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Abstract

In this paper, we propose a model where N strategic informed traders who are endowed
with heterogeneous noisy signals with different precisions compete in a market with a single
risky asset. We explicitly describe the unique linear equilibrium that exists in this setup and
derive its properties. Moreover, we focus on the effects of noise on the competition between
traders. We show that noise softens the competition between traders. In particular, for N
exceeding three and for certain sets of noise in traders’ signals, each trader’s individual profit
is greater than the one obtained in the case of perfect information.
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1 Introduction

Collecting and exploiting information in financial markets is one of the main activities of insti-

tutions such as banks, securities houses, or hedge funds. Such institutions have different reasons

for trading and therefore they collect information in different ways. Thus, a realistic theoretical

framework for understanding competition between different informed traders would endow these

agents with different signals stemming from different distributions. However, most models in

the literature consider that traders’ information is homogeneous and collected signals are the

same or that signals are heterogeneous but following the same distributions. In our paper, the

collected signals are heterogeneous and stem from different distributions. Thus it is plausible

that different informed traders have different signals from different decisions.

More precisely, there are three types of models according to whether informed agents know

perfectly the liquidation value of the asset, receive identical noisy signals or have different signals

with similar precision. Kyle (1985) and Holden and Subramanyam (1992) consider traders who

are perfectly informed about the liquidation value of the risky asset. These models show that

an informed trader’s information is gradually revealed in market prices. Admati and Pfleiderer

(1988) develop a model in the vein of Kyle (1985) but have studied homogeneous as well as

heterogeneous signals. Admati and Pfleiderer provide an explanation of the patterns of volume

and price volatility in intraday transaction data. The purpose of our article is to contribute

to the understanding of competition where traders have different information. Several articles

study competition in asymmetric information markets. Grossman and Stiglitz (1980) examine

under what conditions it is worthwhile to pay for information. Foster and Vishwanathan (1996)

consider a multi-period discrete time model where strategic informed traders receive different

initial correlated signals. Back, Cao and Willard (2000) consider the same framework in con-

tinuous time. In their model the average of agents’ signals is the liquidation value of the asset.

In these two setups, the authors show that the nature of competition between informed traders

depends on the initial degree of correlation between insiders’ signals. In contrast to Foster and

Vishwanathan (1996) and Back, Cao and Willard (2000) we do not focus on the correlation of

the competitors’ signals. Indeed, in our setup all agents observe the liquidation value of the

risky asset plus a noise term so that we only have a range of positive correlations.

We develop a model in which we assume that informed traders have heterogeneous infor-

mation and where all signals can have different precisions. This leads agents to compete with

each other less aggressively since they choose different trading strategies to optimize the use

of their own specific information. We prove the existence of a linear equilibrium and derive

several properties about market depth, the informativeness of prices and traders’ profits. We

explore also the particular case where all traders’ signals have identical precision as in Admati

and Pfleiderer (1988).
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More specifically, we point out the tradeoff between competition and noise in agents’ signals.

Indeed, noise in signals has two effects. One effect is costly for the trader since a part of his

trade is noisy, thus diminishing his profits. In this sense, the insider is partly acting as a noise

trader. The other effect of noise in the traders’ signals which has received scant attention till

now is to weaken competition thus benefiting the traders. The weakening of competition stems

from the fact that other traders trade less aggressively. Hence, we show that in some cases noise

reduces the correlation between the signals of the various agents as in Back, Cao and Willard

(2000) and so reduces competition.

In this article, we assume that there are N risk neutral informed traders who rationally and

strategically exploit their private information. Each informed trader receives a signal, S̃i = ṽ+ ε̃i

where ṽ is the liquidation value of the asset and ε̃i is a random disturbance term. In constrast to

other papers the noises {ε̃1, . . . , ε̃N} are independent random variables with different variances.

First, we analyze all findings in this general case then, for the sake of analytical tractability, we

focus on the special case where all variances are identical as in Admati and Pfleiderer (1988).

This allows us to develop the theory in more detail. In particular, we derive the following result

for certain sets of information and a number of competitors in excess of three: each individual

expected profit is greater than the one obtained in the perfectly informed case. Information can

have a negative value in presence of competition.

The paper is organized as follows. We first lay out the general setup (unequal precisions

in traders’ signals) in Section 2. We show in Section 3 the existence and uniqueness of a linear

equilibrium and characterize the equilibrium as well as the individual expected profits when

traders do not have the same information. In Section 4, we focus on the case where all informed

traders have the same precision in their signals. We derive the equilibrium properties and

delineate the regions for which each informed trader is better off with respect to the perfectly

informed case. We then discuss and interpret these results. We also focus on the liquidity,

individual and aggregate profits, and informativeness properties at equilibrium. Finally, Section

5 states some concluding remarks.

