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a b s t r a c t

Zearalenone (ZEA) is a mycotoxin produced by some species of Fusarium, especially by Fusarium grami-

nearum and F. culmorum. ZEA induces hyperoestrogenic responses in mammals and can result in reproduc-

tive disorders in farm animals. In the present study, a real-time PCR (qPCR) assay has been successfully

developed for the detection and quantification of Fusarium graminearum based on primers targeting the

gene PKS13 involved in ZEA biosynthesis. A standard curve was developed by plotting the logarithm of

known concentrations of F. graminearum DNA against the cycle threshold (Ct) value. The developed real

time PCR system was also used to analyze the occurrence of zearalenone producing F. graminearum strains

on maize. In this context, DNA extractions were performed from thirty-two maize samples, and subjected

to real time PCR. Maize samples also were analyzed for zearalenone content by HPLC. F. graminearum DNA

content (pg DNA/ mg of maize) was then plotted against ZEA content (ppb) in maize samples. The regression

curve showed a positive and good correlation (R2=0.760) allowing for the estimation of the potential risk

from ZEA contamination. Consequently, this work offers a quick alternative to conventional methods of

ZEA quantification and mycological detection and quantification of F. graminearum in maize.

1. Introduction

Zearalenone (ZEA) is a polyketide mycotoxin produced by some

species of Gibberella/Fusarium, especially by Fusarium graminearum

(Gibberella zeae) and F. culmorum (Kim et al., 2005). It is found in a

number of cereal crops such as maize, barley, oats, wheat, and rice

from the continents of Australia, Europe, and North America, as well

as in New Zealand (Suzuki et al., 2007; Alldrick and Hajšelová,

2004). The occurrence of ZEA in food and feed has also been demon-

strated in South America, Africa, Taiwan, China, and Russia (Suzuki et

al., 2007). Consequently, the question of ZEA contamination is one

which has to be addressed worldwide (Alldrick and Hajšelová, 2004).

ZEA causes alterations in the reproductive tract of laboratory and

domestic animals. In addition, various estrogenic effects, such as de-

creased fertility, increased fetal resorptions, and changes in the

weight of endocrine glands and serum hormone levels have been

observed (Suzuki et al., 2007). Due to the health hazards of ZEA, the

European Commission has set a maximum level of 100 μg/kg for

ZEA in unprocessed cereals excluding maize (European Commission

Regulation No 1126/2007). The permitted level in unprocessed

maize set by the European commission was 350 μg/kg.

As with the majority of mycotoxins, ZEA is a stable compound,

both during storage/milling and processing/cooking of food, and

does not decompose at high temperatures. Since the different Fusari-

um species have different mycotoxin profiles, the accurate determina-

tion of the Fusarium species present in any foodstuffs is critical to

predict the potential risk of the Fusarium isolate and its representative

mycotoxin (s). Therefore, there is a need for developing tools which

permit a rapid, sensitive and specific diagnostic of Fusarium species

in contaminated food samples (Jurado et al., 2006). Conventional

methods to assess mold presence in cereal crops are labour and

time-consuming, and they are particularly complex in Fusarium,

since the genus is diverse, presents intraspecific variability, and con-

flicting taxonomy (Jurado et al., 2005; Seifert and Lévesque, 2004;

Edwards et al., 2002).

The polymerase chain reaction (PCR) is a rapid and specific

method; its high sensitivity allows detection of target DNA mole-

cules in a complex mixture, offering an alternative to microbiologi-

cal conventional procedures in fungal diagnostic (Jurado et al.,

2006; Edwards et al., 2002; Nicholson et al., 1998). One of the

most important factors in the development of such molecular

methods is the reliability of the primer set designed and the tar-

geted DNA sequence of interest organism (EL Khoury and Atoui,
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2010; Atoui et al., 2007; Niessen, 2007; Dao et al., 2005; Geisen et

al., 2004; Farber et al., 1997). Recent advances in DNA-based tech-

niques such as real-time PCR (qPCR) are providing new tools for

fungal detection and quantification by detecting and quantifying

their DNA. qPCR can be performed using different chemistries,

such as SYBR® Green I dye and TaqMan® (Casey and Dobson,

2004; EL Khoury and Atoui, 2010). Nowadays, several qPCR assays

have been reported for detection of toxigenic molds using such sys-

tems (Atoui et al., 2007; Fredlund et al., 2008; Selma et al., 2008;

Nicolaisen et al., 2009; Suanthie et al., 2009; Meng et al., 2010).

