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A B S T R A C T

In addition to a high void volume and specific area, solid foams possess other properties (low density,

good thermal, mechanical, electrical, and acoustical behaviour) that make them attractive for applications

such as heat exchangers and reformers. Applications using foams as catalysts or structured catalyst sup-

ports have demonstrated higher performance than classical catalysts. Several studies have explored the

hydrodynamic behaviour of foams in monophasic and countercurrent systems and have reported very

low pressure drops. This paper describes the application of ceramic foam to distillation. The b-SiC foam

contains 5 pores per inch (PPI) with a 91% void volume and a surface area of 640m2/m3. Performance

parameters including pressure drop for the dry and wet packing, flooding behaviour, and dynamic liquid

hold-up were measured in a column of 150mm internal diameter. The mass transfer efficiency in terms

of the height equivalent to theoretical plate (HETP) was determined by total reflux experiments using

a mixture of n-heptane and cyclohexane at atmospheric pressure. The experimental results were used

to develop a set of correlations describing pressure drop and liquid hold-up in terms of a dimensionless

number. The hydrodynamic performance and mass transfer efficiency were compared with classical

packing materials used in distillation.

1. Introduction

Solid foams (either ceramic or metal-based) have been known

for many years and have a wide range of applications due to their

low density and attractive thermal, mechanical, electrical, and

acoustical properties. In the last decade, there has been growing

interest in these foams for applications such as heat exchangers,

reformers, mixing improvement, and as catalysts or structured

catalyst supports (Pestryakov et al., 1996, 2007; Richardson et al.,

2000, 2003; Sirijaruphan et al., 2005; Winé et al., 2006; Chin et al.,

2006). Foams or other high-porosity cellular materials represent

a very promising new class of structural materials. Hydrodynamic

measurements reported in the literature (Richardson et al., 2000;

Lacroix et al., 2007; Despois and Mortensen, 2005; Bhattacharya

et al., 2002; Giani et al., 2005; Dukhan, 2006; Leong and Jin, 2006;

Topin et al., 2006; Incerra Garrido et al., 2008) have typically been

obtained in monophasic or occasionally biphasic (air/water) sys-

tems in cocurrent operation. These studies defined the permeability

of the foams and confirmed that foam hydrodynamics follows the
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Forchheimer relationship (Lacroix et al., 2007):

dP

dZ
=

l

K
u + bqu2 (1)

A noteworthy finding of these studies was a low pressure drop in

both monophasic and cocurrent biphasic systems. Stemmet et al.

(2005) initiated the study of countercurrent hydrodynamics in

foams. They also observed a low pressure drop (on the order of

a few mbarm−1 for liquids with mass velocities in the range of

0–17kgm−2 s−1 and gas flux in the range of 0–1kgm−2 s−1) with a

biphasic system in countercurrent operation. The flooding behaviour

was similar to the Sulzer KATAPAK structured packing (Ellenberger

and Krishna, 1999). In a later paper, (Stemmet et al., 2007) studied

cocurrent gas–liquid mass transfer in terms of an overall volumet-

ric gas–liquid mass transfer coefficient (kLaGL). This coefficient was

found to be relatively high, ranging up to 1.3 s−1. However, the

column used in this study was rectangular with a cross section

of 30 cm×1 cm. This does not correspond to a realistic situation in

distillation and led to significant side effects.

These promising results were the starting point of our study of

the application of ceramic foam as a distillation packing material.

Several important parameters are required to characterize a new

distillation packing material. This paper describes the experimental



steps necessary to validate the use of new packing materials, includ-

ing measurement of the hydrodynamic characteristics to estimate

the operating range, pressure drop, and flooding point; and deter-

mination of the mass transfer efficiency.

2. Foam structure

Ceramic foams in the form of silicon carbide (b-SiC) studied in

this work, exhibit advantageous properties such as high mechanical

strength, high heat conductivity, and high resistance to corrosiveme-

dia. b-SiC foams havemedium surface area (15–20m2 g−1) and a void

volume between 88% and 92%. The foam preparation method devel-

oped by the Sicat company, (Patent US 5,429,780; US 5,449,654; EP 0

624 560; EP 0 880 406 B1; US 5,958,831; US 6,251,819; FR2860992,

FR2860993, US20050159292, FR2834655) is based on the impregna-

tion of a polyurethane foam with a homogeneous mixture of silicon,

charcoal, phenolic resin, and oxygen supplier. After polymerization of

the resin, the material is calcined at 1300 ◦C in an inert atmosphere.

