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a b s t r a c t

Alkali-labile lesion to DNA photosensitized, via an electron transfer mechanism, by three non-steroidal

anti-inflammatory drugs (NSAIDs), ketoprofen, tiaprofenic acid and naproxen and their photoproducts

during drug photolysis, was investigated using 32P-end labelled synthetic oligonucleotide. These photo-

oxidative damages were correlated with the photophysical and electrochemical properties of drugs,

appearing as the photosensitizer PS. Photophysical studies provided the excited state energies of the pho-

tosensitizer while their redox potentials and the relative stabilities of the PS�ÿ radical-anions were deter-

mined by cyclic voltammetry. On the basis of these data, we have calculated the Gibbs energy of

photoinduced electron-transfer and evaluated the exergonicity of the oxidative photodamage. Moreover,

kinetic control may be invoked according to the stabilities of PS�ÿ. Applied to this NSAIDs family, the

photoxidative damages through electron transfer mechanism were analyzed and a good correlation with

photoredox and photobiological properties was established.

1. Introduction

Ketoprofen (KP), tiaprofenic acid (TP) and naproxen (NP)

(Scheme 1) are non-steroidal anti-inflammatory drugs (NSAIDs)

and belong to the arylpropionic acid family. They are amongst the

most widely prescribed drugs in the treatment of inflammation

and pain. Nevertheless, a side effect associated with this group of

drugs is their potential to induce photosensitivity reactions [1,2]

that generally involved drug-photosensitized damages to biomole-

cules. Upon UV radiation, their in vitro photosensitizing properties

towards cell membranes or DNA have been widely investigated

[3,4]. In the case of DNA, photosensitized reactions can take place

through different mechanisms. Energy transfer from the triplet

state of the photosensitizer (PS�) to the pyrimidine bases leads to

the formation of cyclobutane pyrimidine dimers. Their photosensi-

tization has been reported for KP, TP and NP during drug photolysis

[5–8]. Another major source of DNA damage upon exposure to UV

radiation is the photosensitized oxidation [9]. These processes

may result from a Type I radical mechanism involving the genera-

tion of radicals (e.g., via electron transfer or hydrogen abstraction)

and/or a Type II mechanism going through the production of singlet

oxygen [10]. It has been established that KP, TP and NP photoinduce

oxidative DNA damage via Type I and/or Type II mechanisms

[6–8,11–13].

The photochemistry of these three drugs, centered on the aryl-

propionic chain, has been extensively studied. In neutral aqueous

medium, their photolysis gives three major photoproducts: ethyl,

hydroxyethyl and acetyl derivatives (Scheme 1) [14–16].

As each photoproduct bears the parent drug chromophore in its

structure, it must be a potential photosensitizer. Photosensitiza-

tion of lesions by drug photoproducts has been poorly investigated

while it is clear that understanding the reactions involved in pho-

tobiological processes requires the knowledge of the photophysical

properties of the parent drug but also of the photoproducts. Such a

study becomes fundamental in the case of photochemically unsta-

ble drugs. Indeed, it has been previously demonstrated that the

photosensitizing properties of KP and other benzophenone deriva-

tives in DNA depend mainly on the benzophenone chromophore

[8]. The involvement of photoproducts in DNA photosensitization

processes was already reported for some NSAIDs [17–19]. From a

chemical point of view, the alkali-labile lesion to DNA photosensi-

tized, via an electron transfer mechanism, appears to be a redox

reaction between DNA and the excited state of the photosensitizer.

In order to quantify this reaction, electrochemical and photophys-

ical studies could lead to the determination of the redox potential
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involving the excited photosensitizer (PS�). Then, through the

Rehm–Weller’s equation [20], the exergonicity of the photoxida-

tive damage could be evaluated.

The aim of this paper is to quantify the electron transfer ability

of three non-steroidal anti-inflammatory drugs, ketoprofen, tia-

profenic acid and naproxen and their photoproducts towards

DNA. For this purpose, their ability to photoinduce DNA alkali

labile lesions via an electron transfer mechanismwere investigated

and correlated to their photophysical properties and their electro-

chemical behaviors.

2. Materials and methods

2.1. Chemicals and biochemical

Ketoprofen, KP (2-(3-Benzoylphenyl) propionic acid) and

Naproxen, NP ((S)-(+)-2-(6-Methoxy-2-naphthyl)propionic acid)

were purchased from Sigma-Aldrich (St Quentin Fallavier, France).

Tiaprofenic acid, TP (2-(5-[2-benzoyl]thienyl)propionic acid) was

extracted from Flanid (Pierre Fabre medicament production,

Boulogne, France). [c32P] ATP (3000 Ci/mmol), Ready-to-Go T4

Polynucleotide Kinase, and G-25 Microspin columns were from

Amersham Pharmacia Biotech (Saclay, France), and piperidine from

Acros Organics France (France). Oligonucleotide 1 and its comple-

mentary strand 2were synthesized and purified by polyacrylamide

gel electrophoresis by Genosys (UK): oligonucleotide 1: 50-TGATC

GGTGCGTCTGAGACT-30.