Recently, Meng et al. (2010) described the first report describing

the development of molecular method for the detection and quantifi-

cation of zearalenone-producing Fusarium species in foodstuff by

real-time PCR assay using SYBR Green I. However, no qPCR protocol

has yet been developed to estimate ZEA content in foodstuffs. In

this study, we described the development of quantitative real-time

PCR assay for the detection and quantification of F. graminearum in

maize samples, and to correlate F. graminearum DNA with ZEA con-

tent in maize in order to have an approximately estimation of the

ZEA contamination level.

2. Material and methods

2.1. Fungal strains and culture conditions

The fungal strains used in this study are described in Table 1.

Strains were grown at 25 °C on potato dextrose agar (PDA) (Difco,

Fisher Bioblock Scientific, Illkirch, France) during 10 days. Then

spores were collected with a sterile solution of 0.1% (v/v) Tween 80

(Fisher Bioblock Scientific, Illkirch, France) and stored at – 20 °C in

25% (v/v) of glycerol (Fisher Bioblock Scientific, Illkirch, France) be-

fore use.

For DNA extractions, fungal strains were cultured in 250-ml Erlen-

meyer flasks containing 100 ml of potato dextrose broth (PDB) (Difco,

Fisher Bioblock Scientific, Illkirch, France). Broths were inoculated

with 106 spores and incubated at 25 °C under static conditions for

4 days. The mycelium was then harvested by filtration through a

0.45 μm Millipore filter (Millipore Corporation, Bellerica, MA, USA),

frozen in liquid nitrogen and then stored at – 80 °C before nucleic

acid extraction.

2.2. DNA extraction from pure fungal cultures

About 200 mg of frozen mycelium was homogenized in 800 μl of

lysis buffer (100 mM Tris– HCl pH 7.4 (Sigma Aldrich, Saint Quentin

Fallavier, France), 20 mM EDTA (Sigma Aldrich, Saint Quentin Falla-

vier, France), 250 mM NaCl (Sigma Aldrich, Saint Quentin Fallavier,

France), 2% w/v SDS (Sigma Aldrich, Saint Quentin Fallavier, France))

by using a Ultra- Turax (Labo moderne) and incubated at 37 °C for

30 min with 10 μl of 25 mg/ml RNase solution (Promega, Charbon-

nières, France), then added with 10 μl of proteinase K (20 mg/ml, Pro-

mega, Charbonnières, France) and the mixture was incubated at 65 °C

for 30 min. A volume of phenol-chloroform-isoamylic alcohol (v/v/v:

25/24/1) (Sigma Aldrich, Saint Quentin Fallavier, France) was added,

and the mixture was vigorously vortexed for 5 min. The aqueous

phase collected after centrifugation (15,000 x g, 15 min) was

extracted by an equal volume of chloroform (Sigma Aldrich, Saint

Quentin Fallavier, France). Genomic DNA was precipitated at

−20 °C in 2 h with two volumes of 100% ethanol (Fisher Bioblock Sci-

entific, Illkirch, France). The DNA was pelleted by centrifuging at

15,000 x g and washed with 1 ml of 75% ethanol then dried at the

room temperature. 100 μl of water was used to resuspend genomic

DNA. The quality and quantity of DNA were estimated by the OD260/

280 ratio (using Philips PU 8600 Spectrophotometer) and agarose

(Promega, Charbonnières, France) gel electrophoresis according to

standard protocol (Sambrook et al., 1989).