The final b-SiC foam product is a reticulated cellular material that

replicates the morphology of the polyurethane foam. This method

permits the synthesis of b-SiC foams with controlled cell sizes close

to the pores per inch (PPI) of the starting polyurethane material. The

structural parameters amenable tomodification include the pore size

(characterized by PPI number), the void volume, and the apparent

density. This allows the manufacture of materials with a wide vari-

ety of hydrodynamic properties. For this type of foam, the open void

fraction is not dependent on the PPI number; in fact it is possible

to maintain a constant open void fraction over the entire range of

PPI numbers. Conversely, for the same pore diameter, it is possible

to have different open void fractions. This may be visualized using

the cubic representation of the cells (Fig. 1) described by Giani et al.

(2005). The size of the struts (solid phase between the cells) can be

Fig. 1. Representation of cubic model of Giani et al. (2005).

Company: Sicat 

Materials: β Silicium Carbide

Average cell diameter: 5 350 µ (5 PPI)

Cylinder diameter : 139 à 146 mm

Height : 92-99 mm

Apparent density: 130-140 g/l 

Void volume: 92% 

Specific area: 640 m2/m3

Fig. 2. Characteristics of b-SiC foam studied.

changed to obtain a different void volume without changing the PPI

number.

Our study is focused on open celled SiC foam with a single PPI

number and porosity with the intrinsic characteristics summarized

in Fig. 2. The specific area was calculated from the cell diameter and

void volume using the following equations (Lacroix et al., 2007), in

which a = //2.3 and / is the cell diameter; a represent the window

diameter. The difference between cell diameter and window diam-

eter is illustrated in Fig. 3. The value obtained for specific area is of

640m2/m3:

ds =
a[(4/3p)(1 − e)]1/2

1 − [(4/3p)(1 − e)]1/2
(2)

ac =
4

ds
(1 − e) (3)

3. Experimental set up and methods

3.1. Hydrodynamics pilot plant

The experimental setup for hydraulic studies is illustrated in

Fig. 4. Foam cylinders were placed in a glass column with an inter-

nal diameter of 150mm and a packing height of up to 90 cm. The

column was operated in a countercurrent mode with an air–water

system. The studies were carried out at room temperature under

atmospheric pressure.

The liquid flowed from a tank through a pump and flowmeter

and was supplied to the top of the column via a plate distributor

containing 2716 holes per squaremetre for liquid flow to assure good

Fig. 3. Optical picture of SiC foam. Dotted circle show the cell diameter whereas

white arrow indicate a pentagonal window.
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Fig. 4. Experimental setup for hydraulic experiments: (1) centrifugal pump; (2) filter; (3) liquid flowmeter; (4) packed column; (5) U-tube filled with water; (6) tank; (7)

gas flowmeter; (8), (9) manometers; (10) balance; (11) tank; (12) electrovalve; and (13) drainage valve.

liquid distribution and a bypass section of 33% for gas flow. The liquid

was collected in the tank after passing through the packing. During

operation, the liquid superficial velocities were varied between 1

and 10m3 m−2 h−1. The gas flow was supplied at the bottom of the

column and was measured using a series of two flowmeters to obtain

gas superficial velocities from 0 to 2ms−1 in the empty column. The

pressure drop was measured using a U-tube manometer filled with

water which was inclined to provide a more sensitive measurement

(sensitivity of 0.05mbar).

3.2. Method for hydrodynamic study

The pressure drop was measured by periodically increasing the

gas flow at a constant liquid flow until flooding occurred. The flood-

ing point was defined as the point where a reversal of liquid flow

appears, the liquid is unable to flow through the packing, the pres-

sure drop along the bed fluctuated, and measurement was impossi-

ble due to the instability of the system.

