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An  evaluation  of  thermodynamic  models  for  the  prediction  of  drug  and drug­like
molecule  solubility  in  organic  solvents

Baptiste  Bouillot ∗,  Sébastien  Teychené,  Béatrice  Biscans

Laboratoire  de  Génie Chimique,  UMR CNRS  5503, BP 84234  Campus INP­ENSIACET,  4  allée  Emile  Monso,  31030 Toulouse  Cedex 4,  France

a  b  s  t  r a  c t

Prediction  of solubility  of  active pharmaceutical  ingredients (API) in different  solvents  is one  of the  main

issue  for crystallization  process design. Experimental  determination  is not  always  possible because  of

the  small  amount  of product  available  in the early  stages of  a drug development.  Thus, one  interesting

perspective  is  the  use  of thermodynamic  models,  which  are  usually  employed  for predicting the activity

coefficients  in case of Vapour–Liquid  equilibria  or  Liquid–Liquid  equilibria  (VLE  or  LLE).  The choice  of  the

best  thermodynamic model for Solid–Liquid  equilibria  (SLE) is  not  an  easy  task  as most of them are  not

meant  particularly  for this.  In  this  paper,  several models are tested  for the  solubility prediction of five

drugs  or  drug­like molecules:  Ibuprofen, Acetaminophen,  Benzoic  acid,  Salicylic  acid  and 4­aminobenzoic

acid,  and  another  molecule,  anthracene,  a rather simple molecule.  The performance  of predictive  (UNI­

FAC,  UNIFAC  mod., COSMO­SAC)  and  semi­predictive  (NRTL­SAC) models  are compared and  discussed

according  to the  functional  groups  of the molecules  and the selected  solvents. Moreover,  the model errors

caused  by  solid  state property uncertainties  are  taken into  account. These  errors  are indeed  not  negli­

gible  when accurate quantitative  predictions  want to be performed.  It was  found  that UNIFAC  models

give  the best  results  and could  be an useful  method  for rapid  solubility  estimations of an  API in various

solvents.  This  model  achieves  the  order of magnitude  of the experimental  solubility  and can  predict in

which  solvents  the  drug  will  be  very soluble, soluble or  not  soluble. In  addition,  predictions  obtained

with  NRTL­SAC  model  are  also  in good  agreement  with  the  experiments, but  in that case the  relevance

of  the results is strongly dependent on the  model  parameters  regressed  from  solubility  data  in  single

and  mixed solvents. However, this is a very interesting model for quick estimations like UNIFAC  models.

Finally,  COSMO­SAC needs  more developments to increase  its  accuracy especially  when  hydrogen bond­

ing  is involved.  In  that case,  the  predicted  solubility is always overestimated  from two to three  orders

of  magnitude. Considering  the  use  of the  most  accurate equilibrium  equation involving  the  1Cp term,

no  benefits  were  found  for  drug predictions  as the  models  are still  too  inaccurate.  However,  in function

of  the molecules  and  their solid thermodynamic properties,  the  1Cp term  can be neglected and  will not

have  a great  impact  on  the results.

1. Introduction

Solubility of solid compounds in solvents is obviously one of the

most fundamental physicochemical properties, particularly useful

in a wide variety of phenomena relevant to biological, pharma­

ceutical, environmental and other organic, physical and analytical

chemistry, and engineering sciences. From a simple thermody­

namic point of view, solubility is the fugacity equality between

the solid state and the liquid state of the solute molecule. In prac­

tice, it is the maximum amount of the crystalline form of the

compound that can be dissolved in a given volume of solvent at
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a given temperature and pressure. This state is the expression

of the Gibbs free energy of mixing, which is the combination of

two contributions. The enthalpic contribution which reflects the

solute–solute and solute–solvent interactions; and the entropic

contribution which takes into account the molecular size and the

potential for non­random distribution of molecules in the mix­

ture. Then, the molecular size and the potential for non­random

distribution are also important. From a practical point of view, sol­

ubility has a considerable influence on the choice of solvent for

performing polymorphism, salt and co­crystal screening and it is

the key parameter for the process design of a  new drug by crys­

tallization, as it will determine the amount of cooling required to

yield a given amount of product and will in fact determine if cooling

will provide a reasonable product yield and thus define the crys­

tallization process itself (cooling, evaporation, or antisolvent). In



addition, at the early stages of a new drug molecule development,

small amount of product (typically less than 5 mg) is available, so

classical solubility methods cannot be used since they are product

consuming and are neither rapid nor cost effective. To overcome

these issues, high­throughput solubility­screening protocols have

been developed based on systems using either robots [1] or droplet

microfluidic [2]. All these methods rely on kinetic determination

of dissolution and re­crystallization steps. The process of dissolu­

tion of a crystalline compound into a solvent generally shows an

asymptotic profile [3]: as the concentration of the compound in

solution increases, the process becomes progressively slower, and

saturation is theoretically never reached. In addition, polymorphic

phase transition may occur during these experiments, leading to

misinterpretation of the results.

Even when products are available, the experimental determina­

tion of solubility must be prepared and completed by preliminary

calculations. Indeed, in classical sealed flask methods, saturated

solutions are prepared with an excess of solid at a given temper­

ature. The suspension is then filtrated or centrifuged to ensure a

solution completely free from undissolved solute. First, by their

nature, this traditional solubility method is time consuming. In

addition, the filtration or centrifugation steps are often performed

at a lower temperature than the saturation experiments, what

entails a shift in solubility values.

Indeed, experimental methods of solubility measurements are

time consuming, expensive and often have technical problems, in

spite of the obtained values varying in the degree of accuracy and

precision. To guide these experiments and to limit misinterpreta­

tion, thermodynamic modelling of Solid–Liquid Equilibrium (SLE),

using a minimum of experimental data, would be of a great value.

Based on the actual SLE thermodynamics, a question arises: can the

existing models be used as guide for designing solubility experi­

ments? [4] showed that the original UNIFAC model could predict

SLE. But, the results were accurate only for restricted compounds.

[5] discussed the limits of the UNIFAC model and the equilibria

equations used for SLE, but did not focus on the temperature depen­

dence or compare with other models. [6] showed that COSMO­SAC

is an interesting model to calculate a priori solubilities, but it is

not very accurate for SLE. In addition, these papers did not investi­

gate neither the complete equilibrium equation nor the influence

of temperature on solubility predictions. [7] used NRTL­SAC for SLE

prediction and found it promising, but did not compared the results

to a much more models. More recently, [8] compared UNIFAC model

to COSMO­RS model for some organic compounds.

The main objective of this paper is to test and analyze

existing  predictive (UNIFAC, UNIFAC mod., COSMO­SAC) and semi­

predictive (NRTL­SAC) thermodynamic models for the prediction of

solubility of six compounds (five drugs or drug­like molecules and

one hydrocarbon) in several solvents. Four classic drugs were cho­

sen because of the large number of experimental solubility data and

of the different chemical groups (Ibuprofen, Acetaminophen, Ben­

zoic acid, and Salicylic acid). To complete this set, 4­aminobenzoic

acid was also chosen given its amine group, and anthracene, a quite

simple molecule (only ACH groups).

