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a b s t r a c t

The physiological changes caused by external stimuli can be employed as parameters to study pathogen

infection in cells and the effect of drugs. Among analytical methods, impedance is potentially useful

to give insight into cellular behavior by studying morphological changes, alterations in the physiolog

ical state, production of charged or redox species without interfering with in vitro cellular metabolism

and labeling. The present work describes the use of electrochemical impedance spectroscopy to simply

monitor by modeling impedance plots (Nyquist diagram) in appropriate equivalent circuit, the changes

affecting murine macrophage cell line (RAW 264.7) in response to parasite infection by Leishmania amazo

nensis or to lipopolysaccharide (LPS) treatment. These results demonstrate the ability of electrochemical

impedance spectroscopy to discriminate between two opposite cell responses associated to two differ

ent stimuli, one caused by the internalization of a parasite, and the other by activation by a bacterium

component. Indeed, the study has allowed the characterization, from an electrical point of view, of the

extracellular NO radical produced endogenously and in great quantities by the inducible form of NO

synthase in the case of LPSstimulated macrophages. This production was not observed in the case of

Leishmaniainfected macrophages for which to survive and multiply, the parasite itself possesses mech

anisms which may interfere with NO production. In this latest case, only the intracellular production of

ROS was observed. To confirm these interpretations confocal microscopy analysis using the ROS (reactive

oxygen species) fluorescent probe 2′,7′dichlorodihydrofluorescein diacetate and electron paramagnetic

resonance experiments using Fe(DETC)2 as NO radical spin trap were carried out.

1. Introduction

Cells represent the minimum functional and integrating com
municable units of living systems. During their life cycle they
act both as transducers and transmitters of various chemical and
physical signals through the production of specific molecules.
The physiological changes caused by external stimuli might be
employed as parameters to study pathogen infection in cells, and
the effect of drugs. Cellbased sensors are new hybrid systems
using the abilities of the cell to detect, transduce and amplify small
changes originating from stimuli (McFadden, 2002; Stenger et al.,
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2001). These assays offer a significant range of opportunities based
on the ability of cells to recognize a broad range of biologically
active substances affecting their response. Cellbased biosensors
have been implemented for a number of applications ranging from
pharmaceutical screening (Asphahani and Zhang, 2007), to detec
tion of environmental pollutants (Pinsino et al., 2008) or pathogens
(bacteria and viruses) (Rider et al., 2008). Applications are very
dependent on the transduction mode which can be electric, optic
or even piezoelectric or a combination of different types (De Blasio
et al., 2004), and to cell types including macrophages (Kowolenko
et al., 1990), fibroblasts (Tlili et al., 2003; Xiao and Luong, 2005),
epithelial and endothelial (Marx et al., 2005) cells. Among cellular
biosensors, impedance cellbased sensor arrays which were first
described by Giaever and Keese (1984), are potentially useful to
give insight into cellular behavior, to detect morphological changes
(Arndt et al., 2004), to study cell adhesion (De Blasio et al., 2004),
attachment and spreading (Luong et al., 2001; Xiao et al., 2002),
alterations in the physiological state or to test the efficiency of drugs



(Otto et al., 2004) or effectors (Nguyen et al., 2004; Tiruppathi et al.,
1992; Tlili et al., 2003). The physical background to the technique is
based on the electrically insulating effect of cell membranes at low
frequencies. The cellular sensing method allows realtime moni
toring of cells, avoids the use of labeled molecules and does not
interfere with in vitro cellular metabolism. Even if cellular biosen
sors have been applied in many different fields, the literature on
cellbased devices involving two living entities, such as a parasite
developing in its host cell, is very rare.

