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Abstract—A new class of erasure codes for delay-constraint
applications, called on-the-fly coding, have recently been in-
troduced for their improvements in terms of recovery delay
and achievable capacity. Despite their promising characteristics,
little is known about the complexity of the systematic and
non-systematic variants of this code, notably for live multicast
transmission of multimedia content which is their ideal use case.
Our paper aims to fill this gap and targets specifically the metrics
relevant to mobile receivers with limited resources: buffer size
requirements and computation complexity of the receiver. As
our contribution, we evaluate both code variants on uniform

and bursty erasure channels. Results obtained are unequivocal
and demonstrate that the systematic codes outperform the non-
systematic ones, in terms of both the buffer occupancy and
computation overhead.

I. INTRODUCTION

There exist two classes of reliability mechanisms based, re-

spectively, on retransmission and redundancy schemes. Auto-

matic Repeat reQuest (ARQ) schemes recover all lost packets

by utilizing retransmissions. As a consequence, the recovery

of a lost packet incurs a delay of at least one additional Round

Trip Time (RTT). However, this might not be suitable for time

constrained applications, that define a threshold above which

they consider a packet outdated and no longer useful to the

receiving application. A well-known solution to prevent this

additional delay is to add redundancy packets to the data flow.

This can be done by using erasure coding schemes. These

schemes can be classified into two major groups: block and

on-the-fly codes. The main principle of a block code is to use k
source packets to send n encoded packets (with n > k), which

are built from the k packets using the encoding mechanism.

The addition of n − k repair packets to a block of k source

packets allows the decoder on the receiving end to rebuild all

of the k source packets if, from the n sent packets, a maximum

of n − k packets are lost. If more than (n − k) losses occur

within any block, decoding becomes impossible, as the coding

mechanism is tightly coupled to a specific block size n.

To overcome this issue, other recent approaches have pro-

posed on-the-fly coding schemes [1][2][3], which belongs

to a class of convolutional codes. In [1], the authors use

non-binary convolutional codes and show that the decoding

delay can be reduced with the use of a sliding window,

rather than a block, to generate the repair packets. More

recently in [2] and [3], the authors propose an on-the-fly

coding scheme that implements an elastic encoding window

and uses an unreliable reverse feedback path (when available),

to decrease the encoding complexity at the sender side, without

impacting the communication data transfer. Compared to [1],

both proposals enable a fully reliable service under certain

conditions. However, the main difference between [2] and [3]

is that the former proposes a non-systematic scheme while the

later uses a systematic variant.

In this paper, our aim is to assess the benefit and imple-

mentation requirements of both variants of on-the-fly coding

schemes, in terms of receiver buffer occupancy and com-

putation overhead. The objective is to evaluate the applica-

bility of such coding schemes in the context of multimedia

communications over multicast services. In particular, the

resulting analysis would enable us to determine whether such

coding schemes are practical in a multicast environment where

the multicast group, comprising of mobile devices (PDAs,

cell-phones, etc.) which have lower processing capabilities

and limited resources, is receiving, e.g. video or any other

multimedia content.

We detail in Section II the characteristics of on-the-fly

coding schemes compared to block codes. Then, we analyse

the buffer size requirements of such codes over a uniform

erasure channel in Section IV while Section V addresses

their computation complexity. We also present a study of

buffer sizes and computation complexity over a bursty erasure

channel in Section VI. Finally we conclude this work in

Section VII.

II. BLOCK VERSUS ON-THE-FLY CODES

As outlined in the introduction, block codes are defined

by two parameters: (k, n) with n > k (from k source data

packets, n encoded packets are sent). The difference between

various block codes (e.g. LDPC [4] or Reed Solomon codes

[5]) is related to the specific linear combination method used



to create repair packets. The difference is reflected in both

the encoding/decoding complexity and correction capability.

On-the-fly codes are based on the same principle, but also

include memory. Therefore, on-the-fly coding schemes are

defined by three parameters: (k, n,m) as they are usually

based on a sliding encoding window of size k×m. To encode

n packets which will be sent on the network, k×m previous

information packets are used [1]. They are referred to as codes

with memory as a block of k source packets must be stored

to encode the m following encoded blocks.

