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Spatial mode estimation for functional random fields
with application to bioturbation problem

Sophie Dabo-Niang - Anne-Francoise Yao -
Laura Pischedda - Philippe Cuny - Franck Gilbert

Abstract This work provides a useful tool to study the
effects of bioturbation on the distribution of oxygen within
sediments. We propose here heterogeneity measurements
based on functional spatial mode. To obtain the mode, one
usually needs to estimate the spatial probability density.
The approach considered here consists in looking each
observation as a curve that represents the history of the
oxygen concentration at a fixed pixel.
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1 Introduction

In aquatic ecosystems a crucial control on carbon pro-
cessing is exerted by the animals inhabiting the sediments,
which extensively rework and oxygenate sediments while
e.g. feeding and moving, a global process referred to as
bioturbation. In particular, macrofauna, through their
feeding, burrowing and ventilation activities, have an
important influence on microbial activity and sediment
metabolism in marine sediments (Aller and Aller 1998;
Kristensen 2001). Subduction of oxygen into and removal
of metabolites from otherwise anoxic sediments, as well as
relocation of organic particles by the infauna, create a
heterogeneity, which can result in several-fold enhanced
rates of organic matter decomposition and solute fluxes
(Aller and Aller 1998; Kristensen and Holmer 2001,
Nielsen et al. 2003). Overall, bioturbation plays a key role
in the ecosystem functioning. One way to investigate this
role is to study the related oxygen heterogeneity (Pischedda
et al. 2008). For this purpose the use of planar optodes
makes possible high resolution measurement of two-
dimensional vertical distribution and spatial heterogeneity
of oxygen in the sedimentary column (Glud et al. 1996;
Hulth et al. 2002).

In the frame of our study, we have used such an optical
method to collect 2-D oxygen distribution on different
times in order to quantify the spatio-temporal dynamics of
the oxygen concentration. More precisely, the dataset is
composed of 121 images (sequence of pixels) of the
intermittently irrigated U-shaped burrow of the polychaete
worm Nereis diversicolor, which were recorded every
2 min during 4 h (See Fig. 1).

Now that such complex spatio-temporal data can be
produced, bioturbation quantification strongly requires
tools that can take into account the specificity of the data
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Fig. 1 Example of images on 3 dates

that (then) constitute a time series set of images. Such a
tool could be very useful for example to compare the
effects of bioturbation on oxygen distribution (i) in dif-
ferent regions within the sediments or (ii) as a function of
various macrofauna species that differ in the way to pro-
vide oxygen into the sediments (e.g. Foster and Graf 1995).

In this paper, we propose to quantify spatial heteroge-
neity induced by a burrow-irrigating organism by means of
a measure based on functional spatial mean, median and
mode estimation. Indeed, the data can be seen as spatially
dependant curves since for each pixel, i, we can summary
the evolution of the oxygen concentration on this pixel on a
curve: X; = (Xj(9), 0 < r < 120); (X;(r) being the oxygen
concentration at the date 7). If the estimation of the spatial
mean and the median is relatively simple, the mode esti-
mation is based on the estimation of a probability density
for spatial functional random fields proposed by Dabo-
Niang and Yao (2008). This last is a recent theoretical
contribution on a crucial field, spatial modeling of func-
tional data. Indeed, spatial modeling of functional or non-
functional data has become one the most interesting and
important areas of natural sciences, see for example
Fernandez de Castro and Gonzilez Manteiga (2008),
Angulo and Ruiz-Medina (2008), Porcu et al. (2008)...
Note that the approach proposed here is complementary
with the study done by Pischedda et al. (2008) that pre-
sented an estimation of oxygen heterogeneity in biotur-
bated sediments using a simple index based on oxygen
horizontal variations. We will measure the spatial depen-
dency by means of mixing condition and give theoretical
results (weak convergence) concerning the mode estimate
on Sect. 2. On Sect. 3 we give the heterogeneity mea-
surements derived from the mode estimate. The last part is
devoted to conclusion and discussion.