Leishmaniasis is an infectious disease caused by intracellular
protozoa from the genus Leishmania affecting over 12 million peo
ple worldwide. After entry into its mammalian host, Leishmania

is phagocytosed by macrophages and confined to a lysosome
like compartment, known as the parasitophorous vacuole (Russell,
1995), where it develops and proliferates. When parasites are
numerous enough, i.e. after 20–30 h, the macrophage disrupts
and releases amastigotes internalized by new naive macrophages.
Hence, the macrophage constitutes both the host and the effector
cell against Leishmania infections (Ritting and Bogdan, 2000). Fur
thermore, the macrophage possesses a number of primary defence
mechanisms against microbial pathogens, including the produc
tion of reactive oxygen intermediates (ROIs) and reactive nitrogen
intermediates (RNIs). Leishmania promastigotes have been shown
to be susceptible to both ROIs and RNIs.

The aim of the present work is to use electrochemical impedance
spectroscopy (EIS) to simply monitor changes from an electri
cal point of view, and in particular oxidative stress generated
by murine macrophage cell line RAW 264.7 in response to par
asite infection by Leishmania amazonensis (L. amazonensis) or to
lipopolysaccharide (LPS) (Stuehr and Marletta, 1987) treatment.
Identification of morphological changes and oxidative events tak
ing place in macrophages during activation by Leishmania could
help in the comprehension of infectious mechanisms to fight this
neglected disease which has only a few efficient treatment drugs,
most of them being very toxic.

2. Materials and methods

2.1. RAW 264.7 cell culture

RAW 264.7 cells were cultivated in Dulbecco’s Modified Eagle
Medium (DMEM, Gibco BRL) supplemented with sodium bicar
bonate (1.5 g/L; Lonza), d(+)glucose (4.5 g/L; Sigma–Aldrich),
lglutamine (4 mM; Lonza) and 10% decomplemented foetal bovine
serum (Lonza). The cells were maintained at 37 ◦C in a 5% CO2

atmosphere.

2.2. Parasites and in vitro cultures

Promastigote cultures were derived from axenically grown
amastigote stages by subpassage at 25 ± 1 ◦C in medium RPMI 1640
(Roswell Park Memorial Institute medium, Lonza) buffered with
25 mM HEPES (4(2hydroxyethyl)1piperazineethanesulfonic
acid, Lonza) and 2 mM NaHCO3 (Sigma–Aldrich), pH 7.2, sup
plemented with 20% heatinactivated foetal bovine serum (FBS,
Lonza), 2 mM lglutamine, 100 U/mL penicillin and 100 mg/mL
streptomycin (Gibco, BRL). Promastigote cultures were main
tained at 25 ± 1 ◦C in RMPI 1640 supplemented with 10% of
decomplemented FBS.

2.3. In vitro RAW 264.7 cell infection or activation

The macrophage murine cell line RAW 264.7 was maintained
in an exponential growth phase by subsequent splitting in DMEM
complemented with 10% of FBS. RAW 264.7 cells were infected with
promastigote at a parasites: macrophage ratio of 5:1 for 1 h at 37 ◦C

with 5% CO2. Noninternalized parasites were removed by gently
washing in prewarmed PBS.

RAW 264.7 were activated with LPS at 1 or 10 mg/mL (stock
solution at 1 mg/mL in sterile EBSS (Earle’s Balanced Salt Solution))
depending on experiments, for 1 h at 37 ◦C with 5% CO2. The culture
was then rinsed with prewarmed PBS.

2.4. Confocal microscopy

The macrophage murine cell line RAW 264.7 was cultured
on a LabTek chamber slide and was infected or stimulated as
describe above. Nonadhesive cells were removed by washing
in prewarmed PBS. The fixed cells were incubated with 2′,7′
dichlorofluorescein diacetate (20 mM; Sigma–Aldrich), for 20 min
at 37 ◦C and 5% CO2 (Kondo et al., 2001). A confocal laserscanning
microscope (LSM 510, Zeiss) was used to visualize the production
of radical species such as RO•, ROO•, •NO2, CO•

3, •OH and NO.