The main feature of these codes is that they are more

suitable for bursty erasure channels than the block codes [6],

as the information from the source data packets is spread

over more than one block (e.g. over m blocks), making the

transmission more resistant to bursts of losses.

Neither block nor convolutional codes proposed by [1] use

acknowledgements, and as a result, they cannot enable full

reliability. One possible solution would be to combine ARQ

with such mechanisms. This solution, known as Hybrid ARQ

[7], may not be feasible on links which have a long delay,

as the missing packets might be retransmitted too late for the

multimedia application to use them. To handle this problem,

authors in [2] and [3] propose to use an on-the-fly code with

an infinite encoding memory (referred to as elastic encoding

window) and an acknowledgement path, used to decrease the

number of packets in the encoding window. The acknowledge-

ment packets are only used, when possible, to decrease the

encoding complexity. Obviously, when receivers are mobile

devices with limited resources like memory or processing

power, an infinite window size is not feasible. We thus propose

in this paper to assess the buffer size requirements of the

elastic window encoding schemes, including the systematic

and non-systematic variants.

To simplify the study, we assume that the on-the-fly code is

rateless, similarly to the Fountain codes (e.g. LT [8] or Raptor

codes [9]), i.e. the code can create an infinite number of linear

combinations (encoded or repair packets) from a finite number

of source packets.

We note that the concept of infinite encoding window

size has already been used in several contexts. In network

coding, this approach enables the creation of ”infinite” linear

combinations of packets [10]. In this context, the purpose of

having an infinite window is not to protect the data, but to

fully use the network capacity, by sending only useful packets

to every receiver (a packet is called useful when it is utilised

at the receiver side to retrieve missing packets). In this case,

only linear combinations of source data packets are sent i.e.

the code is non-systematic. In [10], the authors use the concept

of a ”seen” packet, which enables the receiver to acknowledge

a source data packet Pi when a repair packet, that contains a

linear combination including Pi, is received. More precisely,

Pi is acknowledged by a repair packet when Pi is the first not

yet seen packet contained in this repair packet. This allows the

receivers to acknowledge packets (even) before decoding them,

thus enabling the source to reduce the size of the encoding

window [2].

packet
number

encoding
window

non systematic
sending

systematic
sending

P1 P1 P1 P1

P2 P1, P2

∑
2

1
Pi P2

P3 P1, P2, P3 2×

∑
3

1
Pi P3 and

∑
3

1
Pi

P4 P1 to P4

∑
4

1
Pi P4

P5 P1 to P5

∑
5

1
Pi P5

P6 P1 to P6 2×

∑
6

1
Pi P6 and

∑
6

1
Pi

TABLE I
REPRESENTATION OF THE SOURCE ENCODING WINDOW AND THE

SENDING PATTERN IN BOTH SCENARIO FOR A CODE (3, 4). COEFFICIENTS

IN THE LINEAR OPERATIONS ARE NOT REPRESENTED, PLEASE NOTE THEY

ARE CHOSEN TO HAVE A MAXIMUM DISTANCE SEPARABLE CODE.

In [3], the authors propose to use an on-the-fly code with

an infinite encoding window to protect the data. However, the

main objective is to enable a fully reliable coding scheme

for real-time applications such as VoIP or streaming video.

This code is systematic, i.e. the source data are not encoded.

Table I illustrates the difference between the on-the-fly coding

schemes proposed in [10] and [3].

To the best of our knowledge, there is no existing study

that quantifies the complexity and analyses the buffer size

requirements of convolutional codes with an infinite encoding

window. In a point to point scenario, the analysis is trivial as

the systematic codes would logically produce an improvement

in terms of delay. However in a multicast context, it is much

more complex to estimate the impact of the multicast group

size on each receiver within the group. We thus propose to

study this problem in the following sections.

III. SIMULATION SCENARIO AND PARAMETERS

We have implemented both version (systematic [2] and non-

systematic [3]) elastic window codes in Matlab. We use a

satellite-like multicast scenario where the source transmits to

a number of independent receivers. We vary the number of

receivers between 2 to 30. Although the number of receivers

in a multicast group consisting of mobile devices may be

significantly larger, we will show that the number of receivers

used is sufficient to illustrate the differences between the two

codes in terms of memory and complexity, as related to the

group size.