2.2. Photolysis experiments and isolation of photoproducts

2.2.1. Ketoprofen

Phosphate buffer solutions of KP (10ÿ3 mol Lÿ1) were exposed

to sunlight until the drug had been totally consumed. HPLC analy-

sis of the irradiated mixture was then performed on a reverse

phase column Xterra 3.5 lm (2.1 � 150 mm column) eluted with

a gradient of H2O:CH3CN (57:43–0:100 over 15 min, to 57:43 over

1 min, isocratic at 57:43 for 19 min; flow rate = 300 lL minÿ1). The

eluate was monitored by following the absorbance at 227 nm with

aWaters UV detector and analyzed by MS desorption chemical ion-

ization/NH3 using TSQ-700 Thermoelectron spectrometer in

CH2Cl2. The residue was purified by chromatography column (silica

gel: Kieselgel 60, 0.063–0.200 mm) using 100% dichloromethane

and a mixture of dichloromethane and ethyl acetate (90:10).

2.2.1.1. 3-Ethylbenzophenone (EthylKP). 1H NMR (CDCl3) dppm =

7.77–7.30 (m, 9H); 2.67 (q, 2H, J = 7.6 Hz); 1.22 (t, 3H, J = 7.6 Hz).

MS: m/z (uma) = 210; 211 (M+H)+; 228 (M+NH4)
+. UV: kmax

(diethyl oxyde) = 252 nm; kmax (ethanol) = 256 nm; kmax (phos-

phate buffer) = 260 nm.

2.2.1.2. 3-(1-Hydroxyethyl)benzophenone (HydroxyKP). 1H NMR

(CDCl3): dppm = 7.76–7.38 (m, 9H); 4.93 (q, 1H, J = 6.6 Hz); 1.70

(s, 1H); 1.48 (d, 3H, J = 6.5 Hz). MS: m/z (uma) = 226; 227 (M+H)+.

UV: kmax (diethyl oxyde) = 252 nm; kmax (ethanol) = 256 nm; kmax

(phosphate buffer) = 260 nm.

2.2.1.3. 3-Acetylbenzophenone (AcetylKP). 1H NMR (CDCl3): dppm =

8.31–7.43 (m, 9H); 2.60 (s, 3H). MS: m/z (uma) = 224; 242

(M+NH4)
+. UV: kmax (diethyl oxyde) = 250 nm; kmax (ethanol) =

252 nm; kmax (phosphate buffer) = 254 nm.

2.2.2. Tiaprofenic acid

Photolysis was performed with the procedure described above.

A different gradient of H2O:CH3CN (67:33–0:100 over 25 min, to

67:33 over 1 min, isocratic at 67:33 for 19 min; flow rate = 300 -

lL minÿ1) was used for HPLC analysis. The residue was purified

by chromatography column (silica gel: Kieselgel 60, 0.063–

0.200 mm) using 100% chloroform.

2.2.2.1. 2-Benzoyl-5-ethylthiophene (EthylTP). 1H NMR (CDCl3):

dppm = 7.80–6.80 (m, 7H); 2.86 (q, 2H, J = 7.2 Hz); 1.31 (t, 3H,

J = 7.2 Hz). MS: m/z (uma) = 216; 217 (M+H)+; 234 (M+NH4)
+;

251 (M+N2H7)
+. UV: kmax (diethyl oxyde) = 258 and 302 nm; kmax

(ethanol) = 262 and 308 nm; kmax (phosphate buffer) = 266 and

314 nm.

2.2.2.2. 2-Benzoyl-5-(1-hydroxyethyl)thiophene (HydroxyTP). 1H

NMR (CDCl3): dppm = 7.83-6.75 (m, 7H); 4.68 (q, 1H, J = 7.2 Hz);

1.90 (s, 1H), 1.50 (d, 3H, J = 7.2 Hz). MS: m/z (uma) = 232; 250

(M+NH4)
+. UV: kmax (diethyl oxyde) = 258 and 302 nm; kmax (etha-

nol) = 262 and 308 nm; kmax (phosphate buffer) = 266 and 314 nm.

2.2.2.3. 2-Benzoyl-5-acetylthiophene (AcetylTP). 1H RMN (CDCl3):

dppm = 7.87–7.43 (m, 7H); 2.57 (s, 3H). MS: m/z (uma) = 230;

248 (M+NH4)
+, 265 (M+N2H7)

+. UV: kmax (diethyl oxyde) = 300 nm;

kmax (ethanol) = 304 nm; kmax (phosphate buffer) = 310 nm.

2.2.3. Naproxen

Photolysis was performed with the procedure described for KP.

The residue was purified by chromatography column (silica gel:

Kieselgel 60, 0.063–0.200 mm) using 100% chloroform and a

mixture of dichloromethane and ethyl acetate (98:2).

