ ¼
X

i2In

EðZi;n;xÞ
2

RnðxÞ ¼
X

i2In

X

l2In;ik 6¼lkfor some k

jCovðZi;n;x; Zl;n;xÞj;

C is a constant independent of x 2 C: Using (12), we get

jknV
�
i j\1=2 for large bn and deduce from Bernstein’s

inequality that

P
Xbt

i¼1

V�
i

������

������
[ �n

2
4

3
5�2expðÿkn�n þ k2n

Xbt

i¼1

EðV�
i Þ

2Þ

�2expððÿgþCÞ log bnÞ� bnÿc ð17Þ

for sufficiently large bn: We get from (13), (14) and (17)

that

P½ max
1� j� dn

jTðn; xj; 1Þj[ �n� �Cdnðbnÿc þ b
1bnÞ:

To prove the consistency variance result it suffices to

show that dnbnÿc ! 0 and dnb1bn ! 0: We have

dnbnÿc �Cbnbÿc
; this goes to zero as soon as c[ b, note

that this inequality is possible since c is chosen as a large

positive constant as stated above.

Remark that bnwðhnÞÿh1ðlog bnÞh2 ! 1 is equivalent to

ðdnb1bnÞ
ÿ1 ! 1 by assumption (7), since

dnb1bn �CbnbwðhnÞ
ÿ1
vðbn; pNÞpÿh�ÿ1

n

�CðbnwðhnÞÿh1ðlog bnÞh2Þ
ÿhþ2Nðbþ1Þ

2N :

This yields the proof. (

Theorem 2 Under conditions H1–H5, if (8), (9) are sat-

isfied with h[Nð1þ 2bþ 2ebÞ and if bnwðhnÞÿh3

ðlog bnÞh4 ! 1; then we have:

lim
n!1

x̂n ¼ x; in probability: ð18Þ

Proof Similarly as the previous proof, it suffices to

remark that

dnb1bn �CbnbwðhnÞ
ÿ1
vðbn; pNÞpÿh�ÿ1

n

�CbnbþebwðhnÞÿ1 bnwðhnÞ
log bn

� �ÿðh=2NÞ

ðbnwðhnÞ log bnÞð Þ
1
2

¼ CðbnSh3n ðlog bnÞ
h4Þ

ÿhþNð2bþ2ebþ1Þ
2N : (

It is worth to study the exponential mixing case since it

includes the Geometrically Strong Mixing (GSM) case

(with v : 1) which is easier to check in practice.



Theorem 3 (Exponential mixing case) Under the condi-

tions H1–H5, (10), (7) or (8) and bnwðhnÞðlog bnÞÿ2Nÿ1 !

1; we have

lim
n!1

x̂n ¼ x; in probability: ð19Þ

Proof The proof is obtained by sketching the proof of the

first theorem and by using similar arguments as in the

spatial non-functional case of Carbon et al. (1997). We

then omit the proof. (

Remark 2 As usual in nonparametric setting, the choice of

the smoothing factor is a crucial point to insure good

behavior of the underlying procedure. This is done by esti-

mating the small ball probabilities P(X [ B(x, h)), which

play a key role in the theoretical properties of our mode

estimate (for example in Sect. 3, we take h = 0.5). Indeed, it

has been shown by Dabo-Niang et al. (2006, Theorem 4)

that the density estimate and the modal curve converge

almost surely in the case of non-spatial general setting case.

These results can be extended in the case of our spatial

setting and deserve a paper on its own. Rates of convergence

can be obtained by using additional assumptions linking the

bandwidth hn, the kernel K and the small ball probability

functions of the variables {Xi}. These rates are affected by

the dependence condition introduced on the variables as

shown in Sect. 3. For instance, one can obtain for some cases

of fields a rate of order (log n)-s, where s[ 0. A special

case of particular importance is when the distribution of the

random field is absolutely continuous with respect toWiener

measure (diffusion processes), see for instance Li and Shao

(2001), or Ferraty and Vieu (2006).

Let us now focus on the use of this consistent mode

estimate to construct heterogeneity measurements.

3 Some applications of the mode

An application of the mode estimation is to build hetero-

geneity measurements. More precisely, we are interested

with the spatial version of the heterogeneity measurements

of Ferraty and Vieu (2006) or Dabo-Niang et al (2006).