Matlab is not a real-time simulator, so it was necessary to

define a time scale i.e. a unit of time. During this period,

the source may receive an ACK (if any), reduce its encoding

window, or send a packet; the receivers may receive a packet,

decode the repair packets, reduce their buffer sizes, or send

an ACK (if needed). The RTT and the time elapsed between

two acknowledgements, s, will consequently be expressed as

a multiple of this unit of time.

To simplify the simulation, the matrices used in the encod-

ing and decoding process are not created, therefore avoiding

the need for complex operations like matrix inversion. We also

assume that the codes used are maximum distance separable

(MDS). As the encoding is based on MDS properties, we only



consider that if a matrix is square, it can be inverted and the

decoding is therefore possible.

For our simulations, we always use a code (3, 4) (which

can correct up to 25% of erased packets), a packet error rate

PER = 20% and an RTT = 2. For simplicity, we consider

an identical delay on the uplink and downlink between the

source and the receiver, equal to one unit of time. We vary the

number of receivers and s. We evaluate two cases: a uniform

erasure channel and a bursty erasure channel. We consider

that the links to the different receivers are independent, i.e.

the losses (either bursty or uniform, as appropriate to the

channel) are independent on both the uplink and the downlink.

We note that for all the figures in this paper, each point in

any of the graphs represents the average value obtained by 10

simulations, with each simulation consisting of the encoding

and decoding process for 10000 data packets.

IV. ANALYSIS OF BUFFER SIZE REQUIREMENTS FOR A

UNIFORM ERASURE CHANNEL

In this section, we evaluate the buffer size requirements of

both systematic and non-systematic codes as a function of

s and the number of multicast receivers. Of interest is the

required buffer size in the sender and, most importantly (due

to resource limitations) the receivers.

The simulation results obtained for both codes over a

uniform erasure channel are shown in Fig. 1. We show: the

average and the maximum number of packets in the source’s

buffer; the average number of packets in the receivers’ buffer

and the average of the maximum number of packets in the

worst receivers’ buffer.

Buffer sizes for non systematic and systematic solutions
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Fig. 1. Number of packets in the nodes’ buffer with with s = 10 (on the
left) or s = 20 (on the right) for the non-systematic and systematic approach.

It can be observed that the number of packets in the buffers

increases with the number of receivers. This is an expected

result, as since all the receivers are independent, they may

not receive and acknowledge the same packets and there is

also a probability that an ACK packet will be lost (note that

PER applies to both forward and return channels). In this case,

even if the source receives an ACK from other receivers, the

corresponding packet cannot be suppressed from the source’s

buffer and the receivers also cannot flush this packet from their

buffers. Therefore, the loss of a single ACK packet impacts

all nodes. Furthermore, when we increase s from 10 to 20,

we can observe that the results are homothetic in regards to

the sender buffer size. This result seems logical, as the source

needs to store more packets between two ACKs if the receiver

ACKs are less frequent. For both s values of 10 and 20, we

can observe that there is a very limited difference between

the two codes for the source side. This can be explained by

the fact that in 10 or 20 units of time, both codes have a

high probability to obtain/decode every packet in the window,

therefore they will likely acknowledge the same packets.

Considering the receivers, when changing s from 10 to 20,

the growth of the curves representing the average and the worst

number of packets remains constant for both codes. Actually,

the packets present in the receiver buffers include both the

encoded packets and the packets not yet acknowledged. These

encoded packets remain in the buffer as long as the receivers

cannot decode, therefore this number does not depend on s.

The small increases with increased s are due to the packets

which are decoded or received and need to be acknowledged.

This process requires more time when s is larger.

The most significant result is observable when comparing

both codes for the average worst case criteria: for s = 20 and

30 receivers, the value observed for the non-systematic code

is close to 150, while for the systematic solution it is close

to 75. I.e. for the average of the worst case receiver buffer

occupancy, the non-systematic solution requires a receiver

buffer two times larger than what is needed for the systematic

code. We note the considerable buffer size is also required in

absolute terms for the non-systematic code.

