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a b s t r a c t

Collisional phenomena in a solid–liquid flow were studied in terms of two parameters: the collision fre-

quency and the coefficient of restitution. Experimental measurements of these parameters were con-

ducted inside a liquid fluidized bed by particle tracking in an index-matched array. Collision detection

was based on the use of a peak acceleration threshold of the instantaneous speed of colored tracers.

The measurements of collision frequency were compared with the theoretical expression derived from

the kinetic theory for granular flow (KTGF). The normal and tangential restitution coefficients were mea-

sured from the trajectories before and after contact for both particle–particle and particle–wall collisions.

A comparison with previous theoretical and experimental works is presented and discussed.

1. Introduction

A particulate flow is composed of two phases: a dispersed solid

phase and continuous fluid (gas or liquid) phase. These flows are

frequently found in many industrial applications and also in vari-

ous natural phenomena. Despite their prominence, a general

understanding of their mechanical behavior is still not widely ac-

cepted. One of the issues that make the physical description of par-

ticulate flows to be difficult is the effect of the solid phase. Early on,

Bagnold (1954) discussed that particles affect the rheology of such

flows in two different manners depending on the role that particles

played in the flow. If the viscous effects are dominant, the effect of

the particles is to ‘simply’ modify the bulk viscosity of the flow (the

so-called macro-viscous regime); on the other hand, if the effect of

interstitial fluid is negligible, the particles collide against them-

selves (collisional regime) and the behavior can be described using

a kinetic theory approach. Although recently the experimental

measurement of Bagnold have been questioned (Hunt et al.,

2002), his original arguments remain paradigmatic.

In particular, for the case of solid–liquid particulate flows it is

unclear when can the collisional effects can be considered domi-

nant. When the fluid has a finite viscosity, the hydrodynamic force

diverges as the distance between surfaces vanishes (Brenner,

1961). However, Joseph et al. (2001) showed that if the particle

has sufficient inertia, a collision can occur. The dominant dimen-

sionless group that determines if the particle is to collide or not

is the Stokes number, which is defined as

St ¼
qpVdp

9lf

ð1Þ

where qp, V and dp are the density, velocity and diameter of the par-

ticle, respectively, and lf is the fluid viscosity. The number 9 in the

denominator is kept by convention. This number compares the par-

ticle inertia with viscous forces. Additionally, when the elasticity of

the solid particle is considered, the elasticity parameter needs to be

considered (Davis et al., 1986).

There have been several attempts to use the kinetic theory for

granular flows (KTGF), which is based on the hypothesis that

particles interact through collisions, to study particulate flows

(Simonin, 1991; Ding and Gidaspow, 1990; Koch, 1990). The rele-

vance of statistical models issued from KTGF for the description

of the particular case of a liquid fluidized bed has been demon-

strated for the case of large but finite Stokes numbers (Gevrin

et al., 2008; Aguilar, 2008) (10 < St < 100). The pertinence of this

type of kinetic theory model was shown by Aguilar (2008) for

the prediction of the mean energy level evolution as a function

of the solid fraction. In these models, however, collisions are de-

scribed in the same way as in a dry granular media, i.e. at infinite

Stokes number, where the influence of the interstitial fluid is not

accounted for. The liquid fluidization of large particles lies in the

transition regime between low Stokes number regime, where

hydrodynamic forces are dominant and large Stokes number

controlled by collisions. Moreover, solid–liquid flow numerical

simulations will always need realistic (repulsive) interaction mod-

els between particles when the inter-particle distance becomes

smaller than a single grid cell (Joseph and Hunt, 2004).

In order to fully elucidate the validity of these models, a direct

assessment of the collisional motion within a solid–liquid flow
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needs to be conducted. This is the main purpose of the present

investigation. To do this we have decided to use a liquid fluidized

bed. In such a system, a bed of solid particles is suspended by an

upward liquid flow. Beyond a certain liquid flow rate threshold,

the particles are fluidized as the bed expands but their mean veloc-

ity remains close to zero. In this state, however, the particles have a

significant agitation which is a caused by either collisions or hydro-

dynamic forces. Hence, particle–particle and particle–wall colli-

sions are inherent of a fluidized bed description. They influence

the overall agitation level through the transport properties (colli-

sional viscosities) and they contribute to the fluctuating kinetic en-

ergy dissipation rate. Also, collisions in a fluidized bed play an

important role in transfer phenomena. Contact between particles

and walls may also have consequences as erosion and debris sed-

imentation or film depositions and thickening on solid surfaces

(Ben-Ammar et al., 1992; Nore, 1992; Del Pozo et al., 1993).