2.3. DNA extraction from maize samples

About 20 g of maize grains was ground in a coffee grinder for

2 min to a fine powder and then 200 mg ground grain was weighed

into a 2 mL microcentrifuge. One milliliter of sodium dodecyl sul-

phate (SDS) extraction buffer (200 Mm Tris–HCl, pH 7.5; 288 mM

NaCl; 25 mM EDTA, pH8.0; 0.5% SDS) was added to each ground sam-

ple and vortexed for homogenization. Samples were then centrifuged

at 12,000 rpm for 5 min and 750 μL of the supernatant was trans-

ferred to a new microcentrifuge tube. A 215 μL aliquot of a solution

of potassium acetate (3 M potassium and 5 M acetate) was added to

the supernatant. The solution was mixed and incubated on ice for

30 min, and then centrifuged at 12,000 rpm for 15 min at 4 °C. A

700 μL aliquot of the supernatant was transferred to a new microcen-

trifuge tube and 500 μL of cold isopropanol was added to precipitate

the DNA. The resulting pellet was washed with 70% ethanol, dried

under a stream of nitrogen and then dissolved in 200 μL Tris–EDTA.

2.4. Development and evaluation of specific PCR primers

A primer pair ZEA-F/ZEA-R was designed, using the Primer Ex-

press software (Applied Biosystems, Foster City, CA, USA) from a

polyketide synthase gene PKS13 (Accession number: DQ019316) in-

volved in ZEA biosynthesis in F. graminearum (Gaffoor and Trail,

2006; Kim et al., 2005; Kroken et al., 2003). Primer sequences are pre-

sented in Table 2. This set of primers amplified a product of 192 bp in

F. graminearum. Primer synthesis was performed from Eurogentec

s.a., Seraing, Belgium.

Table 1

Fungal strains used in this study to test the specificity of the primer pair ZEA-F/ZEA-R.

Species Produced mycotoxins

Fusarium graminearum NRRL 5883 (*) Zearalenone, Deoxinivalenol

F. graminearum NRRL 28336 Zearalenone, Deoxinivalenol

F. culmorum NRRL 3288 Zearalenone, Deoxinivalenol

F. culmorum NRRL 25475 Zearalenone, Deoxinivalenol

F. proliferatum NRRL 26191 Fumonisin

F. proliferatum NRRL 6322 Fumonisin

F. moniliforme NRRL 13616 Fumonisin B1 ; B2

F. verticillioides NRRL 6442 Fumonisin B1, B2, B3, B4

F. verticillioides NRRL 34281 Fumonisin B1

F. sporotrichioides NRRL 13440 T2 toxin, HT-2 toxin

F. dlamini NRRL 13164 Fumonisin B1, fusarin

F. poae NRRL 3287 T2 toxin

F. poae CBS 317.73 (**) T2 toxin

Aspergillus parasiticus CBS 100926 Aflatoxins B1, B2, G1, G2

A. flavus NRRL 35691 Aflatoxins B1, B2

A. ochraceus NRRL 5175 Ochratoxin A

A. westerdijkiae NRRL 3174 Ochratoxin A, Penicillic acid

A. niger CBS 120166 Ochratoxin A

A. carbonarius CBS 120168 Ochratoxin A

A. sulfureus NRRL 4077 Ochratoxin A

Penicillium verrucosum NRRL 3711 Ochratoxin A

P. nordicum (***) Ochratoxin A

P. citrinum NRRL 1843 Citrinin

P. expansum NRRL 35694 Patulin

*: NRRL: Northern Regional Research Laboratory, Illinois, USA.

**: CBS: Centraalbureau voor Schimmel Cultures, The Netherlands.

***: Provided by Olivier Puel, INRA Toulouse.

Table 2

Primers used in this study.

Oligo name Sequence

ZEA-F 5’- CTGAGAAATATCGCTACACTACCGAC-3’

ZEA-R 5’- CCCACTCAGGTTGATTTTCGTC -3’

TubF 5’- CTCGAGCGTATGAACGTCTAC-3’

TubR 5’- AAACCCTGGAGGCAGTCGC-3’



To test the specificity of the primer pair, the isolated DNA of fungal

strains (Table 1) was subjected to PCR with this primer set. The PCR

was performed with the Taq recombinant polymerase (Invitrogen,

Cergy Pontoise, France). Amplification was carried out in 50 μl reac-

tion mixture containing: 5 μl of Taq polymerase buffer 10 X, 1.5 μl of

50 mM MgCl2, 1 μl of dNTP 10 mM of each (Promega, Charbonnières,

France), 1 μM of each primer, 1.5 U of Taq, about 100 ng of genomic

DNA, H2O up to 50 μl. Reaction conditions were: 94 °C for 4 min,

(94 °C for 45 s, 60 °C for 45 s and 72 °C for 45 s) x 35 cycles followed

by an incubation at 72 °C for 10 min. Amplification products were sep-

arated by electrophoresis in 1.5% (wt/vol) agarose (Promega, Char-

bonnières, France) gels stained with 0.2 μg/mL ethidium bromide.