2.2.3.1. 2-Ethyl-6-methoxynaphtalene (EthylNP). 1H NMR (CDCl3):

kppm = 7.64–7.11 (m, 6H); 3.34 (s, 3H); 2.73 (q, 2H, J = 7.2 Hz);

1.52 (t, 3H, J = 7.4 Hz). MS: m/z (uma) = 186; 204 (M+NH4)
+. UV:

kmax (diethyl oxide) = 232, 264, 272, 318 and 334 nm; kmax

(ethanol) = 232, 262, 272, 318 and 332 nm; kmax (phosphate

buffer) = 226, 264, 276, 314 and 332 nm.

2.2.3.2. 2-(1-Hydroxyethyl)-6-methoxynaphtalene (HydroxyNP). 1H

NMR (CDCl3): kppm = 7.69–7.08 (m, 6H); 4.98 (q, 1H, J = 6.4 Hz);

3.73 (s, 3H); 2.03 (s, 1H), 1.51 (d, 3H, J = 6.4 Hz). MS: m/z
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O
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KP : R1 = H, R2 = COOH

AcetylKP : R1, R2 = O

HydroxyKP : R1 = H, R2 = OH

EthylKP : R1 = H, R2 = H

S
CR1R2

CH3

TP : R1 = H, R2 = COOH

AcetylTP : R1, R2 = O

HydroxyTP : R1 = H, R2 = OH

EthylTP : R1 = H, R2 = H

NP : R1 = H, R2 = COOH

AcetylNP : R1, R2 = O

HydroxyNP : R1 = H, R2 = OH

EthylNP : R1 = H, R2 = H

Scheme 1. Chemical structures of ketoprofen (KP), tiaprofenic acid (TP), naproxen

(NP) and their major photoproducts.



(uma) = 202; 220 (M+NH4)
+, 237 (M+N2H7)

+. UV: kmax (diethyl oxy-

de) = 232, 264, 272, 318 and 334 nm; kmax (ethanol) = 232, 262,

272, 318 and 332 nm; kmax (phosphate buffer) = 226, 264, 276,

314 and 332 nm.

2.2.3.3. 2-Acetyl-6-methoxynaphtalene (AcetylNP). 1H NMR (CDCl3):

kppm = 8.33–7.08 (m, 6H); 3.89 (s, 3H); 2.64 (s, 3H). MS: m/z

(uma) = 200; 201 (M+H)+, 218 (M+NH4)
+, 235 (M+N2H7)

+. UV: kmax

(diethyl oxyde) = 242, 258 and 306 nm; kmax (ethanol) = 242, 260

and 310 nm; kmax (phosphate buffer) = 242, 260 and 312 nm.

2.3. Photosensitization experiments, preparation of 32P end-labelled

oligonucleotides

Oligonucleotide 1 was radiolabelled at the 50-end using stan-

dard procedures. Typically, 15 lCi of [c32P] ATP and 5 pmol of oli-

gonucleotide were added to the Ready-to-Go T4 Polynucleotide

Kinase. The mixture was incubated 30 min at 37 °C and the reac-

tion stopped by addition of 5 lL of 250 mM ethylenediamine tetra-

acetic acid. Then, to remove free [c32P] ATP, the reaction mixture

was purified using G-25 Microspin columns. Double-stranded

DNA was obtained by mixing the 50-end-labelled oligonucleotide

with the same amounts of its unlabeled complementary strand,

heating 10 min at 70 °C and cooling slowly to room temperature.

2.4. Frank and alkali-labile lesions

All the solutions were prepared in 5 mM phosphate buffer with

10 mM NaCl, pH7.4. Samples containing 5 lL of radiolabelled oli-

gonucleotide (40,000 cpm/lL), 10 lL of drug (40 lM), 10 lL of

unlabeled double-strand oligonucleotides 1–2 (20 lM) and 25 lL
phosphate buffer solution were irradiated at 25 °C using a xenon

lamp (Muller 450 W) equipped with a long pass filter k > 320 nm

(Oriel, WG-320). The samples received ca. 11 mW cm2 in UVA.

After irradiation, samples used for the detection of frank breaks

were lyophilized. For the detection of alkali-labile sites, 20 lL of

freshly prepared 1 M piperidine was added and the samples were

heated for 30 min at 90 °C. Piperidine was then removed by

lyophilization.

2.5. Electrophoresis analysis

Before electrophoresis, the samples were resuspended in 10 lL
of formamide sequencing buffer. Frank breaks and alkali-sensitive

lesions were assayed by 20% denaturing (7 M urea) polyacrylamide

gel electrophoresis and visualized after exposure of autoradiogram

overnight at ÿ70 °C. G markers were prepared as described [21].

2.6. Fluorescence experiments

Emission and excitation spectra were recorded with a Quanta

Master (PTI) spectrofluorometer (London, ON, Canada) equipped

with a xenon source and a Hammamatsu R928 photomultiplier

tube. The excitation and emission monochromator pass bands

were 4 nm. The emission intensity was detected at right angles

by exciting solutions having an absorbance of about 0.05 in a

10 mm quartz cell at the selected excitation wavelength. All spec-

tra were recorded in the photo-counting mode and corrected with

curves given by the manufacturer. The cell was thermostated at

4 °C by water circulation. For the estimation of the fluorescence

quantum yields of products in different solvents, quinine bisulfate

in 1 N sulfuric acid was used as the standard (UF = 0.55). Fluores-

cence lifetimes were obtained by means of a Time Master appara-

tus (N2/He 30/70 lamp, 4 ns full width at half maximum) using the

strobe technique.