In this work, the thermodynamic models were chosen based

on their various approaches, and their ability to be used with or

without experimental data. UNIFAC and its modifications are group

contribution methods. They only require binary interaction param­

eters between the functional groups. These models rely on the

use of a specific database of group–group interaction parameters.

When these parameters are not available (for molecules containing

cyclic S or N for instance), these models cannot be used. COSMO­

SAC, is based on quantum mechanics and requires profiles of the

charge density around the studied molecules (called �­profile). The

challenge is the determination of the “good” �­profile which takes

into account the right conformations of the molecule in the solu­

tion.  NRTL­SAC is based on polymer NRTL and to be used, four

parameters representing the behaviour of the molecules have to be

calculated from experimental data regression. Once these param­

eters have been calculated for one molecule, they may be used for

any other solubility predictions in any solvent. That is why there

is no need to regress each time, as in the case of most the semi­

predictive models like UNIQUAC or Wilson.

These four models will be compared and discussed regarding

solubility prediction at several temperatures. In addition, the rela­

tive importance of the pure solid state properties (i.e. the melting

temperature, melting enthalpy and the heat capacity difference

between the supercooled liquid and the solid) on the thermody­

namic modelling is discussed.

2.  Theory

2.1. Equilibrium equation

Phase  equilibria are described by the equality of chemical poten­

tials, �, in each phase. The governing equation of solubility of the

compound in a given solvent is written as follows:

�S
= �Sat (1)

The  superscript ‘S’ denotes the solid phase, and the superscript ‘Sat’

the saturated solution. The chemical potential of the solute in the

saturated solution is:

�Sat
= �0

+ RT ln(
SatxSat) (2)

where  �0 is the chemical potential in the reference state, T  the

temperature, and 
 the activity coefficient. The activity of the solute

(a = 
x) in the solvent is obtained by combining Eqs. 1 and 2:

ln(
SatxSat)  =
�S − �0

RT
=

gS − g0

RT
=

1gm

RT
(3)

where  1gm is the change of partial molar Gibbs energy of the solute

from a solid state to the reference state at constant temperature and

pressure. This last equation gives a relationship between solubility

and activity coefficients, which can finally be written as [9]:

ln(
SatxSat)  =
1Hm(Tm)

R

(

1

Tm
−

1

T

)

−
1Cp(Tm)

R

[

ln

(

Tm

T

)

−
Tm

T
+  1

]

(4)

where  1Hm is the melting enthalpy, Tm, the melting temperature

and 1Cp the difference between the heat capacity of the super­

cooled melt and the heat capacity of the solid. In practice, this last

term can be very difficult to measure especially when sublimation,

decomposition [10] or parallel reaction occurs during melting, and

is often neglected because it is usually thought that its contribution

is negligible. In that case Eq. (4) is simplified as follows:

ln(
SatxSat)  =
1Hm(Tm)

R

(

1

Tm
−

1

T

)

(5)

2.2.  Group contribution models (classic and modified UNIFAC)

UNIFAC method, for UNIQUAC functional group activity coef­

ficient [11], is based on the UNIQUAC model. The main idea of

this approach is a separation of the activity coefficient of the pure

compound into two parts:

ln  
 = ln 
C
+ ln 
R (6)


C is the combinatorial term. It represents the entropic contribu­

tion to the activity coefficient which takes into account the shape

and size of the molecules. This 
C depends on the mole fraction

(xi), on the area (�i) and segment fraction (8i), and on the Van der



Waals area (ri) and volume (qi) (the superscript ‘i’  designates the

compound):

ln 
C
i =  ln

8i

xi
+ 5qi ln

�i

8i
+ li −

8i

xi

∑

j

xj

(

5
(

rj − qj

)

−
(

rj − 1
))

(7)


R is the residual part which represents the contribution of inter

and intramolecular interactions (enthalpic contribution). It is a  sum

of the activity coefficients of the functional groups weighted by

their number in solution.

ln 
R
i =

∑

k

v
(i)
k

[

ln Ŵk − Ŵ(i)
k

]

(8)

where vk and v
i
k

are the number of groups of kind k in the mixture

and in component i. Ŵk and Ŵi
k

are, respectively, the residual activ­

ity coefficient of group k in the mixture and in  a solution of pure

component i. They depend on the area and segment fraction the

compounds and on adjustable binary interaction parameters amn

(the interactions between the functional groups) that are regressed

usually from VLE experimental data:

ln Ŵk = Qk

[

1  − ln

(

∑

m

2m9mk

)

−

∑

m

2m9km/
∑

n

2n9nm

]

(9)

with:

9mn = exp

(

−
amn

T

)

(10)

In UNIFAC mod. (Dortmund), by [12], a modified version of UNI­

FAC, is supposed to take a better account of the temperature in

the residual activity contribution. The new combinatorial term and

interaction parameter are written as, respectively:

ln 
C
i =  1 − ln

(

8i

xi

)

− 5qi

(

1 −
8i

�i
+ ln

(

8i

�i

))

(11)

and

9mn = exp

(

−
amn +  bmnT  + cmnT2

T

)

(12)

UNIFAC and modified UNIFAC are frequently used for the prediction

of Vapor­Liquid and Liquid­Liquid equilibria for simple molecules.

These models can be applied to all molecules providing that the

binary interaction parameters exist, which is not always the case.

Moreover, the conformation and isomerism of molecules are not

considered.

2.3. Segment activity coefficient models

2.3.1. COSMO­SAC

COSMO­SAC is based on COSMO­RS model [13,14]. First pub­

lished by Lin and Sandler [15], this model is a combination of

a quantum chemical treatment of solutes and solvents with sta­

tistical thermodynamics procedure for the determination of the

molecular surface interactions.

The COSMO­SAC model is based on the calculation of the sol­

vation free energy 1G*sol which defines the free energy change

comparing to an ideal solution at constant temperature and pres­

sure, when the solute molecules are introduced into the solvent. In

COSMO­based models, this term is divided into two parts. First, the

solute charges are turned off, and its molecules are inserted into

a perfect conductor (with an infinite dielectric constant �). This

first step gives the cavitation formation free energy, 1G*cav,  which

depends on the molecule specific dimension and represents the

entropic contribution of the activity coefficient. When the charges

are  turned on (the solvent becomes a real solvent), the free energy

of restoring the charges, 1G*res,  corresponds to the enthalpic con­

tribution. Combining these two steps, the activity coefficient is

expressed as:

ln  
i = ln 
C
+

1G∗res
i/S

− 1G∗res
i/i

RT
(13)

To calculate the restoring free energy, a �­profile of each molecule

is needed. This profile corresponds to the probability of finding a

surface of the molecule with a charge density �. They are computed

from quantum chemical simulations. Once they have been calcu­

lated, the molecules are divided into segments. These conceptual

segments are portions of the molecule surface with the same charge

density �. The equation for the activity coefficient is then written:

ln  
i = ni

∑

�m

pi (�m)  [ln ŴS (�s) −  ln Ŵi (�m)] +  
C
i (14)

where Ŵs(�m)  and Ŵi(�m) are the activity coefficients of segment �m

in solution and in pure liquid, respectively. In COSMO­SAC model,

the activity coefficient is obtained by summing the contributions

of each segment.