2 Spatial mode estimate for curves

We deal with a measurable strictly stationary spatial pro-
cess (Xj,i€ (N*)V ),N > 1, defined on a probability space
(Q, A, P) such that the Xi's have the same distribution as a
variable X with values in an infinite dimensional separable
semi-metric space (€,d) (d(.,.) is the semi-metric). We
assume that X has an unknown density f with respect to
some given measure y. We aim to estimate the spatial
density from data, Xj, observed on some rectangular

region Zp={ieNV:1<i<m,k=1,..,N} where
n = (n,.. nN) We write n— +oo if ming  nng
Vi, k e {l,..., N}. We will set n =n; X --- X ny.

As in the i.i.d. case, in order to control the size of the set
C, in which we look for the mode, we choose this set such
that C C C, = Uz“zl B(xx, ), where dy, > 0 is some integer
and for k = 1,...,dy, B(xi, ry) is the opened ball of center
x; € € and radius r, > 0. Really, the set C,, which can
always be built, is here to ensure the existence of the set C.
We assume that the mode of f

w = argsupf (1)
¢
exists, where CO is the interior of C. We will set

A = {x € C. fl) —f(x) <e}.

We are interested in this section to introduce an estimate
of w derived from an estimate of f. Hence, we need to study
the uniform consistency over C of the estimate of the
density.

For a seek of simplicity, we look at some special case
where the probability distribution of X satisfies some
concentration condition (see Dabo-Niang et al. (2006)) and
when the density estimate is of the simple usual Parzen-
Rosenblatt form.

Let /(.) be some increasing function taking values in
10, +oo[ such that lim,_oy(¢) = 0. Then, we propose the
following kernel density estimator:

Vx €&, fulx) = nC(k, l,b ) ZK (Xi, x)/Tm), (2)
lel'
where C(K,y, hy) = —fol K' ()Y (hat)dt and where hy, is a

sequence of positive numbers that converges to zero. Note
that this constant C(K, , h,) does not depend on x. So, the
functional mode estimate &, can be defined as any solution
of the equation

My = arg sup f, (3)
c
which is very easy to calculate in practice. To give an

almost sure convergence result of @,, we introduce the
following assumptions.



2.1 Assumptions

For seek of simplicity, we consider only kernels satisfying
the following classical assumptions:
H1 —supp(K) = (0,1),K(1) =0 and

—oo<1 <K' <1,<0.

~ logn 2
H2 —dy =10 and m<(=ox
no TR (nw(hn))")
where k< — 2, + 1, > 0,4, > 1.
The nonparametric model is defined by means of the next
assumption on the density function f; which is basically the same
as in the standard multivariate case (see Abraham et al. 2003):

H3 —f is uniformly continuous on C, infyccf(x) > 0
sup d(x,y) =0.

and lim diameter(Ac) =
0 x€Ac,yEA

We also need some standard assumptions on f and
used in nonparametric functional mode estimation model
(see Dabo-Niang et al. 2006).

&
H4—3c¢ >0, Jg >0, Ve<e, /l//(Z)dZ > cey(e).
0

PXeB
H5 — lim sup (X € Blx, 1)) =0.

=0 yeC lp ([)

2.2 Dependency conditions

—f(x)

As it often occurs in spatial dependent data analysis, one
needs to defined the type of dependence. Here, we will
consider the following two dependence measures.

2.2.1 Local dependence condition

We will assume that the joint probability density f;;(.,.) of
(X, Xj) (with respect to u x ) exists and satisfies

lfij(x,y) = f()f )] <C, (4)
for some constant Cand forallx,y € £andi,j € NV i # j,or
maxiﬁP((Xi,Xj)EB(x,t) XB()C,I))

Je; €(0,1],limsup ST

=0 yeC

(5)
=0.

_s}l.pﬁ,h(xrx)
ij

Such local dependency condition is necessary to reach
the same rate of convergence as in the i.i.d case.