2.7. Phosphorescence experiments

Emission spectra were obtained on a Perkin–Elmer LS-50B spec-

trofluorometer equipped with a xenon source (flash duration 8 ls)
and a Hamamatsu R928 photomultiplier tube with the low-tem-

perature accessory. The apparatus was operated in time-resolved

mode with a delay time of 0.15 ms. Excitation and emission

monochromator pass bands of 4 nm were used. The sample was

introduced in a capillary tube (2 mm diameter) and cooled to

77 K in a liquid nitrogen bath. Dry nitrogen circulation in the cell

compartment avoided water condensation on the cell walls. The

emission was obtained by exciting the samples at 340, 314, and

330 nm for KP, TP, and NP respectively, in ethanol, using an absor-

bance of about 0.05 in a 10 mm cell. Phosphorescence lifetimes (s)
were obtained by time-resolved detection of the emission intensity

at the maximum-emission wavelength. The emission decay curves

were fitted to the equation I(t) = I0 exp (ÿt/s) using a non-linear

least squares minimization algorithm. High correlations (0.999)

were obtained in all cases.

2.8. Electrochemistry

Electrochemical measurements were carried out at room

temperature with an Autolab 20 potentiostat (EcoChemie). The

electrochemical cell (10 mL) was a conventional one with three

electrodes: working electrodes, Platinum Pt (disk diameter:

0.5 mm for cyclic voltammetry and 2 mm for steady state experi-

ments) for oxidation phenomena, or glassy carbon (disk diameter:

10 lm PAR for cyclic voltammetry and 3 mm for steady state

experiments) for reduction phenomena; counter electrode, Pt wire;

and reference electrode, double junction SCE. Cyclic voltammetry

and steady state experiments were performed in acetonitrile (HPLC

grade, SDS)/Bu4NPF6 0.1 M (Fluka, electrochemical grade) under

argon atmosphere. Potential scan speed varies from 0.1 to

400 V sÿ1 during cyclic voltammetry, and rotation electrode varies

from 500 to 3000 rpm during steady state experiments. The reduc-

tion potentials evaluated in acetonitrile have been then translated

in phosphate buffer by adding 0.42 V/SCE, deduced from the differ-

ence between the reduction potential values of benzophenone

determined into these two solvents [22].

3. Results and discussion

3.1. Photosensitization of alkali-labile lesions induced by KP, TP and NP

The efficiency of DNA alkali-labile lesions photoinduced by

parent drugs was examined by gel sequencing experiments using
32P-end-labelled 20 mer 50-d[T1G2A3T4C5G6G7T8G9C10G11T12C13T14
G15A16G17A18C19T20]-3

0 oligonucleotide 1. Oligonucleotide 1 pre-

sents several guanines under different sequences in order to study

the involvement of an electron transfer from a guanine base to the

excited photosensitizer; guanine is the easiest site for oxidation in

DNA, due to its low oxidation potential [23,24].

A phosphate buffered solution containing a mixture of drug and

oligonucleotide duplex was UVA-irradiated by a xenon lamp with a

long pass filter at k > 320 nm. After irradiation, samples were

placed on a polyacrylamide gel, with or without hot piperidine

treatment in order to visualize alkali-labile or spontaneous damage

respectively.

The autoradiogram recorded after photolysis of double stranded

DNA-NSAIDs mixtures is shown in Fig. 1.

No cleavage was observed on double-stranded oligonucleotide,

before or after piperidine treatment (lines B), when DNA solution

was irradiated alone. In presence of KP, only a very low level of

direct chain break on polynucleotide backbone was detected (line

C2). On the other hand, the production of piperidine alkali-labile



sites essentially at 50G of a GG step has been evidenced (line C0
2)

after piperidine treatment, by comparing the cleavage pattern with

the Maxam Gilbert G-marker (line G). It is now well known that

the presence of a GG site in DNA will act as a ‘‘potential trap’’

[24,25]. This specific oxidation is relevant of a mechanism involv-

ing an electron transfer from the guanine to the excited photosen-

sitizer, in agreement with the literature [8].

When DNA is UVA-irradiated in presence of TP (Fig. 1) a high le-

vel of direct strand breaks was observed without piperidine treat-

ment (line D2) relevant of a Type I radical mechanism, in

agreement with the literature [13]. Moreover, no selective cleavage

at 50 of the -GG- site was observed after alkali-labile treatment,

showing the absence of implication of an electron transfer mecha-

nism in these oxidative processes (line D0
2).

When DNA is UVA-irradiated in presence of NP (Fig. 1), sponta-

neous strand breaks were observed without hot piperidine treat-

ment (line E2), as reported previously [6,11]. Selective cleavage at

the guanine in 50 of -GG- site after alkali-labile treatment (line

E0
2) showed a high efficiency of an electron transfer mechanism.