The �­profiles used in this work were taken from Mullins

database [6,16]. Unlike other group­contribution methods, this

model is not strictly a pair­wise additive one, since the �­profiles

take into account the geometry of molecules and hydrogen bond­

ing. As the �­profiles take into account the geometry of the

molecules, each molecule and its conformation have its own profile

[16].

2.3.2. NRTL­SAC

NRTL­SAC model [17] is based on the original NRTL (Non­

Random Two­Liquid) [18] and polymer NRTL [19]. The NRTL­SAC

model characterizes the molecules in terms of pre­defined concep­

tual segments. These segments account for the interactions of each

molecule in the solution. [17] have defined four types of conceptual

segments: hydrophobic X, repulsive Y− and attractive Y+ polar, and

hydrophilic Z. Like in UNIFAC, the NRTL­SAC model computes the

activity coefficient for component i  from the combinatorial term 
C

and the residual term 
R (Eq. (6)). The combinatorial term is then

calculated from the Flory–Huggins approximation for the entropy

of mixing:

ln 
C
i = ln

8i

xi
+ 1 − ri

∑

j

8j

rj
(15)

where ri and 8i are, respectively, the total segment number and

the segment mole fraction of component i.

The residual term 
R is calculated from the local composition

(lc) interaction contribution [19] applied to each segment:

ln 
R
i = ln 
 lc

I =

∑

k

rk,I

[

ln Ŵlc
k − ln Ŵlc,i

k

]

(16)

The segment–segment interaction parameters and the conceptual

segment values of solvents were determined by the regression of

experimental vapor–liquid and liquid–liquid equilibrium data [17].

The segment values for a solute are obtained by the regression of

solubility data in at least four solvents: one hydrophilic (i.e. water),

one polar attractor (i.e. alcohol), one polar donor (i.e. ketone), and

one hydrophobic (i.e. n­alkane). As suggested by [17], it is also

possible to estimate pure solid properties using Eq. (4) or (5). How­

ever, in this study, in order to compare the model performances

with the other, we chose to use experimental solid state properties,

since they are available in the literature and are easily accessible

experimentally. Once the segment values of the solute are obtained,

they can be used to predict solubility in other solvents or solvent

mixtures.



2.4. How the errors on the thermodynamic properties impact the

models  predictions?

As  these models are used with the SLE equation, the solid state

properties and the experimental uncertainties have an impact on

the parameter determination or model prediction. Indeed, and as

shown in the next section, measurements of the thermodynamic

properties of the solids are scarcely accurate and to investigate

the model performances, their experimental uncertainties have to

be taken into account. Thus, the solid state properties, 1Hm, Tm

and 1Cp, are defined by mean values with standard deviations.

Using Eq. (4), there are three parameters (two for Eq. (5)). The

influence of the experimental uncertainties on solubility predic­

tion is evaluated by using a  classic Monte Carlo method. Solubility

predictions are performed by choosing randomly vectors of mean

value and standard deviation corresponding to the experimental

data, and described it by a  Gaussian law. Then, the predicted sol­

ubility standard deviation is calculated (about a  thousand random

simulations).

3. Experimental solubility and pure compound properties

3.1. Reference drugs

In  this paper, Mainly form I of acetyl p­aminophenol (parac­

etamol), 2­(p­isobutylphenyl)propionic acid (ibuprofen), benzoic

acid, and 2­hydroxybenzoic acid (salicylic acid) were chosen as

model drugs. These molecules were chosen mainly because of a

significant amount of solubility experimental data available in the

literature [20–32] and they contain various usual functional groups

(OH, COOH, NH, NH2). To complete this solubility database, 4­

aminobenzoic acid was considered because of its structure (amine

group) despite there is few data available [31–34], and anthracene

because of its simple structure (ACH functional groups) and the

many solubility data available [35–39] although it is not a drug.

The molecules structures are shown in Fig. 1.

3.2. Experimental

In this study, in spite of the experimental results being taken

from the literature, some data were missing. The solubility of

ibuprofen in octanol and heptane, paracetamol in heptane at 30 ◦C

were measured. Then, the melting temperature and enthalpy of

ibuprofen, paracetamol, salicylic acid and benzoic acid were mea­

sured. Combining with the literature data, the goal was to have

mean values and standard deviation for these parameters.

3.2.1. Materials

Salicylic and benzoic acid were bought at Fisher Scientific

(>99.5%), Ibuprofen at BASF (Ibuprofen 25 >98.5%), and paraceta­

mol at Sigma–Aldrich (>98%). Heptane and octanol were bought at

AnalaR NORMAPUR (>99%). They were used without further purifi­

cation.

Fig. 1. (a)  Ibuprofen, (b) paracetamol,  (c)  salicylic  acid,  (d) benzoic  acid,  (e) 4­

aminobenzoic  acid and (f)  anthracene.

3.2.2. Determination of the thermodynamic properties of the

solids

The  thermodynamic properties of the solids were determined by

Differential Scanning Calorimetry (Thermal Analysis Q2000 DSC).

The measuring method was a 1 ◦C per minute ramp from ambi­

ent temperature to 110 ◦C, 220 ◦C, 210 ◦C and 165 ◦C for ibuprofen,

paracetamol, salicylic acid and benzoic acid, respectively.

3.2.3. Solubility measurements

Solubility measurements were carried out in water with physi­

cal mixtures of enantiomers by the analytical shake­flask method,

using constant­temperature jacketed glass cells. A constant tem­

perature of 30 ◦C (±0.1 ◦C) was maintained with a circulating water

bath. The way of preparing the saturated solutions was slightly

modified compared to the classical method. Here, solubility was

determined by adding weighed quantities of powder mixture to a

known volume of distilled water, until crystals cannot be dissolved

anymore. Small amounts of solid (about 20 mg) were added each

time and no addition was performed before the solution was clear.

When the equilibrium was reached, solutions were stirred for 24 h.

The uncertainty of solubility determination, 1S, is lower than

5%.

4. Results

4.1. Experimental solubility and pure compound properties

Concerning the thermodynamic properties of the solids, the

experimental results of this work and found in the literature are

shown in Fig. 2, and the mean values and standard deviation are

presented in Table 1.

Table 1

Mean  values  and  standard  deviation  of  melting temperatures,  enthalpies  and 1Cp of ibuprofen,  paracetamol,  salicylic acid, benzoic  acid,  anthracene  and 4­aminobenzoic

acid from  DSC  experiments  (except  the last two)  and data  taken  from  the literature  [8,21,22,25,40–53].