2.2.2 Mixing conditions

Another complementary dependency condition concerned the
mixing condition which measures the dependency by means of
o-mixing. We assume that (Xi, ieNY ) satisfies the following

mixing condition: there exists a function ¢(¢) | 0 as t— oo,
such that for E, E subsets of NV with finite cardinals,

oc(B(E),B(EID = sup

BeB(E),CeB(E')
< X(Card(E),Card(E))(p(dist(E,E')),
(6)
where B(E) (resp. B (E’)) denotes the Borel o-field generated
by (Xi, i € E) (resp. (Xi, i € E)), Card(E) (resp. Card(E)) the
cardinality of E (resp. E/), dist(E, E() the Euclidean distance
between E and E and %:N? -R" is a nondecreasing

symmetric positive function in each variable. Throughout
the paper, it will be assumed that y satisfies either

[P(BNC) —P(B)P(C)

y(n,m) < Cmin(n,m), Vn,meN (7)
or
2nym)<Cn+m+ 1P wnmeN (8)

for some E >1andsome C > 0. If y = 1, then, the process
(Xj) is said to be strongly mixing. Many stochastic processes,
among them various useful time series models satisfy strong
mixing properties, which are relatively easy to check.
Conditions (7-8) are weaker than strong mixing condition
and have been used for finite dimensional variables in (for
example) Tran (1990), Carbon et al. (1996, 1997) and Biau
and Cadre(2004). We refer to Doukhan (1994) and Rio
(2000) for discussion on mixing and examples.

Concerning the function ¢(.), as it is often done, two
kind of conditions will be assumed: the case where ¢(i)
tends to zero at a polynomial rate, i.e.

p(i)<Ci™?  for some 0 >0 9)
or the case where (i) tends to zero at an exponential rate:

¢(i) = Cexp(—si), for some s > 0. (10)

Remark 1 The two dependence measures are link (see
Bosq 1998 for details).

2.3 A consistency result

Under unrestrictive hypotheses on the probability of small
balls, on the kernel, the bandwidth, the local ((4) or (5))
and the global spatial dependence condition (6), the prob-
ability convergence of the mode estimate @n follows in the
two cases of mixing (9) and (10).

Let
b _ 0  0-2N
"TONB+ 1) -0 P 2N(B+1)—0°
0+N 0—N

N(1+28+2B)—0 N(1+28+2B)—0



We assume for the following two theorems that ny (hy)/
(logn) — oo.

Theorem 1 Suppose that H1-HS are satisfied, the mixing

coeﬁiczent satisfies (7) and (9) with 6 >2N(f+1),n
2

¥(hy) " (log®)” — oo , then we have
lim &, = o, in probability. (11)
n—oo

Proof We have from assumption H3 that:

Ve>0,3n>0; Vx € C,d(w,x) > &= |f(w) —f(x)| >n.
Hence, to get (11), it suffices to prove that
limp o SUp,cc |fn(x) — f(x)| = 0 a.s., since

|f(d)n) _f(w)| < |f(d)n) _fn(d)n)l + lfn((bn) _f(w)l
< iléglf (x) = fa(x)[ + i‘égfn(x) —supf(x)

xeC
<2suplfu(x) —f(x)].

xeC

The consistency of the bias sup,.q|E(fa(x)) —f(x)] is the
same as in the i.i.d case of Dabo-Niang et al. (2006).

The main difference between this theoretical part and the
i.i.d case of Dabo-Niang et al. (2006) comes from the proof
of the consistency of the variance term sup,.c|fn(x)—
E(fu(x))|. The extension of the variance term result of
Dabo-Niang et al. (2006) to the spatial case is far from
being trivial and is proved in the following. We set:

Qn(x)* ( ) E(fn Zzlnxa XEC
i€,
where
1
Ziny = m (K(d(Xi,x)/hn) - EK(d(Xi,x)/hn)).
It is proved in Dabo-Niang etal. (2006) that
SRt < C/V ).

Recall that C is covered by d, balls By = B(x;, ry) of

radius r, and center x;.