2.5. EPR experiments

Electron paramagnetic resonance spectroscopy (EPR) experi
ments were carried out for RAW cells activated with LPS and
infected with L. amazonensis, as described above. The cells were
then incubated in DMEM containing 3% (w/w) bovine albumin,
NaDETC (sodium diethyldithiocarbamate, 2 mM; Sigma–Aldrich),
and FeSO4 (1 mM; Sigma–Aldrich) at 37 ◦C and 5% CO2. After 2 h
of incubation, 300 mL of supernatant was placed in a quartz EPR
tube (inner diameter 4 mm) for EPR analysis. Xband EPR spectra
were obtained at 112 K on a Bruker EMX8/2.7 (9.86 GHz) equipped
with a highsensitivity cavity (4119/HS 0205) (Bruker, Wissem
bourg, France) and a teslameter (Bruker ER 0.35). Processing of
EPR data was performed using WINEPR software (Bruker). Typical
scanning parameters were: scan number, 5; modulation amplitude,
5 G; modulation frequency, 100 kHz; microwave power, 20.12 mW;
time constant, 10.24 ms; receiver gain: 2 × 104.

2.6. Electrode manufacturing process and electrode modification

Firstly, Ptype (3–5 � cm−1) silicon substrates were thermally
oxidized to grow an 800 nm thick silicon oxide SiO2 layer. A
titanium/gold deposit (30 nm/300 nm) was then performed by
evaporation at low deposit rates (1 nm/min).

The gold electrodes were firstly washed in a piranha mixture
(70% H2SO4/30% H2O2; Sigma–Aldrich) for 3 min. Electrode mod
ification by cells was carried out by resuspending adherent RAW
cells in a flask whose bottom had been covered by the electrodes
(gold faces up) at 37 ◦C in a 5% CO2 atmosphere for 24 h.

2.7. Electrochemical impedance spectroscopy

Electrochemical experiments were performed at 25 ◦C using a
Voltalab 80 PGZ 402 with a threeelectrode cell including a calomel
electrode as the reference electrode, a gold electrode (0.255 cm2)
as the counter electrode and a modified gold electrode (0.053 cm2)
as the working electrode. EIS with a chemical probe [Fe(CN)6]3−/4−

(1:1) (5 mM, Sigma–Aldrich) was carried out in PBS solution (pH
7.4), while EIS without chemical probe was performed in the cul
ture medium. Impedance spectra were recorded in a freepotential
frequency range from 50 kHz to 100 mHz The amplitude of the
alternating voltage was 10 mV. Impedance experiments were done
in quadruplate for a same culture.

3. Results and discussion

Impedance biosensors are based on electrochemical impedance
spectroscopy (EIS) which measures the electrical impedance of an



Fig. 1. Influence of cellular layer on impedance response. Nyquist impedance plots in the frequency range 50 kHz to 100 mHz obtained in the presence of 5 mM Fe(CN)6
3−/4−

(1:1) in PBS with (�) a bare gold electrode and (d) a gold electrode modified with macrophages, the symbols correspond to experimental data and the line represents the

simulated spectra with the parameters calculated by FRA software from the equivalent circuit model I.

interface by imposing or not (free potential) a small sinusoidal volt
age and measuring the resulting current at different frequencies.
Impedance Z is given by the ratio voltage–current. From the Nyquist
plots, i.e. −Zimaginary = f(Zreal) recorded for different frequencies it is
possible, by modeling, to convert the interface in equivalent cir
cuits (composed of resistances and capacities) taking into account
electronic transfer and mass diffusion which takes place at the
cell/solution interface. Among EIS experiments, two methods exist.
EIS using a redox couple as a probe (Fe(CN)6

3−/4−, for example), to
characterize the electrode surface by determining kinetic param
eters and the surface coverage after modification, and EIS carried
out probefree, which gives information about species produced by
the covering layer. In our case EIS was applied to gold electrodes
modified by infected or stimulated macrophages.