Compound  1Hm (J/mol) Tm (K)  1Cp (J/(mol  K))

Ibuprofen [8,21,47,53]  25203.9  (1577)  347.88  (0.65)  48.8

Paracetamol  [22,43,45–47,49,50]  27470.6(1720.3)  442.1(0.47)  87.4

Salicylic  acid  [25,47] 24626.12(2652.4)  431.37(0.12)  None

Benzoic  acid  [40–42,44,48,51,52]  17350.34(774.7)  395.17(0.29)  58.43(0.81)

Anthracene  [47,52] 28790  (585.1)  489.18  (0.89)  6.28

4­Aminobenzoic  acid [47] 24030 461.65  –



Fig.  2. Melting enthalpy of  (a)  ibuprofen,  (b) paracetamol,  (c) salicylic  acid and (d) benzoic  acid as a  function  of the melting  temperature.

The experimental solubility data obtained in this work and from

the literature are given in Fig. 3. The experiment errors on the

solubility are from 1% to 4 %.

These solubility data will be used to test qualitatively and

quantitatively the thermodynamic models accuracy. The chosen

criterion chose to qualitatively evaluate the models is the preserva­

tion of the solubility ranking of an API in various solvents (Table 2).

This scale is defined, in this work, as an ordered list of solvents

from the solvent in which the API is the least soluble to most sol­

uble. Quantitatively, the model accuracy is evaluated by the mean

square error between the model prediction and the experimental

mole fraction solubility. The sensitivity of the models prediction to

the solid state properties (1Hm,  Tm and 1Cp) have also been taken

into account.

4.2. Original UNIFAC and modified UNIFAC

The mean square relative errors obtained for the solubility pre­

diction using UNIFAC and UNIFAC modified for all the solutes and

solvents tested are reported in Table 3. The experimental data

used are the same as in Fig. 3. For each solubility prediction, stan­

dard deviation will be computed using a  Monte Carlo method as

explained previously. These mean relative errors have been calcu­

lated using the following equation:

mse =
1

n

n
∑

i=1

(

xi predicted − xi experimental

xi experimental

)2

The mean square relative errors (mse) obtained range from 0.07 to

26.62 for UNIFAC and from 0.137 to 322 for UNIFAC mod. Some pre­

dictions in particular solvents induced high mse values, so that the

obtained numbers do not truly represent the quality of the mod­

els. For example, the upper part of the ranges decreases to 6.79

and 18.04 without chloroform. Despite the relative good results

obtained in the case of ibuprofen, benzoic acid or anthracene, it

can be stated that UNIFAC seems not able to predict quantitatively

the solubility. But, it is really interesting to compare the solubility

predicted orders of magnitude to the experimental, and in this way

to check if the methods give good approximations or not.

In  addition, the predictions obtained at lower temperatures

(20–25 ◦C) are much better than those obtained at higher tempera­

tures. The original UNIFAC solubility predictions of the considered

compounds as a function of the experimental are given in Fig. 4. The

behaviour observed for UNIFAC mod. is roughly the same. In this

paper, we use the term UNIFAC to discuss about both these mod­

els. In this figure, for one solute in one solvent, it can be observed

that the more the temperature increases, the less the predicted

solubility is accurate. In addition, the temperature dependence of

the binary parameters is introduced in UNIFAC, by a polynomial

�ij = aijT
2 + bijT + cij. Even if this approach gives good results for small

molecules and for VLE, it cannot represent the complexity of the

evolution of interactions and volumetric properties (density for

example) with temperature.

UNIFAC is a pair­wise additive model, thus the temperature evo­

lution of the specific interactions (like hydrogen bonds) cannot be

truly represented. Moreover, even if the binary interaction param­



Table  2

Experimental  solubility  logarithm  ranking  at  30 ◦C  and orders  of  magnitude  (in  solubility logarithm)  for  ibuprofen,  paracetamol,  salicylic acid and benzoic  acid in  various

organic  solvents.

Ibuprofen Paracetamol

Solvent Order  of  magnitude  Solvent  Order  of magnitude

Heptane  [−3;  −2]  Dichloromethane  [−9;  −8]

Cyclohexane [−2;  −1.5] Ethyl  acetate [−6; −5]

Ethanol  [−1.5;  −1]  Acetonitrile [−5;  −4]

Toluene Dioxane

Ethyl  acetate  Chloroform

Isopropanol Heptanol  [−4;  −3]

Acetone  Methyl ethyl ketone

Octanol [−1;  −0.5] Acetone

Chloroform Butanol

Propanol  [−3;  −2]

Ethanol

Methanol

Dimethyl sulfoxide  [−1]

Benzoic  acid  Salicylic acid

Solvent Order  of  magnitude  Solvent  Order  of magnitude

Hexane  [−5;  −4]  Cyclohexane [−8;  −7]

Cyclohexane  Hexane

Heptane Chloroform  [−7;  −6]

Acetonitrile  [−3;  −2]  Carbon  tetrachloride  [−6;  −5]

Caron  tetrachloride Xylene

Benzene Acetonitrile [−4;  −3]

Heptanol [−2;  −1.5]  Acetic acid  [−3;  −2]

Acetone  Methanol [−2;  −1.5]

Octanol  Ethyl  acetate

Isopropanol Ethanol

Butanol Octanol

N­Methyl pyrrolidone [−1.5; −1]  Acetone

Dioxane Ethyl  methyl ketone

Table  3

Prediction  errors  of  UNIFAC, COSMO­SAC  and NRTL­SAC  for  ibuprofen,  paracetamol,  benzoic  acid and salicylic  acid using Eqs. (4) and  5,  using solubility  data in  Table 2..

Compound  Model MS  error  Eq.  (5) Mean  standard  deviation MS  error Eq.  (4)

Ibuprofen UNIFAC 0.07 11%  0.104

UNIFAC mod. 0.137  15%  0.079

COSMO­SAC 1.150  8%  1.307

NRTL­SAC lit.  0.201  12%  0.276

NRTL­SAC this  work 1  0.202  10%  –

NRTL­SAC this  work 2  0.165  13%  –

Paracetamol  UNIFAC  2.306  31%  58.67

UNIFAC mod. 1.165  30%  3.780  (0.754 b)

COSMO­SAC  25.187  19%  309 (166 b)

NRTL­SAC  lit.  0.367  26%  0.509

NRTL­SAC this  work 1  76  (0.9 b)  –  –

NRTL­SAC this  work 2  0.805  (0.250 b)  27%  ­

NRTL­SAC this  work 3  9.034  (2.750 b) –  –

Salicylic  acid  UNIFAC  26.62  (0.195 a)  29%  –

UNIFAC mod. 322  (3.01a)  36%  –

COSMO­SAC 15.03  (5.01a)  66%  ­

NRTL­SAC lit.  125  (0.451 a)  44%  –

NRTL­SAC this  work 361 (0.436 a)  49%  –

NRTL­SAC this  work 409  (0.590a)  63%  –

Benzoic  acid  UNIFAC  0.180  9%  1.077

UNIFAC mod. 0.439  8%  0.572

COSMO­SAC 1.136  33%  1.932

NRTL­SAC lit. 0.107 9%  –

NRTL­SAC this  work 0.114  9%  –

4­Aminobenzoic  UNIFAC  6.790  –  –

acid  UNIFAC  mod. 18.04  –  –

COSMO­SAC 8.50  –  –

NRTL­SAC this  work 0.672  –  –

Anthracene  UNIFAC  0.247  11%  0.506

UNIFAC mod. 0.808  12%  1.388

COSMO­SAC 3.203  19%  3.80

NRTL­SAC this  work 3.631  19%  –

a mse  without  chloroform.
b mse without  dichloromethane.