Measurements of liquid hold-up were also carried out using the

same apparatus. Liquid hold-up, which represents the amount of

liquid retained in the packing, is the sum of two components, the

static liquid hold-up (hLs) and the dynamic liquid hold-up (hLd):

hLt = hLs + hLd (4)

Dynamic liquid hold-up was measured using the volumetric or

drainage method (Buchanan, 1969; Dmitrieva et al., 2005; Muzen

and Cassanello, 2005). After steady-state conditions were estab-

lished, the supply of liquid and gas was stopped by closing three

electrovalves (12, Fig. 4). The draining liquid was collected for 30min

and measured using a balance. The dynamic hold-up was calculated

by dividing the volume of liquid by the packing volume. Before each

test, a high liquid flow was passed through the packing for 30min

to fully wet the foam and eliminate dry zones. Static liquid hold-

up could be measured by a similar method than dynamic liquid

hold-up. A foam piece was submersed in the liquid, removed and

suspended allowing the drainage of liquid. The difference between

the initial weight and the weight after drainage constitute the static

liquid hold-up. Static liquid hold-up may also be determined from

dynamic liquid hold-up results by plotting dynamic liquid hold-up

as a function of liquid superficial velocity.

3.3. Distillation pilot plant

The mass transfer efficiency was reported in terms of the height

equivalent of theoretical plate (HETP) number obtained by divid-

ing the height of the packing by the number of equilibrium stages

(NET).

The HETP experiments were performed using the distillation pi-

lot plant described in Fig. 5. The mixture in the reboiler was heated

with steam provided by a 60kW electrical generator at 8bar max-

imum pressure. The heat duty was calculated by measuring the

condensate flow of water at the reboiler exit. The temperature of

the reboiler and the head of the column was measured with a ther-

mocouple. The standard experimental methodologies developed by

Fractionation Research Inc. (FRI) and the Separation Research Pro-

gram (SRP) were employed to determine the HETP of the packing

material. Measurements were carried out by separating a binary

mixture by distillation at total reflux. The procedure consisted of
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Fig. 5. Experimental setup for HETP tests: flow control; LS-i, VS-i: liquid Sample n◦i, vapour Sample n◦i; pressure drop measurement; Tk: temperature measurement

n◦k; LSA, LSF: liquid seal adjustable, fixed; and pressure indicator.

reaching the flood point, backing off to roughly 20% of flood to un-

load the bed, and then performing the test at the targeted reboiler

duty. The experiments were carried out at atmospheric pressure

with a standard cyclohexane/n-heptane mixture (Subawalla et al.,

1997; Olujic et al., 2000). The required range of reboiler duty was

estimated from the corresponding hydrodynamics results and the

tests were performed at duties ranging from 2 to 8kW. The heat

losses of the pilot plant were estimated beforehand at approximately

1.25 ± 0.11kW. Heat losses were determined by operating under no

reflux condition, the measurement of distillate flow allowing to de-

termine condenser heat duty. Difference between reboiler and con-

denser heat duty represent the heat losses.

The first tests were carried with a common packing material

(Raschig rings 15×15mm) to benchmark our method and results. A

final test using a different starting composition in the reboiler was

performed to determine whether the performance was influenced

by the starting composition.

Liquid samples were removed from the top and bottom of the

column and analysed using a refractometer. The time between

the initial generation of vapour and collection of the first sam-

ples was almost 3h, and the system was considered to be at

steady state when three successive samples had the same compo-

sition. The top and bottom compositions were used to calculate

the NET.

For all of the experiments, wall wipers were inserted between

each cylinder of foam to avoid wall effects (liquid flowing on the

wall of the column and bypassing the packing).

The pressure drop, liquid hold-up and HETP are reported as a

function of the F-factor, defined as the product of the superficial

vapour velocity and the square root of vapour density:

F = uG
√

qG (5)

4. Experimental results

4.1. Pressure drop and hold-up results

The pressure drop per metre for the dry and wet packing mate-

rial at different liquid loadings is plotted in Fig. 6(a). The hydrody-

namic behaviour was similar for all liquid flowrates; the slopes of

the curves are nearly the same and display an increase in pressure

drop with increasing liquid and gas velocities. At higher pressure

drops, a discontinuity divides the curve into two distinct zones. The

location of the discontinuity corresponds to the loading point (this

is depicted in Fig. 6(b) for two liquid velocities). The last point of

each curve corresponds to the highest recorded pressure drop and

represents the flooding point.