3.1. Characterization of the cellular layer by EIS using a redox

probe

Impedance measurements were carried out at the free poten
tial of the electrode with an equimolar mixture of potassium
ferrocyanide/ferricyanide as redox probe. The Nyquist diagrams,
corresponding to the gold electrode before and after modification
with RAW cells, are presented in Fig. 1. In all cases, the curves high
light a semicircle immediately followed by the Warburg line, whose
slope is equal to unity. The semicircle characterizes the electron
transfer and Warburg line mass transfer. It can be noted that the
presence of RAW cells at the gold surface induces an increase in the
semicircle diameter resulting from the insulating properties of the
cells.

In order to obtain kinetic parameters of the film, Nyquist plots
were fitted according to circuit model I presented in Fig. 1 (Ribaut
et al., 2009). The electrochemical system is described by the stan
dard Randles circuit: as usual, Rs is the electrolyte resistance, Qdl

the doublelayer capacity (here a constant phase element (CPE)),
Rct the charge transfer resistance and Zw the Warburg impedance
under nonstationary conditions, characterized by the Warburg
coefficient � with Zw = �/ω1/2

− j�/ω1/2 and ω = 2�f.
The cellular layer is taken into account by to the typical Randles

circuit, of Rf, film resistance and Qf, dielectric capacitance corre
sponding to the film.

Electriccomponent values deduced from modeling are pre
sented in Table 1. The increase in charge transfer resistance is
related to electrode coverage � by the relationship 1 − � = R0

ct/Rct

where � is the apparent electrode coverage, assuming that all the

current passes through bared spots on the electrode, R0
ct the charge

transfer resistance measured at the bare Au electrode and Rct the
charge transfer resistance measured under the same conditions
at the modified electrode. From R0

ct and Rct given in Table 1, the
electrode coverage � is equal to 93 ± 2%. The presence of the film
implies the addition of an imperfect capacitance Qf for which n,
which characterizes inhomogeneities (surface roughness, 0 < n < 1)
of the analyzed layer, equals to 0.7. This value is relatively weak
revealing a rough surface due to the cell monolayer.

As shown in Table 1, the macrophages layer on the gold sur
face leads to a 80fold increase in the doublelayer capacity. This
increase may result from the fact that cellular plasmatic mem
branes are coated with an external layer containing negatively
charged polysaccharides (Mutsaers and Papadimitrou, 1988). The
presence of negative charges on the surface, induces with posi
tive charges available in the electrolyte, a large charge separation
responsible for the high value recorded for Qdl.

3.2. Characterization by EIS of the cellular layer after infection by

Leishmania or stimulation with LPS

Impedance spectroscopy measurements, with or without use
of a probe, were carried out on healthy, Leishmaniainfected and
LPSstimulated RAW macrophages. The corresponding plots are
presented in Fig. 2. The corresponding plots clearly highlight great
differences between the three cell states. In order to obtain infor
mation on the electrical properties of parasitized or stimulated
versus normal macrophages, impedance plots corresponding to
measurement completed with a probe were fitted according to the
model circuit I presented in Fig. 1. However, in the case of EIS carried
out without probe, the modeling did not provide satisfactory fitting
with experimental data. This difficulty may come from reactive
species production within the macrophage itself, thus rendering
the equivalent circuit inappropriate; this production is masked
when experiments are carried out with a redox probe. Indeed, to
kill intra and extracellular parasites, various oxidantgenerating
enzymes are activated among which NADPH oxidase and xan
thine oxidase, leading to the production of superoxide anion and
inducible nitric oxide synthase (iNOS), which produces nitric oxide
(Gantt et al., 2001; Lemesre et al., 1997; Mehta and Shaha, 2006).
For this reason, circuit model II presented in Fig. 2 was preferred
to circuit model I given in Fig. 1. This circuit includes in series a
charge transfer resistance Rads and a capacitance Cads which take



Fig. 2. Influence of the macrophage state, Leishmaniainfected or LPSstimulated, on the EIS measurements. Nyquist impedance plots in the frequency range 50 kHz to 100 mHz

obtained in the presence of 5 mM Fe(CN)6
3−/4− (1:1) in PBS (a and b) or in the culture medium (c and d) with a gold electrode modified with (�) healthy, (N) Leishmaniainfected

(a and c) or LPSstimulated macrophages (b and d). The symbols correspond to experimental data and the line represents simulated spectra with parameters calculated by

FRA software from equivalent circuit model I (for a and b) or II (for c and d).

into account redox species production in the cellular layer. Rads cor
responds to a charge transfer resistance whereas Cads represents the
concentration of adsorbed electroactive species.