Recall that their heterogeneity measure is based on the

centralities mean, median and mode curves. The idea is to

look for some difference (in the sense of the considered

semi-metric d) between the modal curve Xmodal and one

among themean curve Xmean or the median curve Xmedian. As

in the multivariate case, the modal curve is more useful than

the mean or the median curve for detecting any structural

differences between data. The heterogeneity measure of

Ferraty and Vieu (2006) with respect to the median is:

HIR ¼
d Xmodal;Xmedianð Þ

d Xmedian; 0ð Þ þ d Xmodal; 0ð Þ
:

One get a similar criterion based on the mean by

replacing the Xmedian by Xmean. In order to get a more stable

criterion, one can use a criterion obtained by splitting the

initial dataset (of cardinal N) into D subgroups g1; . . .; gD :

HIRðg1; . . .; gDÞ ¼
1

N

XD

j¼1

CardðgjÞHIR:

We are interested here with the spatial version of this

heterogeneity index HIR. To do that we need to define the

spatial version of centrality curves. Suppose that one deals

with curves Xi ¼ fXiðtÞ; t 2 Dg; i 2 In with D some subset

of R as it will be the case later on. Now, if the spatial mean,

Xmean, can be obtained (and compute) exactly as in the

i.i.d.:

8t 2 D; XmeanðtÞ ¼
1

n̂

X

i2In

XiðtÞ;

it is not the case of the spatial median and mode curves as

we are going to see. We need to take into account the

mixing condition.

3.1 The mixing condition in practice

Note that even if the estimator present here seems like in

the i.i.d. case, one does take in mind that our results are

obtained under a mixing condition. That means that we

consider a non parametric spatial dependence measure

defined by

a jjiÿ jjjð Þ� vð1; 1Þu jjiÿ jjjð Þ

for any couple of sites (i, j). For sake of simplicity, let us

consider the strong mixing case (which corresponds to

v : 1) and suppose that we are in the case whereu jjiÿ jjjð Þ
tend to zero at a polynomial rate: u jjiÿ jjjð Þ �Cjjiÿ

jjjÿh; for some h[ 0: Then combining this assumption

and the expression of the density:

8xj; fnðxjÞ ¼
1

bnCðK;w; hnÞ
X

i2In

K d Xi; xj
ÿ �

=hn
ÿ �

;

we are dealing in practice with the estimator:

fnðxjÞ ¼
1

bnCðK;w; hnÞ
X

i2In

K
d Xi; xj
ÿ �

hn

� �
IVj

ðiÞ

where IvJ is the indicator function of the set

Vj = {i,u(||i - j||) B C ||i - j||-h}. Note that Vj is the set

of Card(Vj) nearest neighbors sites of j, a vicinity Vj.

So, indeed, our density estimator at xj concerns sum of

terms K(d(Xi,xj)/hn) for Xi where the i are closed neighbors

of j.



3.1.1 The spatial mode

Since the constant C(K, w, hn), does not depend on x, the

modal curve of a sample of curves of a region In can be

defined as

Xmodal ¼ arg max
m2fXi;i2Ing

X

i2In

K
dðm;XiÞ

h

� �
IVj

ðiÞ:

In fact, K acts as a weight function: the larger is d(m, Xi)

and the smaller is K
dðm;XiÞ

h

� �
. The modal curve is obtained

by using the following algorithm:

Algorithm for the spatial modal curve based on nearest

neighbors. Let kn be an integer.

(1) For each site j take the kn nearest neighbors and

compute the set Vj as defined above.

(2) Compute the sum of kn’s reals K
dðXj;XiÞ

h

� �
; i 2 Vj that

is
P

i2Vj
K

dðXj;XiÞ
h

� �
:

(3) Take the maximum of over all the j 2 In:

(4) Take Xmodal as the curve located at the site jm whereP
i2Vjm

K
dðXjm

;XiÞ

h

� �
is maximum.

3.1.2 The median curve

Similarly, the notion of median curve can be extended to

the functional framework. Here we will define the median

curve as:

Xmedian ¼ arg min
m2fXi;i2Ing

X

i2In

dðXi;mÞ:

We propose to use a similar algorithm by replacing

K
dðx;XiÞ

h

� �
with d(x, Xi) and take the minimum instead of

the maximum.