V. EVALUATION OF CODE COMPLEXITY

In this section, we evaluate the computation complexity for

the systematic and non-systematic code receivers and present

results for a uniform erasure channel. We will use the same

methodology for the bursty erasure channel, in Section VI. As

previously noted, we consider multicast receivers to be mobile

devices with limited resources.

As the simulation does not include a full encoder and de-

coder implementation we need to define a theoretical complex-

ity. For this, we propose to estimate the following parameters

which are directly related to complexity: the average size of

the matrices which are inverted in the decoding process; the

average number of non-null elements in the matrices when

inverted (denoted sparsity of the matrices in the resulting

figures) and the average number of operations done per unit

of time. To compute the latter value, we count the number

of times a received packet is subtracted from an encoded

packet and the number of operations needed to invert the

matrices. The method used is similar to [11]. Please note that

one operation represents a linear combination of two vectors,

as this is the most complex component of an operation; we

neglect the multiplication of a vector by a scalar and the size



of the vector as these are simple operations. Fig. 2 shows the

calculated complexity parameter values.

Complexity for non systematic and systematic solutions
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Fig. 2. For s = 10 (on the left) or s = 20 (on the right), and PER = 20%,
all figures show the complexity for the receivers.

A. Average Matrix Size

We can observe from Fig. 2 that the average matrix size

does not depend on s or the number of receivers. Indeed, the

matrix’s size only depends on the number of packets which are

lost, rather than the acknowledgements or the number of nodes

involved. We can also observe that the size of the inverted

matrices are very similar for both codes (for 30 receivers, the

average size is 2.519 for the non-systematic and 2.522 for

the systematic codes). We note that the non-systematic variant

decodes more matrices, however a number of those have a

size of one. This means that only one packet can be decoded

after all the received packets have been subtracted from an

encoded packet. However when a packet is lost, the systematic

code needs to keep less packets in its buffer compared to the

non-systematic code. For a (3, 4) code rate, this corresponds

to one in every four packets for the systematic code, while the

non systematic code stores all encoded (all received) packets

in the matrix.

B. Sparsity of the Matrices

The sparsity of the matrix represents the average number of

non-null elements in the matrix when inverted. This parameter

provides an insight into how the matrix may be populated (is it

empty or full). It is used to estimate the number of operations

required to invert the matrix (in Section V-C) and it can also

be used to better understand the size of the matrix.

First, it seems logical that when the number of receivers

or s increases, the number of non-null elements in the matrix

also increases. This is due to the increase of the encoding

window size in the source (see Fig. 1), as each redundancy

packet received is created from all the packets in the source

buffer.

We can observe a lower bound of the variance of the size

of the matrix by making the difference between the average

number of non-null elements and the matrix’ average size

squared. In fact, the variance v verifies as:

v = [E(n2)− E(n)2] > [E(nnon null)− E(n)2]

where n is the matrix’ size when inverted and nnon null, the

number of non-null elements in the matrix. Thus (note the

values from Fig. 2) we can see that the lower bound of the

variance is greater for the non-systematic codes than for the

systematic ones. Furthermore, the variance is lower for the

systematic case. Indeed, when any packet is lost, the non-

systematic code inverts matrices of size one after the different

subtractions when the systematic case does not have to decode

the redundancy packets. Finally, when a packet is lost, the

non-systematic code stores more encoded packets in its matrix

than the systematic code, as they have to store every encoded

packets after the lost one. This means one packet on four when

the code is systematic but all of them in the other case.

C. The Average Number of Operations Per Unit of Time

As a criteria for the complexity, we choose the number

of operations done per unit of time, rather than per matrix

inversion. As the non-systematic code has to invert more

matrices than the systematic code (e.g. it inverts matrices of

size one even when all packets are received), the number of

operations done per unit of time provides a better base for

comparison of the two codes.

For both codes, it is logical that the average number of

operations per unit of time increases when s and the number

of receivers increase. The reason is twofold: as seen in Section

V-B, the matrix’s sparsity value increases which implies that

it is harder to invert the matrix. Furthermore, the source

encoding window also increases, so when a receiver obtains a

new encoded packet, it has to subtract more already received

packets from it.