The value of the components deduced from modeling with cir
cuit models I or II, respectively, for EIS performed with or without
probe, are detailed in Table 1. The comparison between values
deduced from experiments carried with or without redox probe
facilitates interpretation of the events induced by pathogen infec
tion or LPS stimulation. It is important to mention that the control
values from noninfected and nonstimulated macrophages change
with each experiment because the same RAW cell line, but not in
the same passage number, was used. With an increasing passage
number, the cells can change morphologically, and phenotypic vari
ations can appear leading to great variations in component values
deduced from modeling as an equivalent circuit.

Electrolyte resistance is logically constant independently of the
cellular state with a value equal to 330 � for experiments carried
out with [Fe(CN)6]3−/4. In the case of experiments performed in the
culture medium, Rs is almost constant (450 �) with a very weak
increase in the case of LPSstimulated macrophages.

Concerning film characteristics, i.e. Qf and Rf, it can be noted
that the evolution of the value depends highly on the electrolyte
used. Film capacity Qf significantly decreases in the presence of

[Fe(CN)6]3−/4− from 8.2 mF sn−1 for noninfected RAW to 3 mF sn−1

for parasitized cells, whereas it increases from 6.3 to 11.7 mF sn−1

for LPSstimulated macrophages. Conversely, this value is constant
in the absence of probe. It can also be noted that Rf is constant
with the probe, whereas it strongly decreases with infection or
stimulation in the culture medium. All these comparisons sug
gest that interferences take place between the probe and the cell.
The effect of ferricyanide [Fe(CN)6]3− on macrophages has already
been mentioned in the literature. Baoutina et al. (2001), for exam
ple, have demonstrated the capacity of macrophages to reduce
in vitro transition metal such as Fe(III) by measuring the forma
tion of ferrocyanide [Fe(CN)6]4− from ferricyanide [Fe(CN)6]3−.
The reduced transition metal ions generated (Fe(II)) might facil

itate production of oxidative species via a Fentontype reaction
with the H2O2 produced. In the same way, Kaul et al. (1997) have
demonstrated that ferricyanide, while this is not the case for fer
rocyanide, is able to stimulate NFkB via the redox reaction at
the plasma membrane, NFkB being the transcription factor that
controls the inducible expression of a variety of genes, particu
larly those involved in inflammatory, immune, and acutephase
responses. The high value of Qf recorded for healthy RAW with

[Fe(CN)6]3−/4− (8.2 mF sn−1) could originate from morphological
changes affecting the [Fe(CN)6]3− stimulated cells as described in
the literature for LPSstimulated macrophages. Williams and Ridley
(2000) have demonstrated on glass slides that LPS induced distinct
changes in cell morphology and actin organization in monocytes
and Bac1 mouse macrophage cells. These morphological changes
are characterized by an increase in cell adhesion and spreading. As
Qf is proportional to the surface and inversely proportional to the
film thickness, the high value obtained in the case of [Fe(CN)6]3−

stimulated RAW cells, could originate from an increase in film sur
face (cellular spreading) and/or to a decrease in cellular thickness,
as illustrated in Scheme 1.