All genomic DNAs used in this work were tested for suitability for

PCR amplification using primers TubF and TubR (Table 2) in the con-

ditions indicated above.

2.5. Real Time PCR reactions

qPCR reactions were performed in an iCycler iQ5™ Real Time PCR

Detection System (Bio-Rad, Hercules, CA, USA). The PCR thermal cy-

cling conditions were as follows: 95 °C for 4 min, 40 cycles of 94 °C

for 45 s, 60 °C for 45 s, 72 °C for 45 s, and 80 °C for 10 s (during

which the fluorescence was measured), and final extension at 72 °C

for 7 min. Following the final amplification cycle, a melting curve

was constructed by measuring the fluorescence continuously when

heating from 65 to 95 °C at the rate of 0.5 °C per s. The PCR reaction

contained 12.5 μl of of 2X iQ SYBR® Green Supermix (Biorad), 1 μl

of each primer (10 μM), 2 μl of template DNA, and sterile bi-distilled

water up to a final volume of 25 μl.

To generate the standard curve, a 10-fold dilutions (ranging from

0.5 μg to 0.05 pg) of F. graminearum (NRRL 5883) DNAwhose concen-

tration was previously determined, were subjected to qPCR under the

same conditions described above. Quantification values were auto-

matically determined by the IQ5™ optical system software version 2

(Bio-Rad) and the threshold cycle (Ct) values were then obtained.

The standard curve is a plot of the Ct versus log DNA concentration.

In all the experiments, appropriate negative controls containing no

template were subjected to the same procedure to exclude or detect

any possible DNA contamination. Each sample was amplified in

triplicate in every experiment. The sensitivity of the real-time assay

was validated by continuing the serially (10-fold) diluted DNA up

to 0.0005 pg.

2.6. Sequencing and nucleotide sequence accession number

F. culmorum NRRL 25475 genomic DNA was amplified with ZEA-F/

ZEA- R. The PCR product was cloned into pCR2.1-TOPO vector (Invi-

trogen, Cergy Pontoise, France) according to the supplier's instruc-

tions. Sequencing of the fragment was performed by MilleGen

(Labège, France). The obtained sequence has been deposited in Gen-

Bank under accession number: EU362992.1.

2.7. Zearalenone analysis in maize

Determination of ZEA was carried out as described by

Schollenberger et al. (2006). Briefly, after extraction with a mixture

of acetonitrile and water, sample clean-up was carried out using the

Easi-Extract™ Zearalenone immunoaffinity column (IAC) according

to the supplier's recommendations (R-Biopharm Rhone Ltd). Identifi-

cation and quantitation of ZEA was carried out by HPLC.

The HPLC apparatus consisted of a solvent delivery system, with

both fluorescence (λex=235 nm; λem=450 nm) and UV detectors.

The analytical column used was a 150×4.6 mm Uptisphere

5 μm C18 ODB fitted with a guard column of 10×4 mm. The column

temperature was 30 °C. Kroma 3000 (BIO-TEK) was the data acquisi-

tion system.

The mobile phase consisted of HPLC grade acetonitrile (A) and

ultrapure water (B). The crude extract was analyzed using a linear

elution gradient over 35 min at a flow rate of 0.5 ml/min, starting

from 30 to 90% solvent A over the first 30 min, continued by a linear

gradient to 90% of (A) in 5 min, and a return to initial conditions

over the last 2 min of the run. ZEA was identified by its retention

time (29 min) according to a standard (Sigma Aldrich, Steinheim,

Germany) and quantified by measuring peak area according to a stan-

dard curve. The detection limit was 2 μg/kg.

3. Results

3.1. Primer selection

In this study a PKS13 involved in ZEA biosynthesis in F. grami-

nearum was used as a target in order to design specific primer pair.