Since the terms of the Forchheimer Eq. (1) are difficult to relate

to structural characteristics, the models used to determine the per-

meability of foams are derived from correlations developed for gran-

ular beds. Several researchers have used Ergun's model to predict

dry pressure drop by modifying the Ergun parameters to fit their

experimental data:

DP

Z
= E1

l(1 − e)2

e3d2P
uG + E2

q(1 − e)

e3dP
u2G (6)

where uG is the gas velocity (ms−1), DP the pressure drop (Pa), Z

the height of the foam (m), l and q are the fluid viscosity and fluid

density, E1 and E2 are Ergun constants, e the bed porosity, and dP
the mean particle diameter of the granular medium. The approach

proposed by Lacroix et al. (2007) may be used to calculate dP:

dP =
6
4dS (7)
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Ergun proposed a value of 150 for E1 and 1.75 for E2 in the case of

columns containing spherical packing materials, but a better fit to

our experimental data was obtained with the values E1 = 150 and

E2 = 1.9. A comparison of the model and experimental values is pre-

sented in Fig. 7 and model shows a good agreement with experi-

mental values.

However, Incerra Garrido et al. (2008) have put in evidence that

the modified Ergun equation proposed by Lacroix et al. (2007) is not

so convenient for pressure drop prediction and not applicable for

all type of foam. In fact, their work shows a considerable deviation

(almost 20%) between pressure drop of foam sample with similar

structure (PPI number and voidage); this deviation is due to the im-

perfections of the foam like closed pore. The imperfections of the

foam and the quality of foam differ considerably for each manufac-

turer resulting in such deviation of literature results. That is why

one of their important conclusions is that no general model for pre-

diction of pressure drop can be achieved currently. Incerra Garrido

et al. (2008) proposed a new empirical model which seems to be

more convenient. It is based on the Forchheimer equation with em-

pirical determination of the permeability and inertial coefficient de-

fined with the following equations:

DP

DZ
=

l

k1
u0 +

q

k2
u20 (8)

k1 = 1.42 × 10−4

(

Dp

m

)1.18

e7.00
h

(9)

k2 = 0.89

(

Dp

m

)0.77

e4.42
h

(10)

with m defined in the dimensionless number Fg,

Fg =

(

Dp[m]

0.001m

)m

(eh)
n (11)

The application of this model require the determination of some sup-

plementary measurements like the determination of eh by mercury

porosimetry and mass transfer measurements to attain the value of

the parameter m.

However, the Lacroix model is used in this work rather than

Incerra Garrido et al. model for several reasons.

The foam used in this work is from the same manufacturer than

Lacroix et al. (2007), that is why their approach was used for predic-

tion of dry pressure drop. Moreover, the deviations between litera-

ture data are more pronounced for high superficial velocities (higher

than 5ms−1); the upper value of our range of velocity is 2ms−1

so the application of Lacroix model is possible in this case. Never-

theless, the authors are aware that the application of this model is

limited to our foam.

The similarity of the slopes suggests that the wet pressure drop

is dependent on the dry pressure drop and an additional term to

characterize the liquid flowing through the packing. Plotting the

pressure drop for the wet packing as a function of the dry pressure

drop yields a straight line with a higher slope for greater liquid

superficial velocities. The pressure drop of wet packing materials

below the loading point may be described by an expression of the

following form Kolodziej et al. (2004):

DP

Z
= AReBL

(

DP

Z

)

Dry

(12)

Values of 1.1 and 0.2 were obtained for the empirical coefficients A

and B. The values predicted by this model are compared with the

experimental data in Fig. 8. In general, the predicted values are quite

lower than experimental results with the maximum deviation for

low liquid velocity; but the model seems to be in agreement with ex-

perimental values. Like for dry pressure drop, the deviation between

model and experimental points may be explained by the imperfec-

tions of foam which are not taken into account in the correlation.