Two main parameters characterize collisions in a liquid-

fluidized bed: the collisional frequency (fcoll) and the normal resti-

tution coefficient (ec). The determination of these parameters has

been the subject of multiple studies in the past, most of them ded-

icated to the normal restitution coefficient. Joseph et al. (2001)

studied normal particles collisions against immersed walls for a

large range of Stokes numbers. Their results suggest that the nor-

mal restitution coefficient is an increasing function of the Stokes

number (based on the impact velocity, St = qpVimdp/(9lf)). Joseph

and Hunt (2004) addressed the case of oblique collisions. They

were able to generalize the dependency of the normal restitution

coefficient as a function of the Stokes number based upon the nor-

mal component of the wall impact velocity (St = qpVN,imdp/(9lf)),

ranging between 30 and 4000. More recently, Yang and Hunt

(2006) measured binary normal collisions between spheres of dif-

ferent diameters and confirmed the normal restitution coefficient

evolution as a function of Stokes number based on the relative

velocity component projected in the direction defined by their cen-

ter of mass. Their results are in excellent agreement with those

corresponding to particle–wall interaction (normal or oblique).

Moreover, all these experimental investigations showed the exis-

tence of a critical Stokes number (i.e. a critical impact velocity). Be-

low this threshold, collisions are dampened by the interstitial

liquid and do not lead to a rebound (ec = 0). This critical Stokes

number is about 10 ± 5.

Based on a dampened mass-spring model, Legendre et al. (2006)

proposed a simple correlation for the normal restitution

coefficient:

ec
ecmax

¼ expðÿ35=StÞ ð2Þ

where ecmax is the maximum (dry) coefficient of restitution. In this

case, the Stokes number was based on the normal ‘‘unperturbed’’

impact velocity, V1, and on the particle added mass (qeff = qp +

0.5qf). This correlation (Eq. (2)) covers an important number of

experimental data found in the literature for collisions of solid

and fluid particles with solid walls submerged in liquids. Legendre

et al. also proposed a correlation for the collision contact time,

which is proportional to the contact time in vacuum (Hertzian con-

tact) but increases slightly with Stokes number. For solid particle–

wall collisions in a liquid, the contact time remains small compared

to the relaxation time of the particle. This result shows that the col-

lision can be described like a trajectory discontinuity, using of a

coefficient of restitution.

The collision frequency measurement in fluidized beds has re-

ceived less attention than the restitution coefficient. Del Pozo

et al. (1993) have measured the collision frequency in both gas

and liquid fluidized beds, using an electro-chemical particle gauge,

a technique initially intended to measure the mass transfer

between phases. Although quantitative measurements cannot be

obtained from this study, it is clear that the collision frequency is

an increasing function of the solid fraction, which reaches a maxi-

mum at the minimum fluidization velocity (i.e. for the largest solid

fraction in a fluidized regime). The first investigations on this sub-

ject were performed by Zenit et al. (1997), who measured the gran-

ular pressure at the wall for a large range of operating conditions

(solid fractions and Stokes numbers), by means of a piezo-electric

sensor. These data have been largely validated by other studies

(Gevrin et al., 2008; Buyevich, 1997; Wang and Ge, 2005); how-

ever, the collision frequency and its evolution with solid fraction

was not reported. Buffière and Moletta (2000), using the technique

developed by Zenit et al. (1997), measured the collision frequency

at the wall in a three-phase (gas–liquid–solid) fluidized bed. They

observed an increasing evolution of the frequency as a function of

the solid fraction which showed a maximum at about 20%. This

surprising (and counter-intuitive) result contradicts the evolution

predicted by the kinetic theory and rests, to date, unexplained.

In the present work, we have measured both the normal coeffi-

cient of restitution and the collision frequency within a liquid flu-

idized bed. We opted for a liquid fluidized bed as a model system

for liquid–solid flows because the mean velocity of the solid phase

is zero; this feature allows us to study the fluctuating motion of

particles. The objective of this study is to measure ‘‘simulta-

neously’’ the collision frequency in the core of the bed as a function

of the solid fraction, as well as the normal restitution coefficient

between the particles and the bed walls. Instead of a parametric

study of the restitution coefficient in a well controlled arrange-

ment, our intention is to verify the applicability of such a concept

in a liquid–solid flow by obtaining in situ measurement. In other

words, we would like to verify that the time and velocity scales

of the random particle motion in the fluidized bed are compatible

with the notion of the restitution coefficient during a collision (tra-

jectory discontinuity). This concept is relevant for high Stokes

number flows (dry media); however, for finite but moderate Stokes

numbers the validity of such concept still needs to be verified

experimentally. Such validation has not been reported in the liter-

ature to date.