2 The Setup

We consider a financial market with a risky asset whose liquidation value v is normally dis-

tributed ṽ Ã N (0, σ2
v). There are three types of agents:

1. N risk neutral informed traders who observe in advance a signal S̃i = ṽ + ε̃i, where ε̃i is

a random disturbance term (the noise) such that ε̃i Ã N (0, σ2
i ) and {ṽ, ε̃1, . . . , ε̃N} are

mutually independent.

2. Liquidity traders who submit market orders ũ Ã N (0, σ2
u) such that {ṽ, ε̃1, . . . , ε̃N , ũ} are
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mutually independent.

3. Risk neutral market makers, who observe the aggregate volume w̃ and rationally set the

price in a Bayesian way.

Note that the independence assumption on {ṽ, ε̃1, . . . , ε̃N} does not mean that the signals{
S̃1, . . . , S̃N

}
are independent. Indeed, there is a correlation due to the common informa-

tion structure ṽ.

A strategy for the informed agent i = 1, . . . , N is a random variable: X̃i : IR −→ IR, determining

his market order as a function of the observed signal Si. For given strategies
(
X̃1, . . . , X̃N

)
, let

x̃i = X̃i(S̃i). These strategies determine the aggregate order flow w̃ =
N∑

i=1

x̃i + ũ.

Market makers observe the realization of the order flow, but not of any of its components, and

are engaged in a competitive auction. The outcome of this competition is described by a ran-

dom variable P̃ (.). Given
(
P̃ , X̃1, . . . , X̃N

)
, we denote p̃ = P̃ (w̃) and let π̃i = (ṽ − p̃) x̃i be the

resulting trading profit of each insider i = 1, . . . , N . The equilibrium conditions are that the

competition in which market makers are involved drives their expected profits to zero condi-

tional on the aggregate submitted volume, and that the informed traders choose their trading

strategies so as to maximize their expected profits.

Definition 2.1 :
(
P̃ , X̃1, . . . , X̃N

)
is an equilibrium if:

E [ṽ − p̃|w̃] = 0, (1)

and for all random variable X̃i, given the (rational) beliefs of the market makers, and the corre-

sponding price function P̃ (.), each informed trader chooses X̃i to maximize his expected profits:

x̃i ∈ Argmax
x∈IR

E





ṽ − P̃ (x +

∑

j 6=i

x̃j + ũ)


x|Si


 · (2)

Definition 2.2 :
(
P̃ , X̃1, . . . , X̃N

)
is a linear equilibrium if in addition there exists a scalar

λ ∈ IR+ such that:

p̃ = E [ṽ|w̃] = λω̃. (3)

With λ the parameter of liquidity and we define 1
λ as the liquidity. We next derive the unique

perfect Bayesian linear equilibrium of this game.

3 The Equilibrium and its Properties

We now state the equilibrium for the case of N informed agents (which embeds the well-known

result for the monopolistic informed agent case):
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Proposition 3.1 There exists a unique linear equilibrium defined by i = 1, . . . , N, x̃i = β∗i (σ)S̃i

and p̃ = λ∗(σ)ω̃ where σ = (σ1, ..., σN ) is a N-size vector representing the variances of the noises

εi and where β∗i (σ) and λ∗(σ) are given by:

β∗i (σ) =
σu

σv

1




N∑

j=1

1 + τj

(1 + 2τj)
2





1
2

1
1 + 2τi

, i = 1, . . . , N,

(4)

1
λ∗(σ)

=
σu

σv

1




N∑

j=1

1 + τj

(1 + 2τj)
2





1
2


1 +

N∑

j=1

1
1 + 2τj


 , with τj =

σ2
j

σ2
v

, j = 1 . . . , N ·

In equilibrium the expected profit π∗i (σ) for agent i is:

π∗i (σ) =
σvσu

1 + τi

(1 + 2τi)
2





N∑

j=1

1 + τj

(1 + 2τj)
2





1
2


1 +

N∑

j=1

1
1 + 2τj





, i = 1, . . . , N. (5)

·

Proof : See Appendix A.2.

One may note that each individual informed trader’s expected profit is the expected

profit achieved by the Kyle (1985) monopolistic trader in case of perfect information times a

non-linear function of the amount of noise in the signal1. For σ = (0, ..., 0), we obtain the

result of Holden and Subramanyam (1992)2. In particular, as in Holden and Subramanyam

(1992), the competition leads informed agents’ profits to converge to zero quickly. By studying

the non-linear function when σ 6= (0, ..., 0) we will derive the behavior of the individual and

aggregate profits with respect to the level of noise in all cases. It is worth noting that the

market depth increases very quickly and tends to infinity with the number of insiders in the

Holden and Subramanyam (1992) model since the liquidity is given by (N+1)√
N

σu
σv

. We will show

that due to the non-linear form of the liquidity when insiders receive heterogeneous signals with

different precisions, it is possible to slow the speed with which the liquidity tends to infinity.
1Recall that in Kyle (1985) this profit is given by the following formula : π∗(0, 1) = 1

2
σuσv.