Fig.  3. Experimental  solubility of (a)  ibuprofen [20,21],  (b) paracetamol  [22], (c)  salicylic acid  [23–27], (d)  benzoic  acid [28–30],  (e)  4­aminobenzoic  acid [31–34]  and (f)

anthracene  [35–39]  in  various solvents  as a function of  the  reverse  temperature (van’t  Hoff plot).

eters are temperature dependent (9mn), the molecular geometry

and isomerism are not taken into account. As mentioned in the

literature [5,8], the predicted solubility of organic molecules in

non polar solvents (heptane, cyclohexane, and toluene) are in good

agreement with the experimental data. In the case of polar sol­

vents, capable of forming hydrogen bonds, we found the solubility

to be always underestimated for the chosen solvents. In addi­

tion,  in the case of solubility in alcohols, the orders of magnitude

of the predicted solubilities are very close. This probably means

that in UNIFAC, the pair­wise interaction coefficients involving the

OH group is predominant over the interaction coefficients of the

aliphatic chains (–CH2–CH3,  ­CH3 groups). The solubility orders of

magnitude, shown in Table 4, seems to confirm this statement.

From a qualitative point of view, the obtained solubility ranking



Fig.  4. UNIFAC  predictions  of (a)  ibuprofen,  (b) paracetamol,  (c) salicylic  acid,  (d) benzoic  acid,  (e)  4­aminobenzoic  acid and  (f)  anthracene with Eq. (5) as a  function of  the

experimental  solubility.

of the studied molecules are given in Table 4. This table shows that

for large solubility values (x > 0.05), UNIFAC gives satisfactory qual­

itative results for predicting solubility order of magnitude and the

solubility ranking is almost preserved. For paracetamol, original

UNIFAC has difficulties to predict solubility lower than 0.05. The

predicted orders of magnitude are not in agreement with experi­

mental data.

4.3. COSMO­SAC

From the results, presented in Fig. 5 and Table 5, it can be stated

that COSMO­SAC gives poor results in the solubility prediction of

the drugs tested. The mean square errors range from 1.15 to 25,

depending on the molecule and on the pure component proper­

ties chosen. Not surprisingly, the relative deviation is particularly



Table  4

Original  UNIFAC  solubility  ranking  at  C  or  30 ◦C  and  orders  of  magnitude  (in solubility  logarithm) for  ibuprofen,  paracetamol,  salicylic acid and  benzoic  acid in  various solvents.

Ibuprofen  Paracetamol

Solvent  Order  of magnitude  Solvent  Order  of magnitude

Heptane  [−3;  −2]  Dichloromethane  [−9;  −8]

Cyclohexane  [−2;  −1.5]  Dioxane  [−5]

Ethanol  Heptanol

Isopropanol [−1.5; −1] Acetonitrile [−5; −4]

Octanol DMSO

Toluene  Methanol

Ethyl acetate  Butanol

Acetone Ethyl  acetate

Chloroform Propanol

Methyl  ethyl  ketone

Ethanol

Acetone  [−4;  −3]

Chloroform [−3;  −2]

Benzoic  acid Salicylic acid

Solvent  Order  of magnitude  Solvent  Order  of magnitude

Hexane [−5;  −4]  Hexane  [−9;  −8]

Heptane  Cyclohexane

Cyclohexane Carbon  tetrachloride

Carbon tetrachloride  [−4;  −3]  Xylene  [−7;  −6]

Benzene  [−3;  −2]  Chloroform  [−3]

Octanol Acetic  acid

Isopropanol Acetonitrile

Acetonitrile Octanol  [−3;  −2]

Butanol  Ethyl  acetate

Heptanol Ethyl  methyl  ketone

Dioxane [−2;  −1] Acetone [−2;  −1.5]

Acetone  Ethanol

N­Methyl pyrrolidone Methanol

Table  5

COSMO­SAC  solubility  ranking  at  30 ◦C  and orders  of magnitude  (in  solubility logarithm)  for ibuprofen,  paracetamol,  salicylic  acid and benzoic  acid in various  solvents.

Ibuprofen  Paracetamol

Solvent Order  of magnitude Solvent Order  of magnitude

Heptane  [−3;  −2.5]  Dichloromethane  [−6;  −5]

Cyclohexane  [−2]  Chloroform  [−5;  −4]

Toluene  [−1.5;  −1]  Acetonitrile  [−3;  −2.5]

Chloroform  Ethyl  acetate

Ethyl acetate [−1;  −0.5]  Heptanol

Octanol Butanol  [−2.5;  −2]

Ethanol  Methanol

Isopropanol Propanol

Acetone Dioxane  [−2;  −1.5]

Ethanol

Methyl ethyl  mketone

Acetone

Dimethylsulfoxide  [>  − 1]

Benzoic  acid  Salicylic  acid

Solvent  Order  of magnitude  Solvent  Order  of magnitude

Heptane  [−5.5;  −5]  Hexane  [−6;  −5]

Cyclohexane Cyclohexane

Hexane  Carbon  tetrachloride

Isopropanol [−5;  −4]  Xylene  [−4]

Carbon  tetrachloride  [−4;  −3]  Chloroform  [−4;  −3]

Benzene  [−3;  −2]  Acetic  acid [−3;  −2]

Acetonitrile  [−2;  −1]  Acetonitrile  [−2;  −1.5]

Octanol  [−1;  −0.5]  Ethyl  acetate  [−1.5;  −1]

Butanol  Methanol

Dioxane Octanol

Acetone Ethanol  [>  − 1]

N­Methylpyrrolidone [>  −  0.5] Acetone

Dimethylsulfoxide Ethyl  methyl  ketone



Fig.  5. COSMO­SAC  prediction  of (a) ibuprofen,  (b) paracetamol,  (c) salicylic  acid, (d) benzoic  acid,  (e)  4­aminobenzoic  acid and (f)  anthracene with Eq.  (5)  as a  function  of

experimental  solubility.

high in solvents in which solubility is very low, e.g. paracetamol in

ethyl acetate. As in the case of UNIFAC, the model gives satisfac­

tory results with aprotic and apolar solvents (hexane, heptane, and

chloroform). On the opposite, in polar solvents capable of forming

hydrogen bonds (alcohols, ketones, esters,. .  .)  with the solute, the

predicted solubility is systematically overestimated. In addition, it

can be noticed that the predicted solubility values of a  molecule

in  alcohols are always nearly the same, whatever the size of the

alcohol molecule (see orders of magnitudes in Table 5).