2. Experimental set-up

2.1. Particles and fluid

Calibrated 6 mm Pyrex beads were fluidized by a concentrated

aqueous solution of Potassium Thiocyanate (KSCN, 64% w/w). At

20 °C, the fluid and the particles have the same refractive index

(nD ’ 1.474), so that a tagged particle can be tracked individually

in a nearly transparent suspension. In fact, due to the non-homoge-

neous structure of the beads, there is a slight refractive index mis-

match: the particles are never completely invisible within the

solution. This fact limits the range of particle concentration that

can be investigated by optical techniques; however, we took

advantage of this slight mismatch to measure the bed height and

to track unmarked particles trajectories. Particle and fluid proper-

ties are reported in Table 1. Due to the moderate values of the den-

sity difference and of the fluid viscosity, the particle Reynolds

number at terminal velocity (Ret = V1dqf/lf) is high but the Stokes

number (defined as Stt = (qp/qf)Ret/9) is of O(100). The values of

these parameters are reported in Table 2. Additionally, this particle

size makes the images analysis (particle tracking) to be more

Table 1

Fluid and particle properties at 20 °C.

Pyrex beads dp = 6 mm qp = 2230 kg/m3 nD = 1.474

KSCN solution 64% w/w lf = 3.8 � 10ÿ3 Pa s qf = 1400 kg/m3 nD = 1.4744
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precise, as explained below. The fluidization law of this systemwas

identified by measuring the bed height as a function of the fluidiza-

tion velocity. The exponent n of the well-known Richardson–Zaki

relation (Richardson and Zaki, 1954) is equal to 2.41, which is

the expected value in this range of particle Reynolds number.

2.2. The fluidized bed

The experimental set-up of the fluidized bed is shown schemat-

ically in Fig. 1. It is composed of a 8 cm diameter glass column of

60 cm in height. A flow homogenization section was mounted at

the bottom of the column, composed of a honeycomb panel, a fixed

bed of particles and layers of synthetic foam. Thanks to this system,

the particles occupy the whole space of the fluidized bed and no

stationary recirculation loop is detected, suggesting a homoge-

neous fluidization.

In order to avoid optical distortion due to the wall curvature, a

glass square section box was mounted around the column and

filled with the fluidizing liquid. The KSCN solution is pumped from

a 30 L tank; it flows upward in the column and is sent back to the

tank. Its temperature is controlled by a secondary water loop and a

heat exchanger. The particle volume fraction, ap, was inferred from

the measurement of the bed expansion.

2.3. Particle tracking technique

The analysis of collisions was achieved by 2-D trajectography of

particles within the fluidized bed. Images were recorded with a

high speed camera (Photron APX) equipped with a CMOS sensor.

The test zone is an area of 8 � 8 cm2 using the maximum resolu-

tion (1000 � 1000 pixels). A black colored particle was introduced

in the bed and its trajectory was recorded at 500 frames per sec-

ond. Fig. 2 shows a scheme of the arrangement. To ensure that

the tracer particle remained ‘focused’ while moving across the

cross-section of the fluidized bed, the depth of field was widen

by placing the camera at a relatively large distance from the fluid-

ized bed (about 2 m).

The collision frequency was determined from the trajectory of a

single colored particle, following the vertical (z) and horizontal (x)

directions of the flow. The particle position was determined on

each image by means of image processing: gray level thresholding

followed by a binarization. The center of mass of the tracer particle

in the binary image was located. The instantaneous velocity and

acceleration vectors of the center of mass of the particle were de-

rived using a central difference scheme. Note that with the present

optical arrange, the out-of-the-plane motion (y-direction) of the

particle cannot be measured. Therefore, the motion in this direc-

tion cannot be registered or measured. Figs. 3 and 4 illustrate the

image sequence during a collision and their corresponding acceler-

ation signal, respectively. Clearly, the collision induces a peak in

the acceleration signal of the tracer particle. A threshold criterion

was applied to the acceleration intensity to detect a collision event.

Using this criterion, the mean collision frequency was measured

for six different mean solid fractions (ap = 0.11, 0.16, 0.2, 0.25, 0.3

and 0.4).

The wall–particle restitution coefficient was determined from

the trajectories of unmarked particles, before and after impact with

the bed walls. The collisions were initially detected visually on few

seconds of video recordings. Each collision event was extracted

from the sequence and a contrast adjustment process was applied

to improve the detection of the contour of the impacting particle.

The particle circumference and its geometric center were then

computed. The particle–wall collision analysis was performed for

three different concentrations (ap = 0.11, 0.20 and 0.25). Only the

events where the particle–wall collision was not detectably per-

turbed by other particles were taken into account (this is the rea-

son why this part of the study was limited to 25% of mean solid

fraction). Fig. 5 shows a wall collision sequence of a transparent

particle: before the collision (Fig. 5a and b), at the moment of the

contact, Fig. 5c, and after the collision (Fig. 5d and e).

3. Theoretical background: oblique collisions

Oblique collisions pose a greater challenge to be described

physically than normal collisions (Johnson, 1985) because, in addi-

tion to the normal contact, two different processes can occur in the

tangential direction: rolling or sliding. In sliding, the relative

Table 2

Fluidization parameters.

dp (mm) V1 (m/s) Ret Stt n

6 0.226 500 88.4 2.41

tank

TI3

TI1

TI2

Flow homogenizer

foam layers

glass beads

honeycomb

heater

pump

Fig. 1. Scheme of the liquid fluidized bed.