2The individual expected profit in this model is: π∗i (0, N) = 1

(N+1)
√

N
.
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Proposition 3.2 : In equilibrium, the individual reaction β∗i (σ) of agent i is decreasing with

each other competitor’s precision of information (i.e. increasing with σ−i), and increasing with

his own information precision, (i.e. decreasing with σi).

The individual profit π∗i (σ) is an increasing function of σ−i and a decreasing function of σi.

Proof : See Appendix B.1.

This result is intuitive. Informed traders react all the more to their private information when

the other traders’ information is more noisy. Indeed, given one trader, since the total amount of

noise in the other informed traders signals increases, the trader can camouflage his information

more and his reaction becomes stronger. As a consequence, the individual profit increases with

the noise in the other competitors’ signals.

Proposition 3.3 : Let us define

b(τ−i) = 1−
∑

j 6=i

3 + τj

(1 + 2τj)2
and c(τ−i) = 2 +

∑

j 6=i

2τj − 1
(1 + 2τj)2

.

The aggregate profit is equal to the inverse of the liquidity parameter times the variance of the

noise trading:

π∗ =
σ2

v

λ∗(τ)
= σvσu

[
1
8(1 + c(τ−i)− 3b(τ−i)) + 1+τi

(1+2τi)2

] 1
2

1
2 (1 + c(τ−i)− b(τ−i)) + 1

1+2τi

In equilibrium, the liquidity λ∗−1
can be either an increasing or a decreasing function of τi =

σ2
i

σ2
v

for a fixed τ−i. It is increasing if:

• b(τ−i) ≥ 0 or

• b(τ−i) ≤ 0, c(τ−i) ≥ 0, and τi ≤ − c(τ−i)
2b(τ−i)

.

It is decreasing if:

• c(τ−i) ≤ 0 or

• b(τ−i) ≥ 0, c(τ−i) ≥ 0, and τi ≥ − c(τ−i)
2b(τ−i)

.

Thus, the aggregate expected profit is a non-monotonic function of information precision in the

market.
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Proof : See Appendix B.2.

The interpretation of Proposition 3.3 is as follows. We can distinguish three zones:

• Zone A: for small levels of noise in the signals (c(τ−i) ≤ 0) price pressure and aggregate

expected profit decrease with the precision of the information collected by the trader, all

else being equal. This situation approaches the perfectly informed case where S̃ = ṽ, as

in Holden and Subrahmanyam (1992). The competition between traders is very fierce and

the aggregate profit decreases in the information precision.

• Zone B: if the amount of noise in the market is small enough but not too small (b(τ−i) ≤ 0,

c(τ−i) ≥ 0) and τi ≤ − c(τ−i)
2b(τ−i)

, price pressure and aggregate expected profit increase with

the precision of the information collected by a given trader, all else being equal. Otherwise

(τi > − c(τ−i)
2b(τ−i)

) price pressure and aggregate expected profit decrease with the precision

of the information collected by the trader.

• Zone C: if there is a sufficient amount of noise in the market (b(τ−i) ≥ 0), then the more

precise is the information collected by an insider, the smaller the depth and the bigger the

aggregate expected profit. The more precise is his information compared to others, the

better he can camouflage his trade and the greater is his profit. The insider’s profit in-

creases more than the decreasing of the other traders’ profits and therefore, the aggregate

profit increases. In Foster and Vishwanathan (1996) and Back, Cao and Willard (2000) the

aggregate expected profit of the informed traders depends only on the correlation between

the initial signals and the number of informed traders. This profit is more important when

there is some positive correlation between the signals than when the signals are uncorre-

lated. On the other hand, the correlation at which this profit is maximized diminishes as

the number of informed traders increases.

Those three kinds of behavior are intuitive since the noise has two opposing effects. The

negative effect is that for a part of his trade, the trader is acting as a noise trader. The positive

effect is that the noise weakens the competition. As a matter of fact, other traders trade

less aggressively and the competition is then weaker than before. Adding noise into signals

weakens the competition because it decreases the correlation between the traders’ signals and

also reduces the amount of information available as in Back, Cao and Willard (2000). To

summarize the previous effects, a small (large) amount of noise in the market allows (does not

allow) the competition to soften, so that the competition effect dominates (is superseded by)

the cost of noise in the signal. For intermediate amounts of noise in the market, we observe

different regions for which one effect dominates the other.