For KP and NP, other guanine residues were also altered but

with lower efficiency suggesting probably the involvement of sin-

glet oxygen. However, the DNA cleavage efficiency being in accor-

dance with the calculated lowest ionization potentials of stacked

nucleobase models [24,25], this pattern confirms for these two

drugs mainly the intervention of a one electron transfer oxidation

in these processes, singlet oxygen intervening probably only in les-

ser proportion.

However, it has been previously demonstrated that these three

NSAIDs are unstable under irradiation and their photolysis leads

to three major photoproducts, the ethyl, hydroxyethyl and acetyl

derivates, which may be at the origin of these photosensitizing

reactions.

3.2. Photosensitization of alkali-labile lesions induced by KP, TP and NP

photoproducts

Photosensitizing properties of each NSAIDs photoproduct to-

wards DNA were investigated to conclude about their potential

role in photodamage on guanine sites by one electron transfer oxi-

dation. The results obtained are shown in Figs. 2–4.

When DNA is irradiated in presence of each KP photoproducts

(Fig. 2), the production of piperidine alkali-labile sites essentially

at 50-G of GG steps (lines D0
2;E

0
2; F

0
2) has been observed, suggesting

an efficient electron transfer mechanism next to a minor involve-

ment of singlet oxygen, as for the parent drug. A similar efficiency

in electron transfer mechanism is observed for the photoproducts

and the parent drug.

When DNA is irradiated in presence of each TP photoproducts

(Fig. 3) andwithout piperidine treatment, important level of sponta-

neous strand breaks was observed (lines D2, E2, F2), as for the parent

drug. On the other hand, contrary to the parent drug, a low amount

of alkali-labile lesions only at the guanine residue at 50 of -GG- site is

observed after hot piperidine treatment for hydroxyTP and ethylTP

(lines E0
2; F

0
2 respectively) indicating a contribution of the electron

transfer mechanism in these photosensitized oxidation processes.

A similar efficiency was observed for these two photoproducts.

When DNA is irradiated in presence of each NP photoproducts

and without alkali-labile treatment (Fig. 4), direct strand breaks

were observed for acetylNP and hydroxyNP (lines D2, E2). After

piperidine treatment, the damage level was important, especially

on guanine at 50 of the -GG- step, for acetylNP, hydroxyNP and to

a lower extent for ethylNP, suggesting the intervention of an effi-

cient electron transfer mechanism in these processes (lines

D0
2;E

0
2; F

0
2 respectively), next to a minor involvement of singlet oxy-

gen, as for the parent drug.

3.3. Emission spectra

Emission experiments were carried out in order to study the ex-

cited-state properties of these compounds, at the origin of the pho-

toinduced electron transfer. The photophysical properties of the

NSAIDs photoproducts were investigated and compared with

whose of those parent drug. Fluorescence spectra were recorded

at 4 °C in ethanol, phosphate buffer and diethyl oxide.

KP family presented no (for KP and AcetylKP) or a weak (for

HydroxyKP and EthylKP) fluorescence emission in ethanol.

Fig. 1. Double-strand oligonucleotide (20 lM base pairs) non irradiated (line A), irradiated alone 2 h at k > 320 nm (line B), non irradiated in the presence of 40 lM of KP, TP

or NP (lines C1, D1 and E1 respectively) or irradiated in the presence of 40 lM of KP, TP or NP, 2 h at k > 320 nm (lines C2, D2 and E2 respectively). Maxam and Gilbert G marker

(line G).



However, in diethyl oxide, a very weak fluorescence signal was

able to be measured for AcetylKP.

No fluorescence signal was detected for TP and its photoprod-

ucts in ethanol. In phosphate buffer and diethyl oxide, only a very

low fluorescence emission was observed, making any assignment

difficult.

NP and its photoproducts displayed a strong fluorescence emis-

sion by comparison with the others compounds.

Singlet excited state energies were calculated from the

intersection of the normalized excitation and emission spectra.

Fluorescence quantum yields were also determined for KP, NP and

their corresponding photoproducts. All results are reported in Table

1.

Although the evolution of fluorescence quantum yield does not

match exactly the intersystem crossing quantum yield (UISC), it

presents a correct reflection axis. The differences in fluorescence

emission can be partially explained in terms of UISC, if we neglect

nonradiative processes. Taking in mind these considerations, KP

and TP families had probably a more efficient UISC than NP family,

suggesting for these two families a photoreactivity initiated by a

Fig. 2. Double-strand oligonucleotide non irradiated (line A), irradiated alone 2 h at k > 320 nm (line B), non irradiated in the presence of 40 lM of KP, AcetylKP, HydroxyKP or

EthylKP (lines C1, D1, E1 and F1 respectively) or irradiated in the presence of 40 lM of KP, AcetylKP, HydroxyKP or EthylKP (lines C2, D2, E2 and F2 respectively). Maxam and

Gilbert G marker (line G).