PKS13 encoding the enzyme polyketide synthase (PKS) performing se-

quential condensation of multiple acetate units (Gaffoor and Trail,

2006; Kim et al., 2005; Kroken et al., 2003). The sequence of PKS13

has been elucidated by (Gaffoor and Trail (2006), Kim et al. (2005)

and Kroken et al. (2003). The deduced amino acid sequence of PKS13

was aligned with the other closely related fungal PKSs from the data-

base. A primer pair, ZEA-F/ZEA-R, was designed from two non con-

served sequences of PKS13. ZEA-F is positioned at bases 212 to 237

whereas ZEA-R is positioned at the bases 382–403 of the PKS13. This

set of primers amplified a product of 192 bp in F. graminearum.

3.2. Specificity of the PCR reaction

The specificity of the PCR reaction was tested on a diverse range of

Fusarium strains and other fungal genera commonly associated with

cereals. Only DNA of F. graminearum and F. culmorum was amplified

with ZEA-F/ZEA-R and generated a 192 bp PCR product (Fig. 1A). No

signal was generated from the none ZEA producing species indicating

that the described PCR system is specific for ZEA producing species.

The ß-tubulin gene was used as positive control with a fragment of

340 bp obtained in the same PCR conditions for all fungal tested

DNA (Fig. 1B).

Since no sequence for PKS13 in F. culmorumwas available, the PCR

amplification product from F. culmorrum NRRL 25475 by ZEA-F/ZEA-R

has been sequenced. Interestingly the sequencing result showed high

similarity with F. graminearum fragment of the PKS13 (Fig. 2).

3.3. Development of the qPCR for the quantification of ZEA

producing fungi

The serial 10-fold dilutions of F. graminearum DNA ranging from

0.5 μg to 0.05 pg were subjected to qPCR using the designed specific

primer ZEA-F/ZEA-R. The quantification relies on measuring the in-

tensity of a fluorescent signal that is proportional to the amount of

DNA generated during the PCR amplification. A threshold cycle (Ct)

value, corresponding to the PCR cycle number at which fluorescence

was detected above threshold, was calculated from the iQ™5 optical

system software Bio-Rad).

A standard curve was obtained by plotting the Ct value versus the

logarithm of the concentration of each DNA dilution. The linear corre-

lation coefficient of the standard curve was R2=0.973 (Fig. 3), dem-

onstrating the accuracy of PCR-based quantification.

Since SYBR® Green I indiscriminately binds to double-stranded

DNA, other products in the PCR such as primer dimers may be

detected along with the target gene. To verify that the SYBR® Green

I dye detected only one PCR product, the samples were subjected to

the heat dissociation protocol following the final cycle of the PCR. Dis-

sociation of the PCR reactions consistently produced a single peak,

demonstrating the presence of only one product in the reaction

(Fig. 4). Interestingly the sensitivity result obtained in this study



showed at least 0.005 pg needed be present for a positive reaction

with SYBR-Green I (result not shown).

3.4. Application of the qPCR system to quantify F. graminearum and

F. culmorum and to estimate ZEA content in maize

The developed qPCR system was used to analyze the occurrence of

zearalenone producing F. graminearum and F. culmorum strains and to

predict the toxin which is probably present on maize. For this reason,

DNA extractions were performed from thirty-two maize samples

(Fig. 3), and subjected to qPCR with the system described above.

The amount of F. graminearum and/or F. culmorum DNA present in

an unknown sample was obtained by interpolating its Ct value

against the standard curve, and it was expressed in pg DNA/mg of

maize. Maize samples also were analysed for zearalenone content

by IAC followed by HPLC.

F. graminearum and/or F. culmorum DNA content (pg DNA/ mg of

maize) was then plotted against ZEA content (ppb) in maize samples.

The regression curve showed a positive and good correlation

(R2=0.760), despite the finding of low levels of DNA in some

zearalenone-free samples (Fig. 5). Consequently, results of F. grami-

nearum and F. culmorum DNA quantification in maize samples could

be used for the indirect quantification of ZEA in maize and probably

in many raw cereals.