7



FIGURE 1 GOES HERE

Figure 1 shows the aggregate expected profit of 11 traders in the specific case for which we have

one trader with his own level of noise τ1 and ten traders each with the same level of noise τ2.

To distinguish the three zones, we have marked each of them with a different mesh.

• Zone A: For small levels of noise in the signals - b(τ−i) ≤ 0 and c(τ−i) ≤ 0 - which is

fulfilled here for τ2 between 0 and 0.265, the aggregate expected profit is always increasing

with the level of noise of the τ1 trader.

• Zone B: for an amount of noise τ2 in the signals of others which fulfills b(τ−i) ≤ 0 and

c(τ−i) ≥ 0, here for τ2 between 0.265 and 5.354, the aggregate expected profit, as a function

of τ1, decreases when τ1 ≥ c(τ2)
2b(τ2) and increases when τ1 ≤ c(τ2)

2b(τ2) .

• Zone C: for a sufficient level of noise τ2, here with τ2 > 5.354 the aggregate expected profit

is always decreasing with the level of noise of the τ1 trader.

These new patterns – namely the non-monotonicity of both liquidity and expected profits

– lead us to characterize sets of information for which the presence of heterogeneous noise in

signals can generate greater profits than the ones achieved with perfect information.

In our opinion, this result is a key contribution of the paper because it pinpoints the tradeoff

between noise and competition. In Holden and Subramanyam (1992) the expected profits de-

crease quickly with the number of traders. The traders cannot hide their private information. In

Foster and Vishnathan (1996) and Back, Cao and Willard (2000), the initial correlation between

the signals determines the kind of competition. If the correlation is positive but not perfect there

are two phases over time. First, the rat race, when competition is fierce. Second, the waiting

game when traders are on opposite sides of the market. This creates an incentive to wait to

trade. Therefore, in this second phase competition becomes less fierce. In our model, since it is

a one period game, we have the same effect as in the rat race.

4 The Symmetric Case

We focus in this section on the symmetric heterogeneous signals case, that is the setup when all

informed agents are endowed with signals of the same precision, σi = σ1 for i = 1, . . . , N .

We still maintain the mutual independence of {ε̃1, . . . , ε̃N , ṽ, ũ}. Then we can state the following

proposition as a particular case of the previous propositions 3.1− 3.3.

Proposition 4.1 : There exists a unique perfect linear equilibrium defined as in proposition
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3.1. In this particular case (β∗1 , . . . , β∗N , λ∗) (σ1, N) is characterized by:

β∗i (σ1, N) = β∗(σ1, N) =
σu

σv

1

√
N

√
1 +

σ2
1

σ2
v

, i = 1, . . . , N,

1
λ∗(σ1, N)

=
σu

σv

N + 1 + 2
σ2

1

σ2
v

√
N

√
1 +

σ2
1

σ2
v

·

In equilibrium, the individual profit π∗i (σ1, N), for i = 1, . . . , N is given by:

π∗i (σ1, N) = σvσu

√
1 +

σ2
1

σ2
v

√
N

(
N + 1 +

2σ2
1

σ2
v

) , (6)

and the aggregate profit π∗(σ1, N) is:

π∗(σ1, N) = σvσu

√
N

√
1 +

σ2
1

σ2
v

N + 1 +
2σ2

1

σ2
v

· (7)

FIGURE 2 GOES HERE

Figure 2 presents the normalized aggregate profit as a function of the level of noise in the

signals and the number of insiders. The normalization is performed with respect to the profit

achieved by the monopoly in Kyle (1985) setup (π∗(0, 1) =
1
2
σuσv).

By setting σ1 = 0, we get the Holden and Subramanyam (1992) and the Admati and

Pfleiderer (1986) results, notably that the aggregate profit is close to zero when the number

of insiders is large. We provide in the following proposition a detailed characterization of the

parameters which determine profits.

Proposition 4.2 i) For a number of informed traders N ≥ 4, individual profits are increasing

with the noise in the insider’s information for σ1 smaller than σv

√
N − 3

2
, and individual

profits are maximized at σ∗1(N) = σv

√
N − 3

2
. This is related to the two effects (beneficial and

costly ones) of the noise in the collection of information.

ii) For a small number of informed traders (N ≤ 3), the aggregate profit is always de-

creasing with the level of noise in the signals.
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iii)In equilibrium, the informed traders’ aggregate profit evaluated at the optimal level of

noise is:

π∗informed traders(N) = π∗(N) =
σvσu

2
√

2
1√

1− 1
N

.

iv) For all N ≥ 4, the insiders make a greater profit than in the perfectly informed case

since σ1 is smaller than
σv

√
N + 1

√
N − 3

2
.

Proof See Appendix C.1.