Storage and display

camera

CMOS

x

z

Storage and display

camera

CMOS

x

z

x

z

Fig. 2. Scheme of the particle tracking technique.



velocity of the contacting surfaces is nonzero; for rolling, the sur-

faces at the point of contact do not move with respect to each

other. While the normal contact can be described by Hertzian the-

ory, the description of tangential contact is much more complex.

Mindlin (1949) showed that while gross-slip and rolling can ap-

pear, in most cases both happen in the contact area during the col-

lision process (the so-called micro-slip). To account for the loading

history that occurs during a collision Maw et al. (1976) proposed a

method to calculate the process of a contact in which micro-slip

occurs. They divide the contact region in a series of equi-spaced

concentric circles, in which either slip and stick occurs. In slip re-

gions, the tangential traction is given by the friction coefficient

and the local normal contact pressure distribution. In stick regions,

a tangential displacement is prescribed. Walton proposed a model

(Walton, 1993) for which the whole process of an oblique elastic

collision can be described through three measurable parameters.

The model is relatively simple and retains the most important as-

pects of this process. Hence, to explain the nature of the collisions

within the fluidized bed the parameters of Walton’s model were

inferred using our measurements. Below, we make a brief sum-

mary the measurements and how the parameters are calculated.

Fig. 6 shows the reference frame used for the calculation of the

particle trajectory and velocity. The origin of the reference frame

was placed at the position of the particle center of mass at the

instant of contact (corresponding to the instant of sign reversal

of the normal velocity component). The normal velocity before

the impact is taken to be positive and, consequently, the normal re-

bound velocity is always negative. The impact tangential velocity

component sign is always positive, no matter its direction with re-

spect to the vertical axis (Oz). The rebound and impact angles are

referred with respect to the wall normal, always positive and less

than p/2. The collision frequency and wall–particle restitution

coefficient were obtained using the same video recordings; hence,

both measurements correspond to the same flow conditions.

Once the velocity components (before and after the impact) are

determined, the rebound parameters can be evaluated. The normal

restitution coefficient is defined as the ratio of the algebraic values

of the normal velocity components after and before the rebound:

ec ¼ ÿ
uout
px

uin
px

ð3Þ

Fig. 3. Image sequence of a particle collision (time intervals of 0.02 s): (a and b) before collision, (c) during collision and (d and e) after a collision. ap = 0.16. The black circle

shows the particle colliding with the marked particle.
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Fig. 4. Acceleration signals of a particle trace. The solid circles correspond to the

images in Fig. 3: (a) and (b) correspond to the x and z directions, respectively.

Fig. 5. Non-marked particle identification during a rebound with the wall (ap = 0.1). Images contrast was slightly increased. The time interval between images is 0.04 s.

(a and b) Before collision; (c) contact; (d and e) after collision.

Fig. 6. Scheme of the reference frame for the velocity angles and components

during a particle–wall rebound in the fluidized bed.



The angles hin and hout (with respect to the wall normal) are then

obtained from the velocity components as:

hin ¼ arctan
juin

pzj

juin
pxj

 !

ð4Þ

hout ¼ arctan
juout

pz j

juout
px j

 !

ð5Þ

Considering the contact model of Walton (1993), we can calcu-

late the rotational restitution coefficient, b, which is defined as:

b ¼ ÿ
uout
pz

uin
pz

ð6Þ

If we consider the effective angles of incidence (Win = tanhin)

and rebound (Wout = ec tanhout), Eq. (6) can be written as

b ¼ ÿ
Wout

Win

ð7Þ

The coefficient b varies in the range [ÿ1,+1]. b = ÿ1 corresponds

to a rebound without slip juout
pz j ¼ juin

pzj
� �

, and b = 0 to a rolling par-

ticle after contact. A positive value of b implies that the bead re-

coils after the collision.

The last parameter of Walton’s model is the coefficient of slid-

ing friction, gf (note that the original notation was modified to

avoid confusion with the liquid viscosity). Following the work of

Joseph and Hunt (2004), the friction coefficient gf, for homoge-

neous solid spheres, is given by:

gf ¼
2ð1þ bÞ

7ð1þ ecÞ
Win ð8Þ

Hence, from our measurements of the incident and rebound

velocities and their respective angles, the three contact parameters

of the oblique contact model (ec, b, and gf) can be calculated. It is

important to note that, in addition to Walton’s model, there are

other interpretations of the rotational restitution coefficient. For

instance, Brilliantov and Poeschel (2004) refer to the parameter b

as a tangential coefficient of restitution, because in its calculation

the rotational velocities of the particle (before and after the con-

tact) are not considered.