Taking into account modeling results, the ferricyanide effect
on macrophages seems higher in healthy RAW cells than in par
asitized ones. This result could be due to the fact, as described
in the literature for LPSactivated cells, that infected cells take
40% longer to activate (Camacho et al., 2008). To summarize, in

Scheme 1. Morphological changes that could affect RAW in the presence of

[Fe(CN)6]3− .
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the case of Leishmaniainfected cells, morphological changes are
delayed by infection, and film capacity decreases with the infection,
whereas in the case of LPSstimulated macrophages the effects of
[Fe(CN)6]3− and LPS are combined inducing a great change in cell
morphology, and thus an increase in film capacity. These opposed
and cumulative morphological changes described for infected or
LPSstimulated macrophages, respectively, could also explain the
different behaviors recorded for Rct. Rct decreases with the infec
tion from 4500 to 3170 �, while it increases from 2633 to 4066 �
in the case of LPSstimulated RAW cells. The more swollen are the
cells, the more insulating is the film, and the higher is the charge
transfer resistance.

The stability of the film resistance in the case of experiments
performed with a redox couple could also originate from interfer
ence between probe and cell. An activation of the macrophage by
ferricyanide means that ions bind to the membrane as described
for LPS in the case of LPSactivated RAW cells. Indeed, LPS binds
to CD14 at the macrophage surface, then interacts with signaling
receptor TLR4, tolllike receptors (TLRs) which recognize pathogen
associated molecular patterns and evoke various cellsignaling
pathways (Moon and Pyo, 2007). Binding between the redox probe
and the cell results in ionintercalation in the cell membrane, i.e.
in the cellular film itself, rendering the insulating properties inde
pendent of the cellular state, whether native or infected.

As far as the interface film/solution is concerned, in the case
of impedance carried out with the redox probe, the imper
fect capacity of double layer Qdl increases for infected cells
from 225 to 555 mF sn−1, whereas it is stable for LPSstimulated
macrophages (∼350 mF sn−1). The increase in Qdl recorded for
parasitized macrophages toward normal ones could result from
hyperpolarization of the cell membrane induced by the infection,
as described by Forero et al. (1999).

Taking into account the huge effect of the redox probe
on the healthy or even activated macrophages, electrochemical
impedance spectroscopy using a probe is not adapted to the study
of such cells.

For measurements performed in the culture medium, i.e. probe
free (Table 1), the first important change concerns film resistance
Rf which decreases for infected and stimulated cells compared to
healthy ones. These changes could originate from the Leishmania

infection or LPSactivation mechanism leading to the release of
a great number of reactive species including not only transient
radical species such as O2

•−, •OH and NO (Baoutina et al., 2001;
Bhattacharya et al., 2008; Lemesre et al., 1997), but also calcium
or potassium ions (Alexander et al., 1999; Bogdan et al., 1996) into
the cellular layer. Several reports have indicated that LPS treatment
can cause an increase in intracellularfree Ca2+ concentration which
is associated with TNFa production in alveolar macrophages and
Kuffer cells (Chen et al., 1999; Zandi et al., 1997). It has also been
shown that K+ channels are involved in LPSinduced activation of
macrophages (Haslberger et al., 1992; Lowry et al., 1998) and that,
in murine macrophage J774.1 cells, LPS treatment changes the den
sity of inwardly rectifying K+ channels (McKinney and Gallin, 1990).

If most of the electrical components of the equivalent circuit
vary in the same way for infected or LPSstimulated cells, this is
not the case for Rads and Rct which, respectively, characterize the
production of electroactive species in the cellular layer or in the
culture medium. These opposite variations result from the fact
that these two stimuli induce diametrically contrary responses in
RAW cells. Standard LPS macrophage activation leads to the pro
duction of inflammatory cytokines, reactive oxygen and nitrogen
intermediates (ROIs and RNIs) among which nitric oxide pro
duced endogenously and in great quantities by the inducible form
of NOsynthase (iNOS), significantly expressed in LPSactivated
macrophages. This highly diffusible radical is rapidly released from
the cell. Moreover, the high concentration of nitric oxide in the cul



Fig. 3. Production of reactive species by Leishmaniainfected or LPSstimulated RAW cells. Image (63×) by confocal microscopy of RAW 264.7 cells after incubation with

H2DCFD recorded at 530 nm for (a) RAW 264.7 cells activated with LPS (1 mg/L) and (b) RAW 264.7 cells infected with Leishmania amazonensis. EPR spectra of the culture

medium of RAW 264.7 cells recorded after 2 h of incubation with Fe(DETC)2 for (c) macrophages activated with LPS (1 mg/L) and (d) macrophages infected with Leishmania

amazonensis.

ture medium is responsible for the strong decrease of Rct from 4000
to 775 k� following stimulation.