Proposition 4.2 states that for the entire interval (0, BN ) with BN =
σv

√
N + 1

√
N − 3

2
, noise

in signals is preferable. Of course, there is a particular value σ∗21 (N) for which the expected

profits are maximized. It is important to note that we do not describe how to implement the

optimal level of noise. However, we derive all the properties of the model for this optimal value.

We do not formally present ways for traders to implement this value in their strategies. For

example, traders could collude or put in place contracts for the sale of information as in Admati

and Pfleiderer (1986) or Germain (2005).

Moreover, it is important to note that as N increases, the interval for which noise and signals is

preferable widens and at the limit extends to the whole positive real line. In this respect, we can

argue that the value of information becomes more and more negative as N increases. Moreover,

this result relies solely on the heterogeneous signals framework. Indeed, we already know from

Admati and Pfleiderer (1988a), that in case of homogeneous signals (i.e. same signals), the value

of information does not become more negative as N increases.

FIGURE 3 GOES HERE

Figure 3 shows the individual profit of the informed traders as a function of both the level of

noise in the signals and of the number of insiders for more than four insiders. We have plotted

in bold the individual profit for the optimal amount of noise as a function of the number of

insiders.

The expected aggregate profit π∗(N) = Nπ∗i (N) does not go to zero when N is large, but

instead tends to a finite positive value
σvσu

2
√

2
. In the literature Admati and Pfleiderer (1988a)

have focused on homogeneous signals. In our framework of heterogeneous signals two cases have

to be distinguished. When the precision of information is fixed and different from the optimal

level of noise, the expected aggregate profits go to zero with the number of informed traders.

Otherwise, for the optimal level of noise in signals, the expected aggregate profit goes to a finite

10



positive limit. In contrast to the Holden and Subramanyam (1992) model, the competition

between informed traders may not destroy all their profits. In Foster and Vishnathan (1996)

and Back, Cao and Willard (2000) the fierce competition causes almost all private information

to be released in the earlier periods and therefore the aggregate expected profit tends to zero;

this convergence is faster when the initial correlation between the informed traders’ signals is

high.

In Figure 4, the aggregate expected profit is represented as a function of the number of

insiders for both the optimal noise and the perfect information. When traders have perfect

information, they reveal it immediately, and the aggregate expected profit tends to zero when

the number of informed traders is large. However, Figure 4 shows that they can substantially

reduce the negative consequences of competition by using an optimal level of noise in their signal.

FIGURE 4 GOES HERE

As the liquidity is the inverse of the aggregate profit times σ2
v , one can show that when insiders

have perfect information, the liquidity tends to infinity with the number of informed traders.

However, at the optimal level of noise the liquidity tends to a finite limit λ−1∞ =
σu

σv
2
√

2 when

the number of insiders is large.

In order to fully understand this result, we need to focus on the informativeness of prices

and also on the process of aggregation of the collection of information. This is the purpose of

the next proposition.

Proposition 4.3 : For each level of signal precision and number of informed traders (σ1, N),

the informativeness of prices I(σ1, N) is given in equilibrium by:

I(σ1, N) = {V ar (ṽ|p̃)}−1 = {V ar (ṽ|w̃)}−1 =
1
σ2

v

N + 1 + 2
σ2

1

σ2
v

1 + 2
σ2

1

σ2
v

, (8)

The informativeness of prices I∗(N) for the optimal level of noise in the signals σ∗1(N) at

equilibrium is given by:

I∗(N) = V ar (ṽ|w̃)−1 =
1
σ2

v

2(N − 1)
N − 2

, (9)

and when N is large, I∗(N) is equivalent to:

I∗(N) = V ar (ṽ|w)−1 ∼
N→+∞

2
σ2

v

· (10)

If we denote S =
1
N

N∑

i=1

Si, then:
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• if σ2
1 is fixed,

* S
L2−→

N→+∞
v,

* p̃
L2−→

N→+∞
v

• if σ2
1 = σ∗21 (N),

* S − v
L−→

N→+∞
σv√

2
X, with X Ã N (0, 1),

* p̃− 1
2
v

L−→
N→+∞

σv

2
Y , with Y =

1√
2

(
X +

u

σu

)
Ã N (0, 1),

* p̃− S
L−→

N→+∞
−1

2
v +

√
3

4
σvZ, with Z = − 1√

3
X +

√
2
3

u

σu
Ã N (0, 1)

Proof See Appendix C.2.