The pressure drop characteristics of the dry packing are compared

to an aluminium foam of similar morphology (5PPI with 92% void

volume) in Fig. 9 (Stemmet et al., 2005). The pressure drops of the

aluminium and SiC foam are in the same range of values (several

mbarm−1) even if a slight difference exists for low gas flow. This

difference is due to the structure of SiC foam which is not perfect
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(some pores are closed on the wall of cylinders), which confirms the

observations of Incerra Garrido et al. (2008).

The pressure drop was also compared with three classical packing

materials used for distillation, two structured and one random. These

were Sulzer M250Y, widely used in industry, with a specific area

of 250m2/m3; Sulzer CY with a specific area of 700m2/m3; and

Sulzer 5/8 in Pall rings (denoted as PR 5/8), the dimensions of which

are representative of packing materials commonly used in 150mm

diameter columns, with a specific area of 360m2/m3.

The hydrodynamic characteristics of these packing materials as a

function of the operating conditionsmay be obtained using the Sulcol

software of Sulzer. As an example, the pressure drop for one liquid

loading is depicted in Fig. 10 for uL = 7.9m3 m−2 h−1. The pressure

drop of the foam is somewhat higher than the three other packing

materials but within the range of acceptable performance and of

the same order of magnitude (several mbarm−1). These findings are

logical since M250Y and the Pall rings have a lower specific area.

The CY packing has a lower pressure drop than ceramic foam despite

having a higher specific area; this is probably due to the higher void

volume of CY.

Another very important design parameter for packed columns is

the flooding line, because it determines the range of useful flows

during distillation. The flooding line may be described in terms of

the flowing factor at flooding and the loading factor at flooding
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calculated using the following relations:

X = (L/Gf ).
√

(qG/qL) (13)

Cg =
Gf

√

qG(qL − qG)
(14)

Fig. 11 contains a comparison of the flooding lines for the different

packing materials. The flooding line of the foam is lower than the

other materials, indicating that flooding occurs at lower liquid and

gas flowrates and somewhat restricting the distillation operating

range.

In Fig. 12(a), the dynamic liquid hold-up results are plotted for

four liquid superficial velocities from 3.4 to 9.1m3 m−2 h−1. The over-

all shape of the curves correspondswell to theoretical hold-up curves

for packing materials; i.e. the liquid hold-up is independent of the

gas superficial velocity in the first part of the curve, while in the sec-

ond part of the curve (the loading zone) the liquid hold-up increases

with gas superficial velocity. Liquid hold-up is also influenced by the

liquid superficial velocity, increasing as the velocity increases. This

can be explained by the fact that at low gas velocities the hold-up

consists only of the liquid film at the surface of the packing. The in-

crease in hold-up observed in the loading zone results from the ap-

pearance of waves at the liquid film surface that increase the volume

retained in the column. The Sulcol software only provides the total

liquid hold-up, and in order to make comparisons to other packing
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materials it is necessary to determine the static hold-up. Onemethod

of estimating the static liquid hold-up consists of plotting the dy-

namic liquid hold-up as a function of liquid superficial velocity. The

y-intercept of the line corresponds to the static liquid hold-up of the

packing. This is demonstrated in Fig. 12(b) for a gas superficial ve-

locity of 0.392ms−1. Averaging the values obtained at various gas

velocities yields an estimate of 1.9% for the static hold-up.

The dynamic liquid hold-upmay be expressed as a power function

of the liquid-phase Reynolds number:

hLd = 0.0115Re0.6L (15)

A comparison of the model and experimental results is presented

in Fig. 13. The deviation of the experimental points from the model

prediction does not exceed 15% except for values in the loading zone.

In the comparison with other packing material depicted in

Fig. 14, the liquid hold-up of the foam is higher than the hold-up

of M250Y and the Pall rings in the region before the loading zone.

The rapid increase in liquid hold-up occurs at lower liquid and gas

velocities. Like pressure drop, the liquid hold-up of a packing ma-

terial depends on the specific area, with foams typically displaying

higher liquid hold-up values. The liquid hold-up of CY is higher than

the foam probably because of the structure (high specific area) and

construction material (gauze packing). Increased liquid hold-up at

low F-factors will result in high residence times.
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Fig. 14. Liquid hold-up of ceramic foam, M250Y, CY, and PR 5/8 for

uL = 4.5m3 m−2 h−1 .
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rings.