4. Results

4.1. Restitution coefficient

The random character of the particle–wall collision in the bed

and the rather tedious manual pre-processing, make the acquisi-

tion of a large set of data to be impractical. Moreover, it is not pos-

sible to choose a priori the range of values of the incident impact

velocity (and hence the value of the Stokes number). However, it

is known that the impact velocity is correlated, in average, to the

mean agitation level in the bed, which is a continuously decreasing

function of the solid fraction (Aguilar, 2008). Therefore, the tests

performed at different concentrations will have, in average, differ-

ent impact velocities. The impact velocity decreases as the concen-

tration increases. This expected evolution is, of course, valid for the

absolute value of the relative impact velocity, the impact angle re-

mains random.

Some examples of trajectories following the normal (indexed x)

and the tangent to the wall (indexed z) are reported in Fig. 7. The

instants before and after the collision correspond to negative and

positive times, respectively. From these trajectories, the impact

velocity components and were calculated over a time interval

ranging between 10 and 20 ms (before and after the rebound). To

be significant, these velocities must be nearly constant within this

time interval. This time interval must therefore be larger than the

time at which the lubrication film develops and smaller than the

characteristic time of the velocity fluctuation of the particle.

Fig. 8 shows the cumulative mean particle velocity for two concen-

trations in the horizontal and vertical components. If one considers

that the particle ‘‘sees’’ the wall at a distance of the order of one

tenth of its radius, (i.e. 0.3 mm or 4 pixels on the images), for a

6 mm particle at a speed of 0.1 m/s, the time at which the film

develops can be estimated to be about 3 ms before the rebound,

a value smaller than the time interval considered. In addition,

the smallest Lagrangian time scale of the fluctuating motion of

the particle within the bed is approximately 70 ms, according to

Aguilar (2008), supporting the assumption of a constant velocity

during a time interval of the approach–contact–rebound process.

However, it is possible that within this temporal window, the inci-

dent particle velocity may fluctuate. In this case, the measurement

was either rejected or the impact velocity was calculated over a

smaller time interval.

The determination of the velocity after the rebound is more

arbitrary. The contact time or rebound time can be estimated from

the relationship given by Legendre et al. (2006), which predicts for

this range of Stokes number a contact time twice as large as the

Hertz contact time, about 100 ls in our case. In comparison with

the acquisition frequency from the trajectories (500 Hz), the
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Fig. 7. Time evolution of the particle position during the collision (a) ap = 0.11 and

(b) ap = 0.2.



contact time can be disregarded. At the moment of rebound, the ef-

fect of the liquid velocity fluctuations (susceptible of interacting

with the particle during the collision) and the presence of large

scale motion, (which generate velocity gradients at the vicinity of

the wall) were not evaluated. As for the impact velocity, the cumu-

lative time average of both velocity components after the rebound

and was calculated over a time window ranging between 10 and

20 ms. When a plateau of ±10% of the value at the current time step

was reached, the value was accepted as the rebound velocity. Fig. 8

illustrates the cumulative mean particle velocity components at

two distinct solid fractions in the bed. These curves show that in

the range of flow parameters investigated (in terms of solid frac-

tion and Stokes number), collisions in a liquid fluidized bed can

be described using the concept of coefficient of restitution.

A total of fourteen particle–wall impact trajectories were pro-

cessed (3 for ap = 0.11, 6 for ap = 0.2 and 5 for ap = 0.25), corre-

sponding to values of the normal impact velocity,uin
px, between

0.02 and 0.1 m/s. The Stokes number (defined in Eq. (1)), based

on uin
px; Stin, ranges between 10 and 35.

The normal and tangential velocities after the collision (uout
px and

uout
pz , respectively) are reported in Fig. 9 as a function of their

respective components before the impact, uin
px and uin

pz. Note that

uout
px and uout

pz are both increasing functions of the impact velocity

and that the energy dissipation during the collision leads to smaller

values of the velocity after the collision (compared with the impact

velocity). The tangential components after the rebound are nearly

unchanged, while their corresponding normal component is smal-

ler (in absolute value) than the normal component at impact. Addi-

tionally, the curves in Fig. 9a and b suggest that the normal velocity

component vanishes after the rebound for a correspondingly non-

zero impact velocity. This trend confirms the existence of a critical

velocity belowwhich the collision is dampened by the film, hinder-

ing the rebound.

The numerical values of the contact and rebound parameters

(described in Section 3), for all the fourteen wall-rebound trajecto-

ries, are reported in Table 3. The first two columns show the solid

fraction and Stokes number at impact, respectively. It can be ob-

served that the measured rebound parameters are independent

of the solid phase fraction. We can, therefore, infer that the particle

trajectories processed before and after the rebound were not af-

fected by neighboring particles, a necessary condition for the sig-

nificance restitution coefficient measurement.
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Fig. 8. Cumulative mean of the horizontal (x) and vertical (z) particle velocity
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Fig. 9. Velocity components after collision as a function of impact components. (a) Normal velocity, (b) tangential velocity.