The main result of interest is a comparison of codes. We can

observe that for all values of s and any receiver number, the

systematic code outperforms the non-systematic one. As seen

previously, two factors define the number of operations which

need to be performed by the codes: the matrix inversion and

the number of subtractions needed when an encoded packet

is received. The systematic code has superior results for both

factors. We already noted that on average the matrix size for

decoding packets is smaller for the systematic case, thus easier

to invert, and the second point is that for the non-systematic

code, all packets are encoded. Thus, every time a packet is

received, the receiver has to perform a subtraction, as opposed

to the systematic case, where this operation has to be done only

when a repair packet is received. To illustrate the resulting

impact, we can see that in the worst case (30 receivers and

s = 20), the average number of operations needed for the non-

systematic code is five times higher than for the systematic

case.

VI. BUFFER SIZE AND COMPLEXITY ANALYSIS OVER A

BURSTY ERASURE CHANNEL

We now investigate the impact of bursty losses. We use a

Gilbert-Elliot loss model, defined by a two states Markov chain



(consisting of a good and a bad state) as illustrated in Fig. 3.

We choose an erasure burst length of 3. The parameters of

this Markov chain are then calculated from the average PER
chosen for the scenario. Knowing the average erasure burst

length L and the well known formulas: PER = p1/(1 +
p1 − p2) and L = 1/(1 − p2), thus p2 = 1 − 1/L and p1 =
PER/[L(1− PER)].

Fig. 4 shows the buffer sizes and the complexity for s = 20
and PER = 20% for both codes.

Bad Channel

State

Good Channel

State

1− p2

p1

1
−
p
1

p
2

Fig. 3. The first-order two-state Markov chain representing the Gilbert-Elliott
channel model

A. Buffer Sizes

As shown in Fig. 4, the bursty erasure channel results,

not unexpectedly, in an increased buffer size requirements for

both codes. However we can observe that this channel has

a significant impact only on the receivers’ buffers. For the

source, having a bursty channel results in a similar buffer sizes

as previously observed for the non-systematic code, and the

buffer slightly increases for the systematic case (the average

number of packets is multiplied by 2 for the systematic code,

but the worst case does not grow higher than 150 for both

codes).

Concerning the receivers’ buffers, we can see that all the

results are multiplied by at least a factor of two. However

having a bursty channel has more impact on the non-systematic

code than on the systematic one. We note that for 30 receivers,

the average worst case has increased by a factor of 4 for

the non-systematic code when using the Gilbert-Elliot model,

which shows that on the average, there is always a receiver

which has 620 packets in it’s buffer. For the systematic code,

this value is equal to 210 packets, which is still three times

higher than for the uniform erasure channel. Thus we can note

that the Gilbert-Elliot model further highlights the differences

between the codes already observed with the uniform loss

model.

B. Complexity

As the erasures occur in bursts, on the average, more packets

are lost before the decoding process, so the average matrix size

and the number of non-null elements in the receiver matrices

are higher than in the uniform erasure channel. The most

relevant result is that, compared to the resulting values on

the uniform erasure channel, the average number of operations

per unit of time slightly increases for the non-systematic code,

while it increases by a factor of two to three for the systematic

variant. Therefore, although the Gilbert-Elliot model increases

the complexity of the two codes, on the average, the systematic

code will again require two to three times less operations

than the non-systematic (e.g. it can be observed that for 30

receivers, the systematic code needs 15 operations per unit of

time, while the non systematic needs 35).

Gilbert Elliot model
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Fig. 4. For s = 20 and PER = 20% using a Gilbert-Elliot losses model
with an erasure burst length of 3, for both codes, on the left are the curves
for the different buffers’ sizes, on the right the complexities.

VII. CONCLUSION

We have presented an analysis of the implementation as-

pects of two classes of on-the-fly coding schemes for mul-

timedia multicast communications. We have shown that the

systematic approach has lower requirements in regards to

the memory footprint and computation complexity of the

receivers, thereby making it better suited for mobile devices.

These points are crucial in the context of deployment of

such schemes for IPTV or multimedia communications in

mobile environments. In future work, we plan to progress the

implementation of this scheme and to consider the feasibility

of a reliable multicast protocol based on such a mechanism.
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