3.1.3 The use of the criterion on classification context

Similar to the variance, in context of classification, one can

decide to split a set of curves of a given area Ak, k 2 N or

not into subgroups either according to the experience of the

user, or by using a statistics as:

GAINðAkÞ ¼ GAINðAk; g1; . . .; gDÞ

¼
HIRðAkÞ ÿ HIRðAk; g1; . . .; gDÞj j

HIRðAkÞ
:

5
1
0

1
5

2
0

2
5

0 5 10 15 20 255 10 15 20 25

0
5

1
0

1
5

2
0

2
5

1. The field 2. Spatial locations of the curves:
Group 1 in black, Group 2 in red

−
5

0
5

1
0

0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0

−
6
0

−
4
0

−
2
0

0
2
0

4
0

6
0

2. The curves of Group 1 3. The curves of Group 2

Fig. 2 The simulated dataset



Then the decision to split the dataset into g1; . . .; gK is

taken if GAIN is greater than some fixed threshold c[ 0.

Similar heterogeneity index can be computed with respect

to the mean. One only needs to replace the median curve by

the mean one in the expression of HIR. Then, we have

computed the spatial version of the criterion of Dabo-

Niang et al (2006) and compare it to that of the i.i.d. case in

the following simulation results.

3.2 Applications

The spatial statistical modeling for treating spatial curves

data consists in looking at them as a sample of dependent

realizations of some functional variables Xi, (observed on

some rectangular region In) with the same distribution as a

random field X taking values in some infinite dimensional

semi-metric space ðE; dÞ: Here, we have considered a

semi-metric based on the first q = 8 eigenfunctions of the

Principal Components Analysis of the covariance operator

C(s, t) = cov(X(s), X(t)); s, t [ T (we refer for example to

Ferraty and Vieu, 2006 for the theoretical setting of such a

semi-metric).

3.2.1 Simulations

In the following let N = 2 and consider the following set S,

of simulated curves in the area I ð26;26Þ ¼ ði; jÞ;f
1� i� 26; 1� j� 26g: This set is built such that one have

two different forms (groups) of curves.

The first group (Group 1) of spatial curves are built by

simulating the field X(i,j)(t) = F(i,j).(t - 0.5)3 ? B(i,j);

t [ T = [0,1] and (i, j) [ R1 (spatial black locations of

Fig. 2). While the second group (Group 2) of spatial curves

are simulated using the field Xði;jÞðtÞ ¼ Fði;jÞ cosð2ptÞ
5 þ

Bði;jÞ for (i, j) [ R2 (spatial red locations of Fig. 2). B is a

Gaussian random field with mean 2.5 and variance 1, the

field ðFði;jÞ; ði; jÞ 2 I ð26;26ÞÞ is the one presented in Fig. 2

(on top of the left).

The spatial locations of the curves are presented on

Fig. 2 where the graphic at top-left represents the spatial

location of the different groups (Group 1 in black and Group

2 in red). We want to compare the classification procedure

of Ferraty and Vieu (2006) for independent curves and the

spatial dependent version described above. The results are

summaries in Figs. 3 and 4. They show that the two pro-

cedures do not give the same results. In fact, our cluster
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procedure that relies both on the structure and the spatial

dependence of the curves is more likely to separate the two

groups of spatial curves than those of Ferraty and Vieu

clustering procedure which is based only on the closeness of

curves on the functional space. Figure 3 gives the results of

our cluster procedure which find that the set S of curves is

heterogenous and retrieve the previous two groups with

some curves misclassified (some of curves of Group 2 are

allocated to Group 1). While the procedure of Ferraty and

Vieu divides the set S into three groups of curves, see Fig. 4.

3.2.2 Heterogeneity measurements for oxygen spatial

distribution

The dataset was collected in laboratory by the co-authors

(Gilbert, Pischeda and Cuny) specialist on bioturbation

(i.e. perturbation of some area by macro-organisms). Five

strategic regions (see Fig. 5) were chosen in order to

handle the spatial and temporal oxygen distribution in the

Nereis diversicolor (a worm) burrow: the burrow entrance

and exit (A1 and A5, respectively) were defined based on

the direction of water circulation which, depends of the

worm orientation in the burrow (peristaltic movement from

head to tail). During the whole experiment (4h), the worm

was located at the bottom of the burrow. We have also

chosen to follow 2 intermediate regions (A2 and A4) and a

bottom area (A3) (See Fig. 5).