The values for Wout are reported as a function of Win in Fig. 10.

We observe that the values ofWout are always smaller, but close to

Win. Hence, for all these collisions we can infer that a rather limited

slip took place. The difference between Wout and Win is quantified

by b-values ranging between 0 and ÿ1, and gf-values different

from zero. There are no b values near zero; hence, there was no

rolling during these experiments after the impact. The value of b

is always negative (in general smaller than 0.5 in absolute value),

indicating that no recoil occurred after the collision. Values of b

greater than 1 probably result from experimental uncertainty.

In Fig. 11a, b has been plotted as a function of the incident angle,

hin. Despite a rather large scatter of the data, a decreasing trend of b

between ÿ0.5 and ÿ1 can be observed for a range of hin comprised

between 10° and 60°. Only two points seem to deviate significantly

from this trend (filled symbols). The corresponding evolution of gf
is reported in Fig. 11b. No particular tendency can be identified for

this case: the values of gf fluctuates between 0 and 0.05. Two val-

ues, corresponding to the two filled circles in Fig. 11a, are distinc-

tively larger (gf =0.068 for hin = 49° and gf = 0.32 for hin = 72.3°; this

latter value does not appear on the graph). It is interesting to com-

pare our results to those of Joseph and Hunt (2004) for glass and

steel beads of a diameter twice larger than the Pyrex beads of

our study, in liquid solutions of comparable viscosity (between 1

and 5 centipoises). They observed significant differences on the

evolution of b and gf (hardly visible on the dimensionless curves

of Fig. 10) that seem correlated to particle roughness. Rough

particles (glass beads in their study) correspond to smaller values

of b (in absolute value), hence to larger values of gf, which grow

with the incident angle, between 0 and 0.2 when hin varies between

0° and 70°. Conversely, between 0° and 70°, smooth particles (steel

beads) exhibit a sharp decrease of b to ÿ1 and gf values are ranging

between 0 and 0.035, independently of the incidence angle hin. This

comparison indicates that our results are very good agreement

with those reported by Joseph and Hunt, in particular for the case

of smooth particles (gf values being very close in both studies). The

two filled symbols in Fig. 11a would, therefore, correspond to

rougher particles and consequently to larger gf values. However,

the particle roughness was not evaluated directly in the present

study.

The evolution of the normal restitution coefficient ec as a func-

tion of Stokes number based on impact normal velocity, Stin, has

been plotted in Fig. 12 for the measurements shown in Table 3.

An important scatter of ec is observed (between 0.2 and 0.6) for a

limited variation of the Stokes number, comprised between 10

and 35.

In Fig. 12, the correlation by Legendre et al. (2006) (dotted line)

and the mean trend from the experiments of Joseph and Hunt

Table 3

Rebound parameters measured before (in) and after (out) impact.

ap Stin ec hin hout Win Wout b gf

0.11 34.9 0.454 44.1 61.8 0.969 0.845 ÿ0.872 0.0244

0.11 13.2 0.446 23.4 27.1 0.432 0.229 ÿ0.529 0.0403

0.11 31.4 0.491 49.2 67.9 1.04 1.208 ÿ1.045 ÿ0.0099

0.2 20.2 0.480 16.8 19.1 0.271 0.166 ÿ0.551 0.0262

0.2 17.7 0.449 46.9 66.6 1.07 1.036 ÿ0.968 0.0067

0.2 16.4 0.404 41.7 65.4 0.779 0.882 ÿ0.990 0.0018

0.2 15.5 0.537 49.0 55.6 1.150 0.783 ÿ0.681 0.0683

0.2 9.4 0.474 72.3 72.3 3.134 1.485 ÿ0.474 0.3197

0.2 14.0 0.221 4.5 22.0 0.091 0.089 ÿ1.141 ÿ0.0026

0.25 22.4 0.339 10.2 14.5 0.18 0.088 ÿ0.487 0.0197

0.25 27.5 0.474 18.6 24.6 0.337 0.217 ÿ0.642 0.0234

0.25 16.8 0.586 51.9 62.5 1.275 1.125 ÿ0.882 0.0271

0.25 16.8 0.415 11.3 17.0 0.200 0.126 ÿ0.632 0.0149

0.25 24.9 0.510 25.7 38.3 0.503 0.403 ÿ0.839 0.0147

Fig. 10. Effective rebound angle, Wout as a function of its corresponding incident

value, Win.
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(2004) (gray band) are also shown. Our experimental results are in

very good agreement with those of Joseph and Hunt but are

slightly above the correlation of Legendre et al. Even if the disper-

sion of the values of the normal restitution coefficients is generally

expected to be large (Joseph et al., 2001), that shown in Fig. 12 is

even greater (even if the size of the error bars is taken into ac-

count). This trend is probably due to the fact that in this range of

Stokes number, the decrease of the normal restitution coefficient

is rather steep. Some studies (Joseph et al., 2001; Yang and Hunt,

2006; Barnocky and Davis, 1988) predict a critical Stokes number

(below which there is no rebound) of order 10. However, if we

consider the values of ec corresponding to the smallest values of

the friction factor gf (smaller than 0.027) the dispersion of data

in Fig. 12 is reduced (black circles). Clearly, these points closely fol-

low the mean trend obtained by Joseph and Hunt (2004). This re-

sult can be explained by the fact that the largest values of gf
correspond to small rebound angles (with respect to the normal).