Fig. 3. Double–strand oligonucleotide non irradiated (line A), irradiated alone 2 h at k > 320 nm (line B), non irradiated in the presence of 40 lM of TP, AcetylTP, HydroxyTP or

EthylTP (lines C1, D1, E1 and F1 respectively) or irradiated in the presence of 40 lM of TP, AcetylTP, HydroxyTP or EthylTP (lines C2, D2, E2 and F2 respectively). Maxam and

Gilbert G marker (line G).



triplet excited-state rather than by the singlet excited-state. To ob-

tain further information about the excited state photoreactivity,

phosphorescence experiments were carried out.

Phosphorescence emission spectra were recorded at 77 K in

ethanol. All compounds displayed a phosphorescence emission.

The lowest triplet excited-state energies were evaluated from the

0–0 bands of the emission spectra. The main photophysical param-

eters are summarized in Table 1. Triplet state energies of KP, TP

and NP are in agreement with previous data [4,26]. For the KP fam-

ily, the three major photoproducts have triplet state energies

similar to that the parent drug. Concerning TP and NP photoprod-

ucts, triplet state energies are similar or different from the parent

drug ones.

As a conclusion, these results suggested that for KP and TP fam-

ily, the photoinduced electron transfer was initiated by the triplet

excited-state whereas for NP family, photooxidative reactivity

from their triplet excited-state or from their singlet excited-state

has to be considered.

3.4. Electrochemical behavior

To investigate the electron acceptor properties of these

compounds, electrochemical experiments were performed. The

photosensibilizationmechanism leading to the oxidation of guanine

nucleobase involves the PS�/PS�ÿ redox couple: radical cation forma-

tion via electron transfer to the excited state of the photosensitizer.

Only the cathodic behavior of the photosensitizers is described.

Electrochemical data were obtained in acetonitrile because of its

large electroactivity domain. The potentials were then calculated

for water, taking as references the reduction potentials of aceto-

phenone in the two media [27]. Under stationary conditions (rotat-

ing electrode), half wave potentials E1/2 and diffusion currents

were measured; diffusion coefficients were calculated according

to the Levich equation [28]. Peak potentials Ep and currents Ip on

the forward and backward scans were measured by cyclic voltam-

metry: the peak separation DEp = |Epbackward ÿ Epforward|/logv and

the peak ratio RIp = Ipbackward/Ipforward were calculated as a function

of potential scan speed (v). Analysis of these parameters provided

(i) the electron transfer constant k� from DEp = f(logv) [28,29]; (ii)

the reversibility of the electron transfer or the stability of the

radical anion PS�ÿ from RIp = f(v) [28,30].

Using a glassy carbon electrode (Cv), the reversibility of the

reduction process reflects the stability of the reduction product

(Fig. 5, Table 2). During the forward scan, a reduction peak was

observed related to the formation of the radical anion PS�ÿ. During

the backward scan, the oxidation of the radical anion is more or

less observed depending on the potential scan speed and the rela-

tive stability of the radical anion PS�ÿ. The electrochemical system

is represented by an EC scheme (electrochemical transfer (E) fol-

lowed by a chemical reaction (C)):

PSþ eÿ 


E

k�
PS�ÿ !

C

k
product

When the potential scan speed is increased, the peak ratio RIp

increases because of the freezing of the chemical step and the peak

separation DEp increases, showing a kinetic control of the electron

Fig. 4. Double-strand oligonucleotide non irradiated (line A), irradiated alone 2 h at k > 320 nm (line B), non irradiated in the presence of 40 lM of NP, AcetylNP, HydroxyNP

or EthylNP (lines C1, D1, E1 and F1 respectively) or irradiated in the presence of 40 lM of NP, AcetylNP, HydroxyNP or EthylNP (lines C2, D2, E2 and F2 respectively). Maxam and

Gilbert G marker (line G).

Table 1

Photophysical properties of singlet and triplet excited states of KP, TP, NP and their

major photoproducts.

DSE0–0 (kJ molÿ1) UF UISC DTE0–0 (kJ molÿ1)

KP 321[4] – 14 289b

Acetyl KP 382a –b – 289b

Hydroxy KP 378b 0.048b – 289b

Ethyl KP 372b 0.013b – 289b

TP 3384 –b 0.94 242b

Acetyl TP –b –b – 221b

Hydroxy TP –b –b – 242b

Ethyl TP –b –b – 238b

NP 358b 0.13b 0.284 259b

Acetyl NP 376b 0.191b – 288b

Hydroxy NP 356b 0.377b – 259b

Ethyl NP 356b 0.349b – 238b

ES determined from emission spectra at 4 °C; for HydroxyKP, EthylKP and Acetyl

NP: kexc = 300 nm, for HydroxyNP and EthylNP: kexc = 330 nm.

ET determined from low-temperature (77 K) phosphorescence emission spectra in

an ethanol glass; for KP family: kexc = 340 nm, for TP family: kexc = 314 nm, for NP

family: kexc = 330 nm.
a Ether.
b Ethanol.



transfer and leading to the calculation of the electron transfer con-

stant k�. Peak currents (Ip) are proportional to the square root of

the potential scan speed, as for a diffusion controlled process, in

agreement with the Randles–Sevcik equation [28].