Define

Sin = max sup |fu(x) —falox)];
<k<dn XEBy

Son = max, sup |Efa(vi) = Efa(x)]
S3n = | max, [fa () — Efa(x0)]-
Then,
sup lfn(x) - Efn(x)| S Sln + SZn + S3n~
xeC

Using assumptions H1 and H2, one can easily show that

Sin and S,, are equal to 0( 1°g") a.s., see proof of

ny (hy

Theorem 3 of Dabo-Niang et al. (2006). It remains to study

the consistency of Sz, = max; - ; < d,lOn(xj)l, by setting
without loss of generality that for 1,...,N, n; = 2pt; for
some integers p > 1 and #1,... ty and using the well
known spatial block decomposition of Tran (1990). We
group the random variables Z;, n, x into small and large
blocks of different sizes as follow:

(2jk+1)p
U(lv n,x,j) = Zi,n,xa
=2p+1,1 <k <N
(2jx+1)p 2(jn+1)p
U(27 n,x,j) = Zi,n,xa
B =2ip+1,1 <k <N—1iy=(2jy+1)p+1
(2jx+1)p 2(jn-1+1)p
U(3’ n’ x?-]) =
i =2ip+ 1,1 <k<N—=2iy_ =(2jn_1 +1)p+1
(2jy+1)p
g Zl x5
lN—ZjN[)+1
(2jx+1)p 2(jn-1+1)p

U(47 n’ x?-i) = Z Z

i=2jp+1,1 <k<N—2 iy =(2jy_1+1)p+1
2(iv+1)p

X E Zinxs
in=Q2jn+1)p+1
2(jk+1)p (2in+1)p
N—1 .
U(z anaxa.]) = Zi‘n,)m
ik=(2jk+1)p+1,1 <k <N—1in=2jnp+1
and
2(jk+1)p
N .
URV,n,x,j) = Zinx-

=2+ 1p+1,1 <k<N

SetT ={0,...,0; — 1} x---x{0,...,ty — 1}, and let for
each integer [ = 1,...,2V,
T(n,x,1) ZUlnx,J
JeT

Then, we obtain the following decomposition

ZTnxl

To prove that S3, = 0( 1‘:;(;:) a.s., it is sufficient to
n n

show that, for a given arbitrary large positive constant c,
there exists a positive constant C such that for any 7 > 0

On(x) = fu(x) — Efu(x

1
P[max |T(n,x;,1)| >n logn. <Cdy(n™ + B 7).

1</ <dy lﬁ(h

Without loss of generality we will show this for / = 1.



Set en =1 k/)%" (where n >0 is a constant to be
m/
chosen later) and f§,~ = W) (@, pM)p(p)ey !
Let
T(n,x,1) Z U(l,n,x,j),

jeT

be the sum of t = t; X --- X ty of the U(1, n, x, j)’s. Note
that each U(1, n, x, j)’s is measurable with respect to the
o-field generated by X; with i belonging to the set of sites

,J—{l 2p+ 1 <ip < (2]k—|— )p,kz],...,N}.

These sets of sites are separated by a distance greater than
p. Enumerate the random variables’s U(1, n, x, j) and the
corresponding o-field with which they are measurable in
an arbitrary manner and refer to them respectively as

Vi,.ooo V?and Bi,.. .,B?. Then, since T'(n,x, 1) = Z;Zl Vi
with
Vil = |U(1,m,x,§) < Cp" (A (hn)) ™. (12)

Lemma 4.5 of Carbon etal. (1997) allows us to
approximate Vl,...,VT by Vi, ..., VX such that:
t

t
P(IT(n,x,1)| > &) <P |3 Vi| > €n/2
i=1

+PIDY V= Vi > /2| (13)

i=1

Now, using: Markov’s inequality, (12), Lemma 4.4 of
Carbon et al. (1997) and the fact that the sets of sites (with
respect to which V;’s are measurable) are separated by a
distance greater than p, we get:

o~

t
P> Vi Vi[> e| <CO (0 ()™

i=1

X (0, pM)o(p)ey' ~ B~ (14)
Let
Jn = (M (hy) logn)"/?, (15)
then set,
[N ()
a [( 4 > N( logn ) ’ (16)

and /pe, = nlogn.