In the case of Leishmania infection, both in vitro and in vivo

experimental models have demonstrated that leishmanicidal activ
ity in murine macrophages is also mediated by reactive oxygen and
nitrogen intermediates, especially NO (Jorens et al., 1995; Solbach
and Laskay, 2000). However, to survive and multiply within the
macrophage the parasite itself possesses mechanisms which may
interfere with NO production (Perrella Balestieri et al., 2002). The
decrease in NO produced in the case of Leishmaniainfected cells
compared to LPSactivated cells may explain the slighter decrease
in charge transfer resistance Rct from 650 to 250 k�. Conversely, the
high decrease in Rads from 725 to 81 k� recorded in this case could
come from the production of lethal oxygen radicals by the cell in
its cytosol (nondiffusible radicals) to eliminate invading pathogens
(Mehta and Shaha, 2006).

In order to confirm the production of reactive oxygen species in
the cell cytosol following infection by Leishmania, the production
of oxygenderived free radicals was measured with ROS fluores
cent probe 2′,7′dichlorodihydrofluorescein diacetate (DCF) using
confocal microscopy. Nonionized DCF is membranepermeable
and, therefore, diffuses readily into cells (NasrEsfahani et al.,
1990). Confocal microscopic images of LPSactivated or Leishmania
infected macrophages carried out in the presence of DCF are
presented in Fig 3a and b, respectively. These images clearly show a
high fluorescent intensity in the infected cell (Fig. 3b) whereas this
is not the case for LPSstimulated macrophages (Fig. 3a), confirm
ing that Leishmania induces a huge production of reactive oxygen
species in RAW cells. In the same way, to confirm nitric oxide pro
duction in the case of LPSstimulated macrophages and its diffusion
outside the cell, electron paramagnetic resonance (EPR) was carried
out using waterinsoluble complex N,Ndiethyldithiocarbamate
[Fe(II)(DETC)2] as a spin trap. Fig. 3c and d depicts Xband EPR
culturemedium spectra of LPSactivated or Leishmaniainfected
RAW cells. Typical tripleline EPR spectra of [Fe(II)(NO)(DETC)2]

complex (aN = 13.5 G, g = 2.041) was detected in the culture medium
of LPSstimulated RAW cells, confirming the presence in great
quantities of nitric oxide radicals. Conversely, no triplet was
detected for Leishmaniainfected RAW cells, either in the super
natant (Fig. 3d), or in the cells (data not shown), confirming the
ability of the parasite to interfere with NO production.

These results confirm our hypothesis of explaining variations
in electriccomponent values (Rads, Rct), i.e. (i) a high produc
tion of diffusible NO radicals in the case of LPSstimulated
RAW, an NO production inhibited for Leishmaniainfected cells
and (ii) a high production of oxygenreactive species within
infected cells, whereas this production is not observed in
LPSstimulated ones.

4. Conclusions

These results are very promising since they demonstrate the
ability of EIS to simply characterize in real time the oxidative stress
generate by an infection. In particular it demonstrates its ability
to discriminate between two diametrically opposite cell responses
associated to two different stimuli, one caused by the internal
ization of a parasite, and the other by activation by a bacterium
component. For further insight into the redox mechanisms discrim
inating cellular stress states, our aim now is to associate this device
to complementary selective electrodes based on amperometric
transduction for the determination of NO or O2

•−, for example.
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