4.2. Mass transfer results

4.2.1. Method validation

The results of tests performed using glass Raschig rings with nom-

inal dimensions of 15×15mm are provided in Fig. 15. The experi-

mental method and results were validated by using the correlation

of Onda et al. (1968) to determine the liquid and gas mass transfer

coefficients kL and kG and to calculate HETP:

kL

(

qL

glL

)1/3

= 0.0051

(

ReL
ac

aw

)2/3

ScL
−0.5(acd)

0.4 (16)
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Fig. 16. HETP measurement with ceramic foam for different reboiler heat duty.

kG
acDG

= 5.23ReG
0.7ScG

1/3(acd)
−2 (17)

HL =
uL
kLae

(18)

HG =
uG
kGae

(19)

HTU = HG + kHL (20)

HEPT = HTU

(

ln k

k − 1

)

(21)

The uncertainty in the HETP measurements was also determined,

and appears as error bars in the graph. The determination of molar

composition by refractive index was the main source of uncertainty

in the HETP measurements. The uncertainty in molar composition

was approximately 2% for all samples. An error of 2% in molar com-

position results in an uncertainty of almost 10% in the HETP deter-

mination.

The experimental points correspond well to the predictions of

the model, especially for F-factors greater than 0.4. Both the exper-

imental method and the results can therefore be considered valid.

4.2.2. Foam HETP

The results of HETP experiments performed under total reflux

with an initial composition of 30%molar cyclohexane/70%molar n-

heptane are presented in Fig. 16. The results of an additional test

using a lower starting molar composition of cyclohexane (20%mo-

lar) are also plotted to determine whether the starting composition

influenced the performance.

As in the Raschig ring experiments, the HETP initially decreased

with increasing gas and liquid velocities inside the packing until a

constant value (0.2m) was reached at (0.5 Pa0.5). HETP values for

low F-factor are higher because of the bad wetting of packing. This

is similar to the behaviour described for other packing materials

(Kister, 1992; Bennet, 2000) (Fig. 17), with an initial decrease in HETP

followed by an increase to the limiting value at the flooding point.

In the present case, the decrease of HETP with F-factor was evident,

but the HETP at the flooding point could not be obtained due to the

instability of the column.

The HETP curves for both starting compositions were identical

within the range of experimental uncertainty, indicating that the

starting composition does not influence HETP.

As with the hydrodynamic data, HETP can be compared with

other packings but caution must be exercised when comparing with

the HETP results of other packings. In addition to differences in the

dimensions of the test columns, there are variations in the overall
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Fig. 17. General behaviour of packing efficiency.
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Fig. 18. Comparison of HETP for ceramic foam, M250Y, CY, and PR 5/8.

distillation system design and operating pressure. Fig. 18 contains a

rough comparison of the following systems:

• Sulzer M250Y with cyclohexane/n-heptane mixture at 1.65bar

(250m2/m3 specific area) (Schultes and Chambers, 2007).

• Sulzer CY with chlorobenzene/ethylbenzene mixture at 0.4 bar

(700m2/m3 specific area) (Kister, 1992).

• Pall rings (5/8 in) with methanol/2-propanol mixture at atmo-

spheric pressure (360m2/m3 specific area) (Wen et al., 2003).

The experimental HETP values of ceramic foam fell between 0.2 and

0.3m, corresponding to approximately 4–5 theoretical stages per

metre. The mass transfer efficiency of the foam packing is higher

than M250Y and P/R 5/8 but lower than CY, in accordance with the

specific area for each packing. Therefore, the foam packing can be

considered to have very good mass transfer performance.

The performance may also be compared by plotting number of

theoretical stages per metre (NTSM) as a function of the pressure

drop (Fig. 19). This represents a compromise between the hydro-

dynamic behaviour and the mass transfer efficiency of the packing.

The ceramic foam exhibits intermediate performance, higher than

M250Y and PR 5/8 in but lower than CY.