If (9) holds for 0 > 2N, then one can prove (by
following the same steps as those of the proof of Lemma
2.2 of Tran (1990)) by using our hypotheses H1, H4, HS
and Lemmas 4.2 and 4.3 of Carbon et al. (1997), that

)? < COY (hn) (Un() + Ru(n) logi < C logn

-

i=1

where

2
Un(x) = Z E(Zi,nﬁx)

i€z,

Ragy = Y

i€Zy 1€, i #l for some k

|C0V(Zi,n,x; Zl‘n,X) |7

C is a constant independent of x € C. Using (12), we get
|ZnV;|<1/2 for large m and deduce from Bernstein’s
inequality that

o~

t

PIDN Vi|>en

i=1

<2exp(—

nen—&-i ZE

<2exp((—n+C)logn)<n ¢ (17)

for sufficiently large n. We get from (13), (14) and (17)
that
P[lg}agxd“ IT(n,x, 1)] > €] < Cdn(n™ + B 2).

To prove the consistency variance result it suffices to
show that dyn < — 0 and dnfz— 0. We have
dafi—¢ < 0’7, this goes to zero as soon as ¢ > f, note
that this inequality is possible since c is chosen as a large
positive constant as stated above.

Remark that ny(hy) " (log 1) — oo is equivalent to
(dnﬂlg)_l — oo by assumption (7), since

dnf o < COPY(ha) " (0, pY)p ey !
R 0, « Z0E2N (1)
< C(ny(hy) " (logn)™)~ =

This yields the proof. O

0>

Theorem 2 Under conditions H1-HS5, if (8), (9) are sat-

isfied with 0> N(1+28+ 2ﬁ) and if ny(h )
(log ®)" — oo, then we have:

lim &, = w, in probability. (18)
n—oo

Proof Similarly as the previous proof, it suffices to
remark that

0 -1

dnf o < COPY(hn) " (0, pM)p ey

al+h A\ N
< p+B 1 nlp( N |
<’ Py (hy) ( logn (R (h) log 1))
— Clas o -

It is worth to study the exponential mixing case since it
includes the Geometrically Strong Mixing (GSM) case
(with y = 1) which is easier to check in practice.



Theorem 3 (Exponential mixing case) Under the condi-
tions H1-H5, (10), (7) or (8) and ny(hy,)(log ﬁ)—ZN—l R
o0, we have

lim @, = w, in probability.

n—oo

(19)

Proof The proof is obtained by sketching the proof of the
first theorem and by using similar arguments as in the
spatial non-functional case of Carbon et al. (1997). We
then omit the proof. O

Remark 2 As usual in nonparametric setting, the choice of
the smoothing factor is a crucial point to insure good
behavior of the underlying procedure. This is done by esti-
mating the small ball probabilities P(X € B(x, h)), which
play a key role in the theoretical properties of our mode
estimate (for example in Sect. 3, we take 4 = 0.5). Indeed, it
has been shown by Dabo-Niang et al. (2006, Theorem 4)
that the density estimate and the modal curve converge
almost surely in the case of non-spatial general setting case.
These results can be extended in the case of our spatial
setting and deserve a paper on its own. Rates of convergence
can be obtained by using additional assumptions linking the
bandwidth £, the kernel K and the small ball probability
functions of the variables {X;}. These rates are affected by
the dependence condition introduced on the variables as
shown in Sect. 3. For instance, one can obtain for some cases
of fields a rate of order (log n)”*, where t > 0. A special
case of particular importance is when the distribution of the
random field is absolutely continuous with respect to Wiener
measure (diffusion processes), see for instance Li and Shao
(2001), or Ferraty and Vieu (2000).

Let us now focus on the use of this consistent mode
estimate to construct heterogeneity measurements.