As  previously achieved for the UNIFAC model, the predictions

obtained at the lower temperatures (20–25 ◦C) are much better

than the one obtained at higher temperatures (Fig. 5). In this model,

the electrostatic and hydrogen bonds parameters are not temper­

ature dependent.



From a qualitative point of view (Table 5 and Fig. 5), COSMO­

SAC is quite reliable for the solubility prediction of the most simple

molecules, like alkanes. This model overestimates solubility in alco­

hols and ketones and leads to a non reliable solubility scale. In

addition, the orders of magnitude are twice the experimental in

most cases. Considering solubility ranking, this model is not as good

as UNIFAC. To evaluate the influence of hydrogen bond on the pre­

dicting capabilities of COSMO­SAC, the hydrogen bond is excluded

from the model, setting the constant for the hydrogen bonding

interaction (chb) to zero. This constant appears in the calculation

of the segment activity Ŵ, in the expression of the electrostatic

interactions.

The results are shown in  Fig. 6 and it can be seen that the

predicted solubilities are underestimated in polar solvents. The

model predictions are in good agreement with the solubility of

polar molecules in polar solvents, which is higher than ideal, mainly

results from specific interactions like hydrogen bonds. In addition,

the results obtained with and without hydrogen bonds also suggest

that in COSMO­SAC the hydrogen bond contribution is overesti­

mated. The chb constant is an adjustable parameter which has been

optimized upon many VLE data of small organic molecules. How­

ever, the organic molecules in our study are much larger, flexible,

and contain h­bonding surfaces that are burried or hindered so that

h­bonds cannot form. Then, it is likely that such surfaces shall not be

included in the h­bond term in the model. It would be very interest­

ing to re­optimize this term for large organic molecules using SLE

data (providing that enough experimental data are available). Even

if Eq. (4) is considered, this does not improve the results as the 1Cp

term increases the predicted solubility (see Section 4.5). In addition,

even if stereoisomerism can be taken into account in COSMO­SAC

(each isomer has its own sigma profile), molecular self and cross

associations are not considered. It is well known that ibuprofen

forms hydrogen­bonded dimer in solution: two composed of the

same enantiomers of R–R and S–S and the racemate of R–S. The

self­association of drug molecules may decrease the number of free

molecular sites available to form hydrogen bonds with the solvent,

which may explain the overestimation of the contribution of hydro­

gen bonds to the calculation of the activity coefficient. Such effects

are also found for benzoic acid (Self­association and hydration of

Fig.  6. COSMO­SAC  prediction  of  paracetamol  in  ethanol  and methanol  with  hydro­

gen bonds (straight  lines), and no  hydrogen bonds  (dashed  lines) as a function of

the temperature  using Eq.  (5).

benzoic acid in benzene [54] or in a less extent for carboxylic acid

like aspirin).

At last, even if the predicted solubility is quantitatively far

from the experimental data, Fig. 6 shows that the model nicely

predicts the solubility temperature dependence. For designing a

crystallization process, the one of the most important parameter

is the supersaturation: the driving force of the process, defined as

the ratio between the initial and final concentration (S = C/C*). For

instance, as shown in Fig. 6, the experimental supersaturation for

paracetamol in methanol from 30 ◦C to 0 ◦C  is S = 1.54 and the pre­

dicted is S = 1.5 (similar results are obtained for all the molecules

tested in the paper in small alcohol molecules).

Table  6

NRTL­SAC  segments  when 1Cp is  neglected  (Eq.  (5)).

Compounds  X  Y−  Y+  Z mse  Number  of solvents

Ibuprofen  [55]  1.038  0.051  0.028 0.318  1.055  19

Ibuprofen  (this  work 1)a 0.507  0.297  0.350 0 0.005  6

Ibuprofen  (this  work 2)b 0.484  0 0.267  0.210 0.0188  9

Paracetamol  [56] 0.498  0.487  0.162  1.270  –  8

Paracetamol  [7] 0.416  0.016  0.168  1.86  –  5

Paracetamol  (this  work 1)c 0.265  0.576  0.668  0.717  0.029  6

Paracetamol  (this  work 2)d 0.369  0.618  0.521  1.095  0.859  14

Paracetamol  (this  work 3)e 0.275  1.036  1.159  0.777  0.033  6

Salicylic  acid  [55] 0.726  0.176  0 0.749  0.774  18

Salicylic  acid  (this  work 1)f 0.911  1.762  0.129  0.329  0.182  6

Salicylic  acid  (this  work 2)g 1.006  2.29  0 0.451  0.0617  6

Benzoic  acid [17] 0.524  0.089  0.45  0.405 0.160  7

Benzoic  acid [55] 0.494  0 0.336  0.468  0.292  26

Benzoic  acid (this  work)h 0.576  0 0.121  0.543  0.144  6

4­aminobenzoic  acidi 0  0 4.229  2.321  0.222  5

Anthracenej 1.486  0 0 0.564  0.180  5

a In  acetone,  cyclohexane,  chloroform,  ethanol,  octanol  and ethyl  acetate  at  30 ◦C.
b In  all the  solvent  considered  in this  study  (see  Fig.  3)  at  30 ◦C.
c In  acetone,  ethyl  acetate,  chloroform,  toluene,  ethanol and water at  30 ◦C.
d In  all the  solvents  of  this work (see  Fig.  3)  at  30 ◦C.
e In  ethanol, propanol,  acetone,  methyl  ethyl  ketone,  water and toluene  at  30 ◦C.
f In  ethanol, ethyl  acetate, cyclohexane,  acetone, acetonitrile  and xylene  at  30 ◦C.
g In  ethanol, ethyl  acetate, acetone,  xylene, acetonitrile  and water at  30 ◦C.
h In  cyclohexane,  acetonitrile,  1­butanol, benzene,  n­methyl  pyrrolidone and  water,  at  30 ◦C.
i In  ethyl acetate,  ethanol, dimethoxyethane,  THF and  dioxane,  at  30 ◦C.
j In heptane, acetonitrile,  1­octanol,  methylethylketone,  ethyl  acetate,  toluene  and DMF  at  30 ◦C.



4.4. NRTL­SAC

To test the prediction abilities of NRTL­SAC, the segments val­

ues (X, Y−, Y+ and Z) were taken from the literature [7,55,56]. It

can be noticed that segment values found in the literature can sig­

nificantly differ for the same compound. For instance, as shown in

Table 6, Chen and Crafts [56] and Mota et al. [7] have published

different segment values for paracetamol. These differences can be

not only due to the values used for the pure component parame­

ters (1Hm, Tm, and 1Cp) determined experimentally or regressed

simultaneously with the segments, but also due to the nature and

the number of solvents used in the regression.