Proposition 4.3 shows that the informativeness of prices tends to infinity for a fixed variance

of the signals, whereas there is a finite limit for the case of optimal noise in the signals or more

generally when the noise in the signals is of the same order as the optimal one. This shows that

in the latter case efficiency is not reached in this market. This is confirmed by the results on

the aggregation of information. When the variance is fixed, both the statistic S and the price

p̃ aggregate to the actual value v. For the case of optimal noise in the signals, the statistic S

appears at the limit as the sum of the actual value v plus some error term. Thus, the collection

of signals S does not aggregate to the final liquidation value of the risky asset. Nor does the

price p̃ aggregate to the value v. Indeed, it equals
1
2
v plus an error term. Moreover, the price p̃

does not aggregate the statistics S.

This relies on both heterogeneous signals and optimal noise in signals or more generally on noise

in signals being of the same order as the optimal noise. In this context, we can understand why

at the limit the expected aggregate profits do not go to zero for large N . This is essentially

due to the imperfect aggregation of information. As a result, in this economy as the number

of competitors becomes larger, the market is not strongly efficient3 With perfect information,

the competition between informed traders cancels almost all uncertainty in the market. In this

case, the market is strongly efficient as shown in Holden and Subramanyam (1992). However, in

Foster and Vishwanathan (1996) as well as in Back, Cao and Willard (2000) competition may

or may not lead to greater efficiency of prices. There is more or less uncertainty left depending

on how the information is distributed among the agents. Moreover, in their model they show

that the market is more efficient when the information is possessed by a single trader than when
3The efficiency of the price in our paper is the same concept as the informativeness of the price which is

measured by the quantity {V ar(ev|ep)}−1. Thus, a strongly efficient price is a price which reveals all the information
about the fundamental value of the risky asset: v.
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several traders share information by means of correlated signals. This result is similar to the

result we obtain with the optimal level of noise.

Proposition 4.4 : In equilibrium, the aggregate profit, where π∗(N, σ1) is maximized for the

value N = N∗(σ1).

N∗(σ1) = 1 + 2
σ2

1

σ2
v

, if 1 + 2
σ2

1

σ2
v

is a positive integer,

N∗(σ1) = argmax
N∈( eN1(σ1), eN2(σ1))

π∗(N,σ1), if 1 + 2
σ2

1

σ2
v

is not a positive integer,

(11)

and Ñ1(σ1) = int

(
1 + 2

σ2
1

σ2
v

)
,

Ñ2(σ1) = Ñ1(σ1) + 1.

Proof : Straightforward.

Proposition 4.4 states that for a given level of available information precision σ1, there exists

an optimal size of the market N∗(σ1) for which the aggregate profit is maximized. Moreover,

the greater the level of noise in the signals the bigger the market. One implication of this result

is that for the case of direct sale of information as in Admati and Pfleiderer (1986-1990), a seller

of information should choose N∗(σ1) participants.4

5 Concluding Remarks

We determine the nature of the competition according to the distribution of information among

insiders. Firstly, we show that each insider reacts all the more to her private information as

the other informed traders’ information is more noisy. More generally, we point out a tradeoff

between the noise and the competition. We show that noise weakens the competition between

traders so that they compete less aggressively. We delineate several regions of level of noise

which lead to different profiles of liquidity and profits and compute the optimal level of noise.

Under certain conditions, we point out regions of level of noises for which the expected profits

of the insiders increase in the level of noise and are higher than the ones when insiders know

perfectly the liquidation value of the risky asset and expected profits decrease slowly with the

number of insiders. This differentiates us from Holden and Subramanyam (1992) where profits

decrease quickly with the number of insiders. A possible extension of our model would be to

study the tradeoff between noise and competition in a dynamic setting. Boco and Germain

(2007) study this dynamic tradeoff in the case of direct sales of information.
4Boco and Germain (2007) study optimal selling of information in a dynamic setting.
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Appendices
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A.1. Proof of Proposition 3.1

Agent i maximizes his conditional expected profit (N ≥ 2):

max
x∈IR

E



x


ṽ − λ


x +

∑

j 6=i

x̃j + ũ





 | Si



 . i = 1, . . . , N,

Since ũ and S̃i are independent, we have:

max
x∈IR

1
1 + τi

Six− λx2 − λx
∑

j 6=i

E (x̃j | Si) , i = 1, . . . , N ·

It follows that:

x̃i =
1
2λ

1
1 + τi

Si − 1
2

∑

j 6=i

E (x̃j | Si) = 0, i = 1, . . . , N, (12)

Let {x∗i , i = 1, . . . , N} be a particular solution to (12). Then if we define:

ỹi = x̃i − x∗i , i = 1, . . . , N,

{x̃i, i = 1, . . . , N} is a solution to (12) if and only if {ỹi, i = 1, . . . , N} is a solution to (13):

ỹi = −1
2

∑

j 6=i

E (ỹj | Si) , i = 1, . . . , N · (13)

We now show that equation (13) has exactly one solution : ỹi=0 for i = 1, . . . , N almost surely.