3 Some applications of the mode

An application of the mode estimation is to build hetero-
geneity measurements. More precisely, we are interested
with the spatial version of the heterogeneity measurements
of Ferraty and Vieu (2006) or Dabo-Niang et al (2000).
Recall that their heterogeneity measure is based on the
centralities mean, median and mode curves. The idea is to
look for some difference (in the sense of the considered
semi-metric d) between the modal curve X,,,;,; and one
among the mean curve X, or the median curve X,,,czian- AS
in the multivariate case, the modal curve is more useful than
the mean or the median curve for detecting any structural
differences between data. The heterogeneity measure of
Ferraty and Vieu (2006) with respect to the median is:

d(Xmodal ) Xmedian )

HIR = .
d(Xmediam 0) + d( modal s O)

One get a similar criterion based on the mean by
replacing the X,,cgian BY Xjnean- In order to get a more stable
criterion, one can use a criterion obtained by splitting the
initial dataset (of cardinal N) into D subgroups gi,...,8gp :

HIR(g1,...,8p) ZCard ;) HIR.

J

We are interested here with the spatial version of this
heterogeneity index HIR. To do that we need to define the
spatial version of centrality curves. Suppose that one deals
with curves X; = {Xi(r),r € A},i € Z,, with A some subset
of R as it will be the case later on. Now, if the spatial mean,
Xoneans can be obtained (and compute) exactly as in the
iid.:

Vi€ A, Xpean(t) ZX

1EIn

it is not the case of the spatial median and mode curves as
we are going to see. We need to take into account the
mixing condition.

3.1 The mixing condition in practice

Note that even if the estimator present here seems like in
the i.i.d. case, one does take in mind that our results are
obtained under a mixing condition. That means that we
consider a non parametric spatial dependence measure
defined by

o([[i = Jll) < %(1 Dol = il)

for any couple of sites (i, j). For sake of simplicity, let us
consider the strong mixing case (which corresponds to
% = 1) and suppose that we are in the case where ¢(||i — j||)
tend to zero at a polynomial rate: ¢(||i —j||) < Clli—
j||70, for some 6 > 0. Then combining this assumption
and the expression of the density:

ZK

i€z,

Vxj, fu(xj) = X,,xJ /h )

Ktﬁh

we are dealing in practice with the estimator:

Xl;-xj .
(X K Iy,
) = 5o 2> ( )mn)
where 1 is the indicator function of the set

vy
Vi = {i,p(li —jl) < Cli — jlI=%}. Note that Vj is the set
of Card(V;) nearest neighbors sites of j, a vicinity V;.

So, indeed, our density estimator at x; concerns sum of
terms K(d(X;,x;)/hy) for X; where the i are closed neighbors
of j.



3.1.1 The spatial mode

Since the constant C(K, Vs, hy), does not depend on x, the
modal curve of a sample of curves of a region Z, can be
defined as
d (m,Xi) .
X = K| —— Iy (i).
modal = arg me&%éfn} IEZI: < h Vj (1)

In fact, K acts as a weight function: the larger is d(m, X;)
and the smaller is K @ . The modal curve is obtained
by using the following algorithm:

Algorithm for the spatial modal curve based on nearest
neighbors. Let k, be an integer.

(1) For each site j take the k, nearest neighbors and
compute the set V; as defined above.

(2) Compute the sum of k,’s reals K (@) ,i € Vj that
: d(X; Xi)
18 Zievj K{(=5—

(3) Take the maximum of over all the j € Z,,.

(4) Take X,m,Zal as the curve located at the site j,, where

d(X;,, Xi)

1S maximum.

2iey,, K

5 10 15 20 25
1. The field F, ;)

3.1.2 The median curve

Similarly, the notion of median curve can be extended to
the functional framework. Here we will define the median
curve as:

Xonedian = ar min d(Xj,m).
d gme{Xi,ieIn}ieZIn ( ! )
We propose to use a similar algorithm by replacing

K (d(x—hx‘)> with d(x, X;) and take the minimum instead of
the maximum.

3.1.3 The use of the criterion on classification context

Similar to the variance, in context of classification, one can
decide to split a set of curves of a given area A, k € N or
not into subgroups either according to the experience of the
user, or by using a statistics as:

GAIN(Ay) = GAIN(Ay; 81, - - - 8p)
 |HIR(Ay) — HIR(Ag; g1, .