The aim is to compare the heterogeneity induced by this

organism on these regions during the experience. To do

that one needs a measure of the heterogeneity. Note that

such a tool interests researchers since it is a way of

quantifying the bioturbation (the perturbation of the area by

the concerned organism). That motivate this application

where we apply the functional spatial heterogeneity index

HIR. In order to test the capacity of our heterogeneity

index to detect homogenous region, we have also consid-

ered on each area Ak, k [ {1, 2, 3, 4, 5}, a sub-region that

represents a part of Ak which falls on the water (which

should be more homogenous than Ak).

As mentioned on Sect. 1, on each site i, we consider that

we have a curve, Xi (some examples are given on Fig. 6).

Then, for a fixed area Ak, k [ {1, 2, 3, 4, 5}, we have a set

of curves:

8i 2 Ak; Xi ¼ fXiðtÞ; t 2 ½0; 120�g:

Each region Ak has Nk number of sites, so Nk oxygen

concentration (lmol L-1) curves. The number of curves on
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each zone is given in Table 1. The mean, median and mode

curves for each region Ak are denoted respectively by:

Xmean
k , Xmedian

k , Xmodal
k .

The idea that we use is to look for some difference (in the

sense of the considered semi-metric) between the modal

curve Xmodal
k and one among Xmean

k or Xmedian
k . Here the

subgroups of each region are three neighboring sub-regions,

keeping the spatial dependency of the observations.

Results. The results concerning the obtained index are

summarized in Table 2. Then, we can say that in the lumen

water, A1 and A5 regions are more homogeneous than

intermediates regions. This could be explained by a ‘‘buffer

effect’’: the close proximity with overlying water allowing

constant direct oxygen exchanges between surface and

lumen waters. On the other hand, if we consider each

region as a whole (i.e. lumen water ? burrow wall), A5

presents the highest heterogeneity indexes. Irregularities of

the burrow structure (e.g. biofilm development, mucus

lining) and related bacterial densities and respiratory

activity could be sources for this heterogeneity.

Furthermore, the results obtained for the region in the

water are smaller than the others one (i.e. lumen water ?

burrow wall) . This show that our heterogeneity index can

handle more homogenous areas. In fact, in the water area,

there is generally less variation of the oxygen than on

elsewhere. Note that the fact that regions A2–A5 have

closed heterogeneity indexes (with respect to the median)

can be explain by the fact that they are smaller rectangular

regions that overlap the hole nearly in the same way.

Remark

(1) Other studies based on more sophisticated tools are

under investigation where we first smooth the rug

dataset and use a semi-metric based on the derivative

of the curves. Then, we propose a method to choose

the vicinities Vj.
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(2) One can use other measure such as the coefficient of

variation of all the observations on a region. But, as it

is well known, such a measure is influenced by

extreme or aberrant values of the observations.

4 Conclusion and discussions

The statistical method used here works well in the bio-

logical case presented above. It allows to quantify the

heterogeneity of the biogeochemical parameter considered

(oxygen) in each region. Indeed, it provides a helpful index

to compare and understand the impact of an irrigated

burrow in different regions of the sedimentary column.

In this paper, we apply a spatial discrete tool to our

dataset when in fact we deals with a spatial continuous

random field. Actually, our approach is well appropriated

because the considered regions are relatively small. Nev-

ertheless, as soon as we will need to work on a larger

region for example to consider all the image (for example

to compare the heterogeneity induce by two macro-

organisms), we will need to take into account the spatial

continuous aspect of the problem. Such a method for

functional spatial continuous random fields is the subject of

ongoing work. This later work in progress is an extension

of the work of Biau (2003) and Dabo and Yao (2007).
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Table 1 Number of observations

Regions A1 A2 A3 A4 A5

Number of

observations

21 9 101 36 9 84 37 9 75 43 9 93 30 9 101

Sub-samples

(subregion)

21 9 16 21 9 16 37 9 15 21 9 16 21 9 11

Table 2 Heterogeneity measured

Heterogeneity index A1 A2 A3 A4 A5

HIR Median 0.758 0.896 0.900 0.981 0.994

HIR Mean 0.316 0.557 0.475 0.568 0.893

Sub-region in the water

HIR Median 0.072 0.634 0.566 0.663 0.128

HIR Mean 0.054 0.052 0.053 0.057 0.057