As the electrochemical system of benzophenone (BP) corre-

sponds to the reduction of the carbonyl function [22,31], BP + eÿ ?

BP�ÿ, the reduction processes for KP and TP can be attributed to this

same C@O function. For NP, the reduction peak observed corre-

sponds to naphthalene moiety reduction, in agreement with the

literature [32–34].

The photoproduct voltammograms (Fig. 6) are similar to those

of the parent drugs except for acetyl derivatives in which reduction

of an additional C@O group has to be taken into account. As this

function is terminal, its reduction should occur at a more cathodic

potential than the one of the central carbonyl group of KP and TP.

Whatever the compound, an increase of potential scan speed

modifies the voltammograms patterns: (i) the peak ratio RIp in-

creases and tends towards 1, showing that the system becomes

fully reversible, and (ii) the peak separation DEp increases, show-

ing the kinetic control of the electron transfer. Analysis of these

parameters as a function of potential scan speed led us to deter-

mine the electron transfer constant. The compounds present k� val-

ues between 0.007 and 0.09 cm sÿ1, such as FeðCNÞ3ÿ6 =FeðCNÞ4ÿ6
(Table 2). Moreover, analysis of the peak ratio RIp allows us to eval-

uate the stability of the radical anion PS�ÿ by considering a simple

EC mechanism above written [30]. The radical anion stability can

be evaluated by calculating its half-life t1/2 = Ln 2/k (Table 2):

radical anions of the NP family are the most unstable.

3.5. Correlation between electron transfer mechanism efficiency and

PS physicochemical properties

Differences in the photosensitization properties of the investi-

gated compounds can be correlated to their photophysical and

electrochemical characteristics. Indeed, the photooxidation pro-

cess, which involves an electron transfer from the nucleobase to

the excited state of the photosensitizer, may be summarized by

the following sequence, previously proposed [27]:

Light absorption PSþ hm ! PS� ð1Þ

Deactivation PS� ! PS ð2Þ

Photooxidation PS�ÿ þ G ! PS�ÿ þ G�þ ð3Þ

Back reaction PS�ÿ þ G�þ ! PSþ G ð4Þ

Stability of PS�ÿ PS�ÿ ! products ð5Þ

Stability of G�ÿ G�þ ! products ð6Þ

The energy diagram of the photosensitized electron transfer

mechanism is represented on Scheme 2 with the protocol followed

for the determination of DrG°. Photophysical measurements gave

the values of DTE0–0 and DSE0–0. Cyclic voltammetry measure-
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Fig. 6. KP photoproducts: cyclic voltammograms at a glassy carbon electrode in

CH3CN/Bu4NPF6 0.1 M; [PS] = 1 mM; potential scan speed 1 V sÿ1. For AcetylKP, the

first voltammogram is centered on the first electrochemical system, whereas the

second one shows the two electrochemical systems.
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Fig. 5. Reduction of BP, KP, TP et NP: cyclic voltammograms at a glassy carbon

electrode in CH3CN/Bu4NPF6 0.1 M; [PS] = 1 mM ; potential scan speed 1 V sÿ1.

Table 2

Reduction parameters of parent drugs and their photoproducts in CH3CN/Bu4NPF6 0.1 M, glassy carbon electrode (r = 10 lm). Thermodynamic and kinetic parameters for KP, TP

and NP photooxidative processes.

Redox potential E� (V/ECS) Electron transfer rate k�red (cm sÿ1) PS�ÿ Lifetime t½ (s) DrG� (kJ molÿ1) (triplet) DrG� (kJ molÿ1) (singlet)

KP ÿ1.82 0.09 �0.66 ÿ98

AcetylKP ÿ1.69 0.04 �0.56 ÿ111

ÿ2.02 0.02 �0.14 ÿ78

HydroxyKP ÿ1.80 0.07 �0.75 ÿ100

EthylKP ÿ1.80 0.08 �0.79 ÿ99

TP ÿ1.78 0.08 �1.52 ÿ54

AcetylTP ÿ1.23 0.08 �1.31 ÿ86

ÿ1.68 0.05 �3.0 ÿ43

HydroxyTP ÿ1.73 0.04 �0.05 ÿ60

EthylTP ÿ1.72 0.06 �0.25 ÿ57

NP ÿ2.04 0.04 �0.19 ÿ47 ÿ146

AcetylNP ÿ1.99 0.05 �0.10 ÿ80 ÿ168

ÿ2.66 0.01 �0.22 ÿ15 ÿ103

HydroxyNP ÿ2.63 0.05 �0.08 +10 ÿ87

EthylNP ÿ2.49 0.007 �0.26 +18 ÿ100



ments gave the stability of PS�ÿ (reaction 5) and the redox poten-

tial E°(PS/PS�ÿ) in the dark which was translated to the phosphate

buffer

Photodamage effects are related to reactions (1–3). The Gibbs

free energy for photo-induced electron transfer is given [20]:

DrG
� ¼ 96:5½E�ðG�þ=GÞ ÿ E�ðPS=PS�ÿÞ� ÿ DE�ÿ� kJ mol

ÿ1
� �

where DE0–0 is the energy of the PS excited state (DTE0–0 for triplet

state or DSE0–0 for singlet state); E°(G
�+/G) = 0.58 V/SCE is the calcu-

lated oxidation potential of the guanine for the 50-G of the -GG- site

[24,25] and E°(PS/PS�ÿ) is the reduction potential of PS in phosphate

buffer.