4. Discussion

ZEA is amycotoxin produced by some species ofGibberella/Fusarium,

especially by Gibberella zeae and F. culmorum (Stob et al., 1962; Marasas

et al., 1984). It is associated mainly with cereal crops, in particular,

maize, barley, oats, wheat, rice and sorghum, together with their related

products (Kuiper-Goodman et al., 1987). Although this mycotoxin is

probably most common in maize, very high levels (11–15 mg/kg) can

be found in other cereals, for example barley (Yoshizawa, 1997).

Quantification and identification of mycotoxigenic fungi have tra-

ditionally relied on culture methods and morphological classification

that require specific expertise and experience particularly in Fusarium

(López-Errasquín et al., 2007; Jurado et al., 2005; Seifert and

Lévesque, 2004; Edwards et al., 2002).

Fig. 1. 1.5% of agarose gel electrophoresis of PCR products with ZEA-F/ ZEA-R (A) and ß-tubulin (B) primers. Lane M, 1 kb DNA ladder (Promega); Lane 1, F. graminearum NRRL 5883;

Lane 2, F. graminearum NRRL 28336; Lane 3, F. culmorum NRRL 3288; Lane 4, F. culmorum NRRL 25475; Lane 5, F. proliferatum NRRL 26191; Lane 6, F. proliferatum NRRL 6322; Lane 7,

F. moniliforme NRRL 13616; Lane 8, F. verticillioides NRRL 6442; Lane 9, F. verticillioides NRRL 34281; Lane 10, F. sporotrichioides NRRL 13440; Lane 11, F. dlamini NRRL 13164; Lane 12,

F. poae NRRL 3287; Lane 13, F. Poae CBS 317.73; Lane 14, Aspergillus parasiticus CBS 100926; Lane 15, A. flavus NRRL 35691; Lane 16, A. ochraceus NRRL 5175; Lane 17, A. westerdijkiae

NRRL 3174; Lane 18, A. niger CBS 120166; Lane 19, A. carbonarius CBS 120168; Lane 20, A. sulfureus NRRL 4077; Lane 21, Penicillium verrucosum NRRL 3711; Lane 22, P. nordicum;

lane 23, P. citrinum NRRL 1843; Lane 24, P. expansum NRRL 35694.

Fig. 2. Nucleotide alignment of the 192 bp amplified region from the F. graminearum and F. culmorum PKS13. Black shading represent conserved nucleotides, non shaded regions

represent nucleotide differences.



In recent years, several PCR-based techniques have been devel-

oped to overcome this problem. These methods have been based

mainly on key biosynthetic genes of mycotoxins, the internal tran-

scribed spacer sequence (ITS) and the intergenic spacer region (IGS)

of the rDNA (Jurado et al., 2005, 2006; Patiño et al., 2005) as well as

from β-tubulin, elongation factor 1 α and the calmodulin genes

which provide also highly conserved and variable sequence regions

(EL Khoury and Atoui, 2010). However targeting the mycotoxigenic

genes is the best way especially where a particular mycotoxin can

be produced by a number of species. Regions of homology within my-

cotoxin biosynthetic gene from the different species can be then used

to develop specific primers allowing the detection of these relevant

mycotoxigenic species.

There have been reports of collective detection of trichothecene-

producing Fusarium species with a PCR-based assay based on tricho-

thecene biosynthetic genes (Doohan et al., 1999; Edwards et al.,

2001; Schnerr et al., 2001, 2002; Wilson et al., 2004) as well as for

fumonisin producing Fusarium based on genes in the fumonisin bio-

synthetic cluster (López-Errasquín et al., 2007). Recently the gene

cluster of ZEA biosynthesis has been identified in F. graminearum

which containing two polyketide synthase gene, PKS4 and PKS13

(Lysøe et al., 2006; Gaffoor and Trail, 2006; Kim et al., 2005). In this

study we have developed a set of primers, ZEA-F/ZEA-R, and the cor-

responding PCR assay to detect both F. graminearum and F. culmorum

based on PKS13. The assay has been tested on a range of Fusarium

species as well as on other food relevant fungal species. Positive

results were only obtained from F. graminearum and F. culmorum pro-

ducers of ZEA (Fig. 1A). A similar assay has been developed by Meng

et al. (2010) but targeting the PKS4. Their assay was specific for the

zearalenone-producing F. graminearum, F. culmorum and F. crookwel-

lense. Interestingly, in the present work the PCR amplification product

from F. culmorum by ZEA-F/ZEA-R has been sequenced. Sequencing

result showed that the amplified fragment from F. culmorum pre-

sented high similarity with F. graminearum (Fig. 2) within the

192 bp fragment. The developed assay then could be considered as

specific for the potential ZEA producing fungi. Sequence differences

between F. graminearum and F. culmorum (Fig. 2) could be used to de-

velop an assay for example, using PCR-RFLP, to differentiate both

species.