) gD)|
HIR(A) '
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2. Spatial locations of the curves:
Group 1 in black, Group 2 in red
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Then the decision to split the dataset into gi,..., gk is
taken if GAIN is greater than some fixed threshold y > 0.
Similar heterogeneity index can be computed with respect
to the mean. One only needs to replace the median curve by
the mean one in the expression of HIR. Then, we have
computed the spatial version of the criterion of Dabo-
Niang et al (2006) and compare it to that of the i.i.d. case in
the following simulation results.

3.2 Applications

The spatial statistical modeling for treating spatial curves
data consists in looking at them as a sample of dependent
realizations of some functional variables X;, (observed on
some rectangular region Z,) with the same distribution as a
random field X taking values in some infinite dimensional
semi-metric space (£, d). Here, we have considered a
semi-metric based on the first ¢ = 8 eigenfunctions of the
Principal Components Analysis of the covariance operator
I'(s, 1) = cov(X(s), X(1)); s, t € T (we refer for example to
Ferraty and Vieu, 2006 for the theoretical setting of such a
semi-metric).

3.2.1 Simulations

In the following let N = 2 and consider the following set S,
of simulated curves in the area 726 = {(i,)),
1 <i<26;1<j<26}. This set is built such that one have
two different forms (groups) of curves.

The first group (Group 1) of spatial curves are built by
simulating the field X,,(H) = F,.(t — 0.5)> + B
teT=1[0,1] and (i, j) € R, (spatial black locations of
Fig. 2). While the second group (Group 2) of spatial curves
are simulated using the field X;; (1) = F(;; cos(2mr)’ +
B;j for (i, j) € R, (spatial red locations of Fig. 2). B is a
Gaussian random field with mean 2.5 and variance 1, the
field (F; ), (i,/) € Z(2626)) is the one presented in Fig. 2
(on top of the left).

The spatial locations of the curves are presented on
Fig. 2 where the graphic at top-left represents the spatial
location of the different groups (Group 1 in black and Group
2 in red). We want to compare the classification procedure
of Ferraty and Vieu (2006) for independent curves and the
spatial dependent version described above. The results are
summaries in Figs. 3 and 4. They show that the two pro-
cedures do not give the same results. In fact, our cluster
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Fig. 3 Classification by taking into account spatial dependence



procedure that relies both on the structure and the spatial ~ head to tail). During the whole experiment (4h), the worm
dependence of the curves is more likely to separate the two  was located at the bottom of the burrow. We have also
groups of spatial curves than those of Ferraty and Vieu  chosen to follow 2 intermediate regions (A2 and A4) and a
clustering procedure which is based only on the closeness of ~ bottom area (A3) (See Fig. 5).
curves on the functional space. Figure 3 gives the results of The aim is to compare the heterogeneity induced by this
our cluster procedure which find that the set S of curves is  organism on these regions during the experience. To do
heterogenous and retrieve the previous two groups with  that one needs a measure of the heterogeneity. Note that
some curves misclassified (some of curves of Group 2 are  such a tool interests researchers since it is a way of
allocated to Group 1). While the procedure of Ferraty and  quantifying the bioturbation (the perturbation of the area by
Vieu divides the set S into three groups of curves, see Fig. 4. the concerned organism). That motivate this application
where we apply the functional spatial heterogeneity index
HIR. In order to test the capacity of our heterogeneity
3.2.2 Heterogeneity measurements for oxygen spatial index to detect homogenous region, we have also consid-
distribution ered on each area Ay, k € {1, 2, 3, 4, 5}, a sub-region that
represents a part of A, which falls on the water (which
The dataset was collected in laboratory by the co-authors should be more homogenous than Ay).
(Gilbert, Pischeda and Cuny) specialist on bioturbation As mentioned on Sect. 1, on each site i, we consider that
(i.e. perturbation of some area by macro-organisms). Five  we have a curve, X; (some examples are given on Fig. 6).
strategic regions (see Fig. 5) were chosen in order to Then, for a fixed area Ay, k € {1, 2, 3, 4, 5}, we have a set
handle the spatial and temporal oxygen distribution in the of curves:
Nereis .diversicolor (a worm) .burrowz the burrow entrance Vi€ Ay, Xi = (Xi(t),1 € [0, 120]}.
and exit (Al and A5, respectively) were defined based on
the direction of water circulation which, depends of the Each region A; has N, number of sites, so N, oxygen
worm orientation in the burrow (peristaltic movement from concentration (umol L") curves. The number of curves on
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icm Sediments