In order to test the model sensitivity to the quadruplet [X Y−

Y+ Z], calculations were performed with different solvents for all

the solutes in order to obtain new values. All these new values and

the corresponding mean square errors are given in Table 6. The

sensitivity of the model to the experimental solid state properties

is performed using the Monte Carlo method.

From a quantitative point of view, the model gives results with

a mse ranging from 0.107 to 409 or 3.63 when neither chloro­

form nor dichloromethane are considered (see Table 3). NRTL­SAC

predictions using [55] segment values versus experimental solu­

bility is represented in Fig. 7, and using segment from this work in

Fig. 8 (quadruplet 1 for ibuprofen, quadruplet 2 for paracetamol and

quadruplet 2 for salicylic acid). Due to the empirical nature of the

model, NRTL­SAC seems to be less affected by errors on the ther­

modynamic properties than the other models. The results obtained

are in good agreement with the experimental data, and most of the

results are beneath a mse of 4. However, the ms errors seem quite

high to do quantitative predictions.

The model accuracy of the results strongly depends on the

quadruplets [X Y− Y+ Z] used as parameters. In fact, the choice of

these parameters is a  critical step to use this model.

The segments values can be understood as a weight given to each

molecule behaviour: hydrophilic, hydrophobic, polar attractive and

repulsive. They represent a “mean behaviour” of the molecule in

solution computed using experimental data. These values depend

on the quality and quantity of the solubility data used to regress

the four parameters. They will not represent the real behaviour of

the API in all the solvents if the experimental data are not taken

judiciously. However, the choice of the experimental data is not

obvious. NRTL­SAC using segments calculated in some alcohols

will not necessarily give good predictions in other alcohols and it

gives even worse results in other solvent like ketones or alkanes.

Some tests performed on paracetamol showed that the predictions

obtained using the parameters regressed using four solubility data

in propanol and butanol (two temperatures) gave the same results

as those obtained with quadruplet 3 of this work. In fact, all alcohols

Fig.  7. NRTL­SAC  prediction of (a)  ibuprofen,  (b) paracetamol,  (c)  salicylic  acid,  (d)  benzoic  acid, (e) 4­aminobenzoic  acid  and (f)  anthracene  with Eq.  (5) using segments from

the  literature  as a  function  of experimental  solubility.



Fig.  8. NRTL­SAC  prediction  of (a) ibuprofen,  (b) paracetamol,  (c) salicylic acid, (d) benzoic  acid,  (e)  4­aminobenzoic  acid and (f)  anthracene with Eq.  (5)  using  segments  from

this  work (this  work 1 for  ibuprofen,  2  for  paracetamol,  1  for salicylic  acid and 1  for  benzoic  acid)  as a  function of experimental  solubility.

do not have the same weight on each segment number. Even if their

quadruplets may indicate a close behaviour tendency, they can also

be quite different. In addition, the use of a large experimental data

set increases the model performance and reliability.

In order to show the influence of the segment values used in this

study, four types of ibuprofen solubility predictions in ethanol are

reported in Fig. 9.

To end with the solvent selection and in order to get the most

reliable regression, the idea is to select the solvent so that the

weight of each segment is the same:

∑

i

Xi =

∑

i

Y+

i
=

∑

i

Y−

i
=

∑

i

Zi (17)



Fig.  9. NRTL­SAC  prediction  of  paracetamol  in ethanol using four different  segment

quadruplets as  a function  of the temperature.

with i the subscript for the solvent. In this way, all the behaviour of

the solute molecules will be investigated with the same weight.

This  method is still in study, but we tried to find the best sol­

vents for the paracetamol regression. To do that, we take all the

solvents investigated by [17] and we forced this sum to be greater

than 1 (to have each segment number represented with enough

weight). The calculation, made with version 23.6.5 of GAMS soft­

ware, gave a total of 10 solvents (chloroform, 1,2­dichloroethane,

1,4­dioxane, ethanol, formamide, formic acid, isobutylalcohol,

nitromethane, 1­propanol and water) to reach a  maximum devi­

ation of 0.002. If we regressed the segment numbers of these

solvents, the mean square error would be higher than the mse

obtained in Table 6 because of the diversity of the solvent used.

But, the obtained quadruplet should be more suitable as the mean

behaviour should be better represented. Further studies are still

in progress.

Even if the prediction differs quantitatively from a quadruplet

to the other, NRTL­SAC gives good orders of magnitude whatever

the segments used (see Tables 7 and 8). Moreover the solubility

ranking is preserved.

As  shown in Figs. 7 and 8 in the case of ibuprofen, solubil­

ity predictions for temperatures above 25 ◦C are less accurate. In

this model, the influence of temperature on solubility is underes­

timated, especially when hydrogen bonds are involved. This could

be explained by the fact that the solubility dependence on tem­

perature being related to the solid state properties, and not on the

possible evolution of molecular interactions (hydrogen bond, Van

der Waals, dispersion forces,. .  .)  between molecules in solution.

To conclude on NRTL­SAC, this model can be useful to give an

estimation of the solubility of APIs in various solvents. But it needs

reliable segment values for quantitative purpose and needs exper­

imental data.

4.5.  The right melting enthalpy or temperature and the use of

1Cp

In the case of SLE, equilibrium equation can be Eq. (4) or

Eq. (5). Eq. (4) is the most rigorous, but, usually, the 1Cp term

Fig. 10.  UNIFAC  prediction of  paracetamol  using different  thermodynamic  prop­

erties [23,34,35,37]  in ethanol (upper  side)  and  ethyl  acetate  (down  side) with

(a) 1Hm = 27,  100 J/mol,  Tm =  443.6 K, (b) 1Hm = 27,  100 J/mol,  Tm =  443.15  K, (c)

1Hm = 28,  100 J/mol,  Tm =  441.15  K, (d)  same as  ’b’  with 1Cp = 99.8  J/mol  K, (e)  same

as  ’c’ with 1Cp =  99.8  J/mol  K, (f) same  as ’a’ with 1Cp =  75  J/mol  K.

is neglected and Eq. (5) is used. Even if Gracin et al. [5] have

found a small influence of the 1Cp term with UNIFAC model,

the two equations will be compared using all the models pre­

sented previously. In addition, the significance of the values of

the pure compound properties has to be underlined. Measuring

accurately the melting temperature and enthalpy may be difficult,

since it relies on product crystallinity, purity and on the analyt­

ical method used. As presented in Table 1 many different values

have been reported in the literature. In Figs. 4, 5, 7 and 8, stan­

dard deviations of the models caused by properties errors have

been presented. So, when a model is used for predicting solu­

bility, its error has to be taken into account, and the measured

Tm, 1Hm and 1Cp have to be as accurate as possible. Neverthe­

less, prediction errors induced by the models are usually larger

then the ones induced by the solid state property uncertain­

ties.

As shown in Fig. 10, it can be seen that a higher melting

enthalpy implies a higher predicted solubility. The same behaviour

is observed for higher 1Cp. Moreover, in the case of polymorphism

(like paracetamol), the use of the wrong melting enthalpy, tem­

perature or 1Cp can cause bad predictions or misinterpretations

(paracetamol presents at least two polymorphs with close melting

temperature and enthalpy).