In the present study, a standard curve (R2=0.97) was constructed

after qPCR amplification of pure genomic F. graminearum DNA using

ZEA-F/ZEA-R. This confirmed the linearity of the quantification pro-

cess between exponential increases in DNA concentration and qPCR

threshold cycles (Fig. 3) and showed that it was possible to detect

and quantify DNA from F. graminearum and/or F. culmorum in infected

commodities over a range of concentrations, since they have same

gene fragment.

The efficiency of PCR quantification methods can be seriously

affected by the presence of inhibitors in the food matrix, such as

proteinases (Powell et al., 1994) and other compounds naturally

present in foods (Mulé et al., 2006). For this reason, testing direct-

ly on foods is essential to evaluate the potential application of the

developed quantitative real time PCR. In this work DNA quantifica-

tion of the most relevant ZEA producing fungi F. graminearum and

F. culmorum has been successfully applied in maize. F. grami-

nearum and/or F. culmorum DNA content was plotted against ZEA

content for the analysed 32 maize samples (Fig. 5). A positive

and good correlation between DNA quantity and zearalenone was

found (R2=0.760).

The correlation between DNA content and mycotoxin load has

been demonstrated for Fusarium and Aspergillus species. Schnerr et

al. (2002) used the tri5 gene sequence in a quantitative qPCR to cor-

relate the amount of target DNA with deoxynivalenol contents in

wheat samples (R=0.9557). Sarlin et al. (2006) developed PCR as-

says for trichothecene estimation in barley and malt. They observed

high correlation between the F. graminearum DNA level and the

DON content in north American barley and malt samples

(R2=0.936), whereas the correlation was not evident with Finnish

barley samples which had naturally low DON and F. graminearum

DNA levels (R2=0.242).

Similar results have been reported for other qPCR protocols

developed to quantify the ochratoxin A (OTA) in foods. In their

results Atoui et al. (2007) and Mulé et al. (2006) showed respec-

tively a positive correlation of R2=0.81 and R2=0.917 between

A. carbonarius DNA content and OTA concentration in grape sam-

ples. By using real-time PCR, Schmidt et al. (2004) found a positive

correlation between the ochratoxin A content and the A. ochraceus

DNA quantity in green coffee (regression coefficient was R=0.55).

As the goal of the present study was to develop an assay allow-

ing the estimation of ZEA content in maize by the quantification of

F. graminearum DNA, we can consider that F. graminearum DNA

content lower than 500 pg DNA/mg of maize could assure good

safety. This value corresponds according to the correlation obtained

in this study to a value lower than the maximum permitted levels

of 350 ppb for ZEA in maize established by the European Union

(European Commission Regulation No 1126/2007).

We can conclude that the PCR assays described in this work pro-

vides a useful tool for rapid and sensitive detection and quantification

of the main ZEA-producing Fusarium species which can be readily

used to assess the quality of raw material such as maize to be pro-

cessed into food and feed products. The SYBR Green assay is an ad-

vantage for routine analyses of food commodities due to its lower

Fig. 3. Standard curve showing the log10 DNA amount (ng) vs. the real-time PCR cycle

threshold (Ct) for 10-fold dilutions of F. graminearum pure genomic DNA. The assay

showed a linear relationship between the DNA amount and Ct with a strong correlation

coefficient (R2=0.97).

Fig. 4. Melting curve (fluorescence versus temperature) of specific amplificons from

the target fragment of PKS13 at different concentrations. The melting temperature

of the target amplicon occurs at 85 °C. No contaminating products are present in

the reaction.



cost. Moreover qPCR procedures developed in the present study could

be carried out in a relatively short time period (4–5 h for DNA extrac-

tion and 2–3 h for qPCR).
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