From a thermodynamic point of view, photooxidation is possi-

ble if the free energyDrG
� is negative. But, the observed differences

in photosensitizing properties of the compounds are not related to

thermodynamic features only. In the above scheme, the back reac-

tion (4) which is exergonic, attenuates the effects of photooxida-

tion and is in part controlled by the stability of PS�ÿ and G�+.

Taking into account that reaction (6), product formation from G�+,

does not depend on the nature of the PS, the relative efficiency of

electron transfer may be related to reaction (5). Indeed, the photo-

activity and the stability of PS�ÿ are associated: if PS�ÿ is unstable,

the back reaction (4) does not proceed and high photooxidative

damages are obtained.

In order to calculate thermodynamic parameters, the implicated

excited states have to be known. If there is no ambiguity for KP and

TP families, it is not the case for NP. Indeed, KP and TP display very

high intersystem-crossing quantum yields (1 and 0.9 respectively

for KP and TP) [4,35]. Therefore, reactivity from their triplet state

can be assumed. The same is true for KP and TP photoproducts.

Their very weak or the absence of fluorescence emission suggests,

as for the parent drugs, involvement of their triplet excited states.

On the other hand, for NP and its photoproducts, reactivity from

their triplet state or from their singlet state have to be considered

sinceUISC for NP is 0.28 [4] and that an importantUF is observed as

well for NP as for its photoproducts.

The changes in free energy for the electron transfer were found

exergonic between compounds of KP family and a guanine at 50

at -GG- site, the same behavior is observed for compounds of TP

family. As to NP family, for which the implicated excited state is

unknown, photooxidation is thermodynamically possible for NP

and AcetylNP from triplet and singlet state, even if the electron

transfer is more favorable in the case of the singlet excited state.

For HydroxyNP and EthylNP, reaction is possible only from their

singlet excited state. Therefore, it seems obvious that NP and their

photoproducts react more easily from their singlet than from

their triplet excited state.

Among the three drugs, NP is more efficient than KP and TP in

producing oxidative damages by electron transfer. It can be

justified:

– from a thermodynamic point of view, DrG
� of NP is the most

exergonic (ÿ146 kJ molÿ1) whileDrG
� of TP is the less exergonic;

– from a kinetic point of view, NP�ÿ is the most unstable and back-

reaction (4) is prevented leading to increased damages; in con-

trast, TP�ÿ is the most stable, back-reaction (4) is efficient and TP

is not involved in this oxidative process. It can be noticed that

NP presents the lowest value of electron transfer constant k�;

it would show that k� is not a major factor by contrast to t1/2.

Similar correlations are highlighted with the photoproducts

which appeared as electron transfer photosensitizers:

– Concerning the TP family that showed a weak oxidative activity

by electron transfer, HydroxyTP and EthylTP present compara-

ble efficiencies and AcetylTP is the less efficient photosensitizer.

DrG
� free energies values cannot contribute to the understand-

ing of these differences of efficiency, reactions are most proba-

bly under kinetic control. Indeed, t1/2 of HydroxyTP and EthylTP

are weaker than that of AcetylTP, explaining the different

efficiencies.

– In the case of KP photoproducts, no significant differences in

efficiency were observed. Indeed, DrG
� values are close as well

as t1/2; the photodamages are equivalent.

– Concerning the NP family, AcetylNP appears to be the most effi-

cient photosensitizer, with a highly negative DrG
� value

(ÿ168 kJ molÿ1) and its radical anion AcetylNP�ÿ is unstable.

The DrG
� values for EthylNP and HydroxyNP are of the same

order of magnitude and the radical anion HydroxyNP�ÿ is less

stable than EthylNP�ÿ: the back reaction (4) explains the differ-

ent photoefficiencies, HydroxyNP is the most efficient.

4. Conclusions

This photoredox and photobiological study proved the ability of

three NSAIDs, Ketoprofen, Tiaprofenic acid and Naproxen and their

photoproducts, to induce DNA photooxidation via an electron

transfer mechanism and bore out the direct implication of photo-

products in the photosensitizing reactions. Indeed, the three main

photoproducts of these drugs (Acetyl, Hydroxyethyl and Ethyl

derivatives) were involved in the photooxidative damages. Con-

cerning KP and NP family, electron transfer is the predominant

mechanism, whereas in the case of TP family, it seems to be a min-

or process. Moreover, spectroscopies and cyclic voltammetry al-

lowed us to correlate photoredox properties of these compounds

with photobiological properties in term of electron transfer. From

a general point of view, this work underlines the necessity to con-

sider the photochemical properties of any chemicals and the

photophysical properties of their photoproducts before their com-

mercial uses.
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