Define ỹi +
1
2

∑

j 6=i

ỹj = η̃ifor i = 1, . . . , N . From (13) we have that E (η̃i/Si) = 0.

We consider the linear system: 



ỹ1 +
1
2

∑

j 6=1

ỹj = η̃1

...

ỹn +
1
2

∑

j 6=n

ỹj = η̃n

By inverting we obtain that

for i = 1, . . . , N, ỹi =
2

N + 1



Nη̃i −

∑

j 6=i

η̃j



 ·
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If we substitute the latter relation into (13), we obtain that ỹ is a solution to (13) if and only if

there exists {η̃i, i = 1, . . . , N} such that E[η̃i|Si] = 0 and

(1) ỹi =
2

N + 1



Nη̃i −

∑

j 6=i

η̃j



 , i = 1, . . . , N,

(2)
2

N + 1



Nη̃i −

∑

j 6=i

η̃j



 = −1

2

∑

j 6=i

E





2
N + 1


Nη̃j −

∑

k 6=j

η̃k


 | Si



 ,

⇐⇒ (1) and Nη̃i −
∑

j 6=i

η̃j = −1
2 E



N

∑

j 6=i

η̃j −
∑

j 6=i

∑

k 6=j

η̃k/ | Si



 ,

⇐⇒ (1) and Nη̃i −
∑

j 6=i

η̃j = −1
2 E



N

∑

j 6=i

η̃j − (N − 1)η̃i − (N − 2)
∑

k 6=i

η̃k/ | Si



 ,

⇐⇒ (1) and Nη̃i =
∑

j 6=i

η̃j − E


∑

j 6=i

η̃j | Si


 , i = 1, . . . , N, since E[η̃i|Si] = 0·

From the last equation, we deduce that E (η̃i) = 0, i = 1, . . . , N since E (η̃i) =
1
N

E {z̃ − E [z̃ | Si]} = 0 where z̃ =
∑

j 6=i

η̃j .

V ar (η̃i) =
1

N2
V ar {z̃ − E [z̃ | Si]} =

1
N2 E [V ar (z̃ | Si)] ,

≤ 1
N2

V ar (z̃) =
1

N2
V ar


∑

j 6=i

η̃j


 ≤ 1

N2


∑

j 6=i

√
V ar (η̃j)




2

,

V ar


∑

j 6=i

η̃j


 =

∑

j 6=i

V ar (η̃j) + 2
∑

j, k 6= i
k < j

Cov (η̃j , η̃k) ≤
∑

j 6=i

[√
V ar (η̃j)

]2

+

+2
∑

j, k 6= i
k < j

√
V ar (η̃j)

√
V ar (η̃k) =


∑

j 6=i

√
V ar (η̃j)




2

·
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=⇒ ∀i = 1, . . . , N, V ar (η̃i) ≤
(

N − 1
N

)2

max
j=1,...,N

{V ar (η̃j)} ,

=⇒ max
i=1,...,N

V ar (η̃i) ≤
(

N − 1
N

)2

max
j=1,...,N

{V ar (η̃j)} ,

=⇒
[
1−

(
1− 1

N

)2
]

max
i=1,...,N

V ar (η̃i) ≤ 0,

=⇒ max
i=1,...,N

V ar (η̃i) = 0·

Thus we have for i = 1, . . . , N :

E (η̃i) = 0,

V ar (η̃i) = 0,



 =⇒ η̃i

a.s.= 0·

Therefore the only solution to (13) is ỹ = 0 ∈ IRN .

We now show the existence of a linear equilibrium {x∗i , i = 1, . . . , N} which is, in addition,

the unique linear equilibrium. We thus look for a particular solution to (13) of the form

{x∗i = β∗i Si, i = 1, . . . , N}. We introduce the following quantities:

ai =
1

1 + τi
< 1, i = 1, . . . , N,

bi =
1
2λ

ai·

Thanks to the normality assumption and the mutual independence of {ṽ, ε̃1, . . . , ε̃N}, we have

E
(
S̃j | Si

)
= aiSi for j 6= i. Using (12), we have

βiSi = biSi − 1
2

∑

j 6=i

E
[
βjS̃j | Si

]
= biSi − 1

2

∑

j 6=i

aiβjS̃j , i = 1, . . . , N,

or equivalently
βi = bi − ai

2

∑

j 6=i

βj , i = 1, . . . , N,

βi

(
1
2

+ τi

)
=

1
2λ

− 1
2

N∑

j=1

βj , i = 1, . . . , N,

βi =
a

1 + 2τi
⇐⇒ 1

λ
= a


1 +

N∑

j=1

1
1 + 2τj


 , (14)

with a independent of i. We also know that, at equilibrium, p̃ = E (ṽ|w). In this particular

equilibrium, we have w̃ =
N∑

i=1

βiS̃i + ũ. From the mutual independence of {ṽ, ε̃1, . . . , ε̃N , ũ} and
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normality of each components, it follows that p̃ = λw and that therefore we obtain a linear

equilibrium with

λ =
Cov (ṽ, w̃)
V ar (w̃)