Fig. 5 The regions of interest
each zone is given in Table 1. The mean, median and mode

curves for each region A, are denoted respectively by:
Xyseans X X;
means> “medians “*modal*

Fig. 6 Examples of curves X;

The idea that we use is to look for some difference (in the
sense of the considered semi-metric) between the modal
curve Xf,,odal and one among X’fnean or X]f,,ed,-an. Here the
subgroups of each region are three neighboring sub-regions,
keeping the spatial dependency of the observations.

Results. The results concerning the obtained index are
summarized in Table 2. Then, we can say that in the lumen
water, Al and A5 regions are more homogeneous than
intermediates regions. This could be explained by a “buffer
effect”: the close proximity with overlying water allowing
constant direct oxygen exchanges between surface and
lumen waters. On the other hand, if we consider each
region as a whole (i.e. lumen water + burrow wall), A5
presents the highest heterogeneity indexes. Irregularities of
the burrow structure (e.g. biofilm development, mucus
lining) and related bacterial densities and respiratory
activity could be sources for this heterogeneity.

Furthermore, the results obtained for the region in the
water are smaller than the others one (i.e. lumen water +
burrow wall) . This show that our heterogeneity index can
handle more homogenous areas. In fact, in the water area,
there is generally less variation of the oxygen than on
elsewhere. Note that the fact that regions A2-AS5 have
closed heterogeneity indexes (with respect to the median)
can be explain by the fact that they are smaller rectangular
regions that overlap the hole nearly in the same way.

Remark

(1) Other studies based on more sophisticated tools are
under investigation where we first smooth the rug
dataset and use a semi-metric based on the derivative
of the curves. Then, we propose a method to choose
the vicinities V;.

Representation of 50 curves

Oxygen
15
1




Table 1 Number of observations

Regions Ay Ay As Ay As

Number of 21 x 101 36 x 84 37 x 75 43 x 93 30 x 101

observations

Sub-samples 21 x 16 21 x 16 37 x 15 21 x 16 21 x 11

(subregion)

Table 2 Heterogeneity measured

Heterogeneity index A, Ay Az Ay As
HIR Median 0.758  0.896  0.900  0.981 0.994
HIR Mean 0.316  0.557 0475 0568  0.893
Sub-region in the water

HIR Median 0.072  0.634  0.566  0.663 0.128
HIR Mean 0.054 0.052 0.053 0.057 0.057

(2) One can use other measure such as the coefficient of
variation of all the observations on a region. But, as it
is well known, such a measure is influenced by
extreme or aberrant values of the observations.

4 Conclusion and discussions

The statistical method used here works well in the bio-
logical case presented above. It allows to quantify the
heterogeneity of the biogeochemical parameter considered
(oxygen) in each region. Indeed, it provides a helpful index
to compare and understand the impact of an irrigated
burrow in different regions of the sedimentary column.

In this paper, we apply a spatial discrete tool to our
dataset when in fact we deals with a spatial continuous
random field. Actually, our approach is well appropriated
because the considered regions are relatively small. Nev-
ertheless, as soon as we will need to work on a larger
region for example to consider all the image (for example
to compare the heterogeneity induce by two macro-
organisms), we will need to take into account the spatial
continuous aspect of the problem. Such a method for
functional spatial continuous random fields is the subject of
ongoing work. This later work in progress is an extension
of the work of Biau (2003) and Dabo and Yao (2007).
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