Table  7

NRTL­SAC  solubility  ranking  at  30 ◦C  and orders  of magnitude  (in  solubility  logarithm)  for  ibuprofen,  paracetamol,  salicylic  acid and  benzoic  acid in various  solvents  using

segments  from  the literature.

Ibuprofen  Paracetamol

Solvent  Order  of  magnitude  Solvent  Order  of  magnitude

Heptane  [−2] Dichloromethane  [−8;  −7]

Acetone  [−2;  −1.5] Chloroform

Cyclohexane Ethyl  acetate [−6; −5]

Toluene Methylethylketone

Octanol  Acetonitrile

Ethanol  Acetone  [−5;  −4]

Ethyl  acetate  Dioxane

Isopropanol  [−1.5;  −1]  Propanol  [−3;  −2.5]

Chloroform [3  × 10−1 to  4  × 10−1] Methanol

Butanol

Ethanol

Dimethylsulfoxide [−2.5; −2]

Benzoic  acid Salicylic  acid

Solvent  Order  of  magnitude  Solvent  Order  of  magnitude

Heptane [−5; −4]  Hexane  [−8;  −7]

Hexane  Cyclohexane

Cyclohexane  Carbon  tetrachloride  [−7;  −6]

Carbon  tetrachloride  −3 Xylene  [−6;  −5]

Benzene  [−2.5;  −2]  Acetonitrile  [−4;  −3]

Acetonitrile Ethyl  methyl  ketone

Butanol  [−2;  −1.5] Ethyl  acetate

Octanol Acetone  [−4;  −3]

Isopropanol  Octanol

Acetone  Methanol

Dioxane [−1.5; −1] Acetic acid [−3; −2]

N­Methyl  pyrrolidone  Ethanol

Dimethylsulfoxide [>  − 1] Chloroform

Table  8

NRTL­SAC  solubility  ranking  at  30 ◦C  and orders  of magnitude  (in  solubility  logarithm)  for  ibuprofen,  paracetamol,  salicylic  acid and  benzoic  acid in various  solvents  using

segments  calculated  in  this  study  (this  work 1  for  ibuprofen,  2  for paracetamol,  1  for  salicylic acid and 1  for  benzoic  acid).

Ibuprofen  (this  work 2)  Paracetamol (this  work 2)

Solvent  Order  of magnitude  Solvent  Order  of magnitude

Heptane  −2  Dichloromethane  [−7;  −6]

Cyclohexane Ethyl  acetate  [−6;  −5]

Ethanol  [−1.5;  −1]  Ethyl  methyl  ketone

Toluene  Acetonitrile [−5;  −4]

Acetone  Chloroform

Isopropanol Acetone  [−4;  −3]

Ethyl  acetate  Dioxane

Chloroform Propanol  −3

Octanol  Butanol

Ethanol [−3;  −2.5]

Methanol

DMSO [−2.5;  −2]

Benzoic  acid  (this  work  2)  Salicylic acid

Solvent Order  of magnitude Solvent Order of magnitude

Heptane  [−4.5;  −4]  Hexane [−9;  −8]

Cyclohexane  Cyclohexane [−8;  −7]

Hexane  Carbon tetrachloride  [−6;  −5]

Carbon  tetrachloride  [−4  ;  − 3]  Xylene [−5  ; −  4]

Benzene  [−3  ;  − 2]  Acetonitrile [−4;  −3]

Acetonitrile  Ethyl  acetate  [−3;  −2]

Acetone  [−2;  −1.5]  Acetone

Octanol Ethyl  methyl  ketone

Dioxane  Methanol [−2;  −1.5]

Butanol Octanol

Isopropanol  Acetic acid

N­methyl pyrrolidone [−1.5; −1]  Ethanol

Dimethylsulfoxide [>  −  1]  Chloroform



Fig.  11.  Coefficient  B as a  function  of Tm/T.

To evaluate the impact of neglecting the 1Cp term in the SLE on

solubility prediction, relative value of the two parts, constituting

Eq. (4), can be compared using the following equation:

1hm(Tm)
(

1
Tm

−
1
T

)

1Cp(Tm)
(

ln( Tm
T )  −

Tm
T + 1

) (18)

Then, we will rewrite:

1Hm

1CpTm
×

1 −
Tm
T

[

ln( Tm
T ) −

Tm
T + 1

] = A × B (19)

If |AB| ≪ 1, then the second part of Eq. (4) cannot be neglected,

and if the ratio is high enough, it may be neglected (see example

in Fig. 11). The A term is constant and only depends on the ther­

modynamic properties of the solid state. The B  term is a function of

temperature as shown in Fig. 11.

Considering that for a standard crystallization operation,

the running temperature is around 290 K. At this temperature,

B = − 11.33 and A = 1.48 for ibuprofen, and B = − 5.10, A = 0.71 for

paracetamol. The definition of a relative error enables to estimate

the effect by neglecting the 1Cp term:

relative error (% ) =
1

AB − 1
(20)

In the case of these two molecules, this error is about 6% for the

ibuprofen and 22% for the paracetamol. We can conclude that the

1Cp term is negligible in the case of ibuprofen, and not in the case

of paracetamol.

5. Conclusion

To conclude, none of the models presented in this paper is able to

predict precisely the solubility of the studied molecules (containing

various common functional groups like alcohols, ketones, amines)

in various solvents. Even considering the model errors most of the

times taken by the imprecision on the pure solid properties, the

predicted solubility are generally in agreement with experimental

data (Ibuprofen with Original UNIFAC, some solutes with NRTL­

SAC). COSMO­SAC predictions usually produce higher values than

the experimental, especially when hydrogen bonds may occur. UNI­

FAC is more accurate than COSMO­SAC for the API in this study

and gives good results for simple molecules (anthracene). How­

ever, even if the solubility orders of magnitude are preserved, it

is not good enough for performing quantitative predictions. In the

case of NRTL­SAC, predictions are very dependent on the parame­

ters used (segment values). If these parameters do not represent the

correct behaviour of the API in the solvent chosen, the results will

not be satisfying. Finally, UNIFAC and NRTL­SAC, which preserve the

solubility orders of magnitude can be a good complement of exper­

imental techniques to guide the choice of a crystallization solvent.

But in the end, experiments are still required to obtain quantitative

results.

In addition, all the models tested fail to correctly describe the

solubility dependence with temperature. The use of an equation of

state seems to be more appropriate for predicting the evolution of

solubility with temperature [57,58].

Results presented in this paper also show that the use of the

most precise equilibrium equation does not significantly influence

the quality of the results. As the models are not accurate enough,

the use of the most accurate thermodynamic properties values is

not necessary. Moreover, the 1Cp term can be ignored as long as

the generated error is negligible regarding the model error. But, in

the hypothetical case of a perfect model, the most precise values

should be used.
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