Consequently a larger normal restitution coefficient is obtained.

This trend is also observed in Fig. 12, where our data is also com-

pared to those of Joseph and Hunt (2004) for oblique collisions

(black dots) and those of Joseph et al. (2001) for normal collisions

(gray band). We can conclude that our measurements in the fluid-

ized bed confirm the previously observed trend for normal and ob-

lique collisions within this range of Stokes numbers, for low

roughness particles (or more precisely, for gf < 0.027).

4.2. Inter-particle collision frequency

Collision frequency was measured in the core of the bed from

the analysis of the high frequency signal of a marked particle. Since

the particle experiences a sharp velocity variation as a result of a

collision, a criterion based on the intensity of the instantaneous

acceleration signal was chosen to detect particle contacts. Fig. 13

shows two velocity signals upi(t), following the vertical z and trans-

verse x directions. Visual inspection of the video and time signals

confirm the correspondence between the collision events and the

acceleration peaks. It was also observed that the amplitude of

the acceleration peaks is always larger in the vertical direction

compared to the horizontal component. In order to establish a sin-

gle collision criterion, the absolute value of acceleration was nor-

malized using its maximal value in a given trajectory:

ci ¼
jaiðtÞj

jaimaxj
ð9Þ

where ai is the acceleration in the i direction, calculated as the time

derivative of the velocity signal upi(t).

The ci signal is shown in Fig. 14a and b, following the vertical

and horizontal axis, respectively, as a function of time. This
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normalized acceleration allows for the definition of a single thresh-

old for collision detection, ccoll. The arithmetic average of accelera-

tion, c = (cx + cz)/2, is presented in Fig. 14c. For each recorded

trajectory, the collisions frequency fcoll was deduced dividing the

number of values exceeding the threshold ccoll by the total record-

ing time.

In addition, the collision events were detected individually and

counted visually from the video film. These collision events are de-

picted in Fig. 14c by the characters x and z, indicating the preferen-

tial contact orientation during the collision. There is good

agreement between the total number of visually detected colli-

sions over the entire recording (11 in this case) and the value ob-

tained considering a threshold ccoll = 0.2. The transparent particle

that collides with the marked one can be identified using the video

recordings. Fig. 15 illustrates the trajectory of the marked particle

which corresponds to the signal of Fig. 14c during a time interval

comprised between 0.58 and 0.78 s, where three collisions were

observed. In Fig. 15, the abscissa and ordinate correspond to the

width and height of the visualization field. The perimeter of the

transparent colliding particle was drawn in the images and the col-

lision instant is also shown. The arrows show the sense of the mo-

tion before collision.

Fig. 16 shows the c signals obtained for three different con-

centrations, ap = 0.11, 0.25 and 0.40. It can be observed that the
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number of collisions grows with particle volume fraction for the

range between 0.11 and 0.25; surprisingly, the collision count de-

creases for particle concentrations between 0.25 and 0.4, suggest-

ing the presence of a maximum.

In order to validate the threshold value ccoll, the evolution of the

collision frequency, fcoll, as a function of the value of the threshold

was plotted in Fig. 17 for each solid fraction. The collision fre-

quency is, in fact, a continuously decreasing function of ccoll. Ini-
tially, the collision rate decreases rapidly as ccoll increases. In the

interval [0.15,0.2], represented on the graph by a gray band, the

rate of change of collision frequency with ccoll is reduced. It can

be deduced that a reasonable value of the threshold ccoll lies in this

interval.

A dimensionless collision frequency f �coll can be defined as:

f �coll ¼
fcolldp
ffiffiffiffiffiffiffiffiffi

hq2
pi

q ð10Þ

where dp is the particle diameter and hq2
pi is the ‘‘small scale’’ fluc-

tuating kinetic energy of the solid phase in the fluidized bed. The

fluctuating kinetic energy can be calculated as

hq2
pi ¼

3

2
hu02

p i ð11Þ

where hu02
p i is the particle velocity variance. Aguilar (2008) obtained

a measurement of hq2
pi considering a very similar arrangement to

that described in Section 2.3. The particle trajectory was registered

for much longer time periods (up to 200 s) at a frame rate of 30

frames per second. In this manner, the wide range of particle veloc-

ity fluctuations was obtained; hence, an accurate measure of the

mean kinetic energy was obtained for a range of gas volume frac-

tions. Fig. 18 shows the particle fluctuating kinetic energy as a func-

tion of the solid fraction, for the particles used in this study. It can

be observed that the kinetic energy of the solid phase decreases

with solid fraction. An extensive discussion about these measure-

ments will be reported elsewhere. The reader is referred to Aguilar

(2008) for more details.