5. Conclusion

This paper presents a detailed investigation of the use of SiC

ceramic foam as a distillation packing material. The principal
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hydraulic characteristics of the foam were experimentally deter-

mined for gas–liquid countercurrent flow using an air–water sys-

tem. The performance in terms of pressure drop per unit height and

flooding behaviour was quite low compared with classical distilla-

tion packing materials (M250Y, CY, and Pall rings).

The liquid hold-up of the foam packing increased with increased

liquid–gas loading in the loading zone, and the liquid hold-up was

greater than other classical packing materials. The efficiency of the

mass transfer was determined over the entire operating range using

a cyclohexane/n-heptane system at atmospheric pressure under total

reflux. The mass transfer performance was very good, with a HETP

of 0.2m and increasing mass transfer with increasing gas and liquid

superficial velocities inside the packing.

Ergun's equation and the approach of Lacroix et al. (2007) were

used to predict the pressure drop of the packing under dry and

wet conditions. The agreement between predicted pressure drop

and experimental results is quite well here although Incerra Garrido

et al. (2008) have shown that Lacroix model is not very convenient

for prediction of pressure drop and proposed a new empirical model.

In this case, the Lacroix model is used because foam used in this work

and foam sample studied by Lacroix et al. (2007) are provided by the

same manufacturer. Nevertheless, this model is used by being aware

of the fact that it is limited to our foam. The dynamic liquid hold-up

was modelled as a function of the liquid phase Reynolds number.

Based on these results, ceramic foams could be considered as

a good potential packing for distillation, however the applications

would be limited by the low capacity.

The ceramic foam employed in this study exhibits other interest-

ing properties:

• corrosion resistance,

• adaptability of the foam geometry to increase performance

through structural modification, and

• the b-Sic material is well adapted to catalyst coating, introducing

potential applications in reactive distillation

In the target application of reactive distillation, the low capacity

does not represent a real disadvantage because the flowrates are

lower. Moreover, increased liquid hold-up at low F-factors implies a

high residence time, which would be favourable to the reaction. Tests

of catalyst coatings on the foam and reaction kinetics measurements

constitute the next step of the study.

Notation

a window diameter of foam, m

ac specific surface area, m2/m3

ae effective interfacial area for gas–liquid contact,

m2/m3

aGL interfacial liquid area per unit volume, m2/m3

aw wetting surface area of the packing, m2/m3

A pre-exponential parameter in wet pressure drop

correlation

AC compressed air

B exponent in Reynolds number (Re) in wet pressure

drop correlation

Cg loading factor at flooding, ms−1

d packing nominal dimension, m

dP mean particle diameter, m

dS strut diameter, m

DG, DL gas and liquid phase diffusion coefficient, ms−2

Dp pore diameter, m

E1, E2 constants in Ergun's equation

F gas load, Pa0.5

Fg geometrical function, dimensionless

g acceleration due to gravity, 9.81ms−2

G gas mass flowrate, kg s−1 m−2

Gf mass flowrate at flooding point, kg s−1 m−2

hLd dynamic liquid hold-up

hLs static liquid hold-up

hLt total liquid hold-up

HG height of gas transfer unit, m

HL height of liquid transfer unit, m

HETP height equivalent to a theoretical plate, m

HTU height of a transfer unit, m

kG gas phase mass transfer coefficient, ms−1

kL liquid phase mass transfer coefficient, ms−1

k1 viscous permeability parameter, m2

k2 inertial permeability parameter, m

K permeability, m2

L mass liquid flowrate, kg s−1 m−2

m parameter in Fg

n parameter in Fg

NTSM number of theoretical stage per metre

P pressure, mbar

PI pressure indicator

PPI pores per inch

DP/DL pressure drop per unit packed height, mbarm−1

ReL, ReG liquid and gas phase Reynolds number

ScL, ScG liquid and gas phase Schmidt number

u0 superficial velocity, ms−1

uG superficial gas velocity, ms−1

uL superficial liquid velocity, ms−1

X Sherwood abscissa

Z height, m

Greek letters

b inertial coefficient, m−1

e open void fraction, %

eh hydrodynamic relevant porosity

k stripping factor

l fluid viscosity, Pa s−1

lG,lL dynamic viscosity of gas and liquid, Pa s−1

q fluid density, kgm−3

qG, qL density of gas and liquid, kgm−3

/ cell diameter, lm
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