Considering the measurements of the particle fluctuating ki-

netic energy, hq2
pi, the dimensionless collision frequency can be ob-

tained. Fig. 19 shows f �coll as a function of solid fraction considering

a value of ccoll = 0.2. The figure shows an increase of f �coll with the

concentration up to ap = 0.3; subsequently, the dimensionless col-

lision frequency decreases for larger solid fractions. This result is

indeed similar to that observed by Buffière and Moletta (2000)

who measured the collision frequency at the wall using a

hydrophone.

A prediction of the collision frequency can be obtained from the

KTGF (Simonin, 1991):

f �coll ¼ 24

ffiffiffiffiffiffiffi

2

3p

r

apgo ð12Þ

where go is the pair correlation function defined as

go ¼ ð1ÿ ap=apmÞ
ÿ2:5apm ð13Þ

considering apm = 0.64. The prediction of Eq. (12) is shown in Fig. 19

(dashed line). For concentrations ranging between 0.1 and 0.3, a

very good agreement is observed between the prediction and the

measurements. In this range of concentrations the evolution of

the collision frequency with the solid fraction seems to be validated.

In turn, for concentrations larger than 0.3, the theoretical curve con-

tinues to increase (because of the rapid growth of the pair correla-

tion function go with increasing ap). This trend is opposite to that

followed by the experimental results.

Fig. 17. Collision frequency, fcoll, as a function of ccoll for different values of the solid

fraction.
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We think that this behavior is due to the detection limit of col-

lisions from the particle acceleration signal. Indeed, these sudden

changes of acceleration are present in case of an effective particle

rebound, which is the case when the restitution coefficients ec is

different from zero. Dampened collisions are therefore not de-

tected, because they cannot be distinguished from fluctuations

due to hydrodynamic interactions. When the solid fraction in-

creases, the total collision frequency may increase but collisions

with rebound are less frequent. A simple way to evaluate this effect

consists in estimating the Stokes number based on the particle

root-mean-square (rms) velocity as a function of the concentration.

That is, Stp ¼ qp

ffiffiffiffiffiffiffiffiffi

hq2
pi

q

dp=ð9lf Þ. The comparison of this number

with the critical Stokes number (below which the restitution coef-

ficient cancels out) allows us to quantify the collision detection

limit for our method. Considering the data shown in from Fig. 18,

the value of Stp was calculated and it is plotted in Fig. 19, along

with the collision frequency measurements. It turns out that for

a solid fraction greater than 0.3, the Stokes number becomes smal-

ler that 10; hence, for such concentrations the Stokes number is

below the critical value (Joseph and Hunt, 2004; Joseph et al.,

2001; Yang and Hunt, 2006). For such a range of ap the collision

detection criterion based on the acceleration threshold cannot be

applied. We can therefore conclude that the present method is lim-

ited by the zero-value of the restitution coefficient at high solid

phase fraction.

5. Conclusions

The objective of this study was to measure simultaneously the

collision frequency and the normal restitution coefficient for parti-

cle–wall collisions, within a liquid–solid fluidized bed. The colli-

sion frequency was determined using the acceleration signal of a

tracer particle, counting the times when the acceleration was lar-

ger than a certain threshold value. The normal restitution coeffi-

cient was measured analyzing oblique velocity trajectories before

and after the impact with the wall from non-marked particles.

The principal results of this study can be summarized as follows:

� The normal restitution coefficient concept is pertinent in a

liquid fluidized bed, and the evolution of such parameter as a

function of the Stokes number, based on the normal impact

velocity, is in good agreement with previous experimental data

obtained for controlled impact conditions (Joseph and Hunt,

2004; Joseph et al., 2001; Yang and Hunt, 2006). However, it

seems that this agreement is limited to collisions where the

friction factor gf is small (of about 0.025), which corresponds

to smooth particles. For all other cases, friction and rotation

can be therefore neglected.

� The collision frequency is an increasing function of the concen-

tration, correctly represented by the law derived from the KTGF,

in an interval for the solid fraction comprised between 0 and 0.3

in our case. At higher concentration, the method used to detect

the collisions cannot be used in the present case, due to the

dampening of the collisions.

� The good agreement between the measured values of the coef-

ficient of restitution (with previous studies) and the collision

frequency (with predictions from KTGF) demonstrates that

these concepts are relevant for flows in which the Stokes num-

ber is finite but moderate.
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