=

Cov


ṽ,

N∑

j=1

βjS̃j + ũ




V ar




N∑

j=1

βjS̃j + ũ




=

N∑

j=1

βjσ
2
v




N∑

j=1

βj




2

σ2
v +

N∑

j=1

β2
j σ2

j + σ2
u

,

so

1
λ

= a
N∑

j=1

1
1 + 2τj

+ a

N∑

j=1

τj
1

(1 + 2τj)
2

N∑

j=1

1
1 + 2τj

+
σ2

u

σ2
v

1

a
N∑

j=1

1
1 + 2τj

· (15)

Using (14) and (15), we obtain:

a





1−

N∑

j=1

τj

(1 + 2τj)
2

N∑

j=1

1
1 + 2τj





=
σ2

u

σ2
v

1

a
N∑

j=1

1
1 + 2τj

,

so that a =
σu

σv

1




N∑

j=1

1 + τj

(1 + 2τj)
2





1
2

,

Inserting the above value of a into (12) yields the formula for β∗i (σ) and
1

λ∗(σ)
in the proposition.

Following algebraic manipulation, we obtain the formula of the expected individual profit at

the equilibrium:

π∗i (σ) =
σvσu

1 +
N∑

j=1

1
1 + 2τj








N∑

j=1

1 + τj

(1 + 2τj)
2





1
2

1 + τi

[1 + 2τi]
2 ·

This ends the proof of Proposition 3.1.

B.1. Proof of proposition 3.2
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We calculate the derivative of β∗i with respect to τj and then with respect to τi. After

simplification, we obtain

∂β∗i
∂τj

(τ) =
1
2

σu

σv

3 + 2τj



N∑

j=1

1 + τj

(1 + 2τj)
2





3
2

(1 + 2τi) (1 + 2τj)
3

> 0, for j 6= i, so

∂β∗i
∂τi

(τ) = −1
2

σu

σv

4 (1 + 2τi)
∑

j 6=i

1 + τj

(1 + 2τj)
2 + 1





N∑

j=1

1 + τj

(1 + 2τj)
2





3
2

(1 + 2τi)
3

< 0·

We do the same with the function ln(π∗i (τ))

∂ ln π∗i
∂τj

(τ) =
1
2

3 + 2τj

N∑

k=1

1 + τk

(1 + 2τk)
2 (1 + 2τj)

3

+
2[

1 +
N∑

k=1

1
1 + 2τk

]
(1 + 2τj)

2

> 0

=⇒ π∗i (σ) is increasing in σ−i, therefore

∂ lnπ∗i
∂τi

(τ) =
1
2

3 + 2τi

(1 + 2τi)
3

N∑

k=1

1 + τk

(1 + 2τk)
2

+
2

(1 + 2τi)
2

[
1 +

N∑

k=1

1
1 + 2τk

] +
1

1 + τi
− 4

1 + 2τi
,

=
1

2 (1 + 2τi)
3

[
N∑

k=1

1 + τk

(1 + 2τk)
2

][
1 +

N∑

k=1

1
1 + 2τk

]
(1 + τi)

gi(τ),

where

gi(τ) = (3 + 2τi) (1 + τi)

[
1 +

N∑

k=1

1
1 + 2τk

]
+ 4 (1 + 2τi)

[
N∑

k=1

1 + τk

(1 + 2τk)
2

]
(1 + τi)

−2 (3 + 2τi) (1 + 2τi)
2

N∑

k=1

1 + τk

(1 + 2τk)
2

[
1 +

N∑

k=1

1
1 + 2τk

]
.

The sign of
∂ lnπ∗i

∂τi
(τ) is the sign of gi(τ). To determine the sign of gi(τ), we rewrite it as
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−2 (1 + τi)
2 − (3 + 2τi) (1 + τi)

∑

k 6=i

1
1 + 2τk

− 8 (1 + 2τi) (1 + τi)
2
∑

k 6=i

1 + τk

(1 + 2τk)
2

−2 (3 + 2τi) (1 + 2τi)
2
∑

k 6=i

1 + τk

(1 + 2τk)
2

∑

k 6=i

1
1 + 2τk

·

Since gi(τ) < 0 it follows that π∗i (σ) is decreasing in τi =
σ2

i

σ2
v

.

This ends the proof of Proposition 3.2.

B.2. Proof of Proposition 3.3

∂λ∗−1

∂τi
(τ) =

σu

σv





1
2

(3 + 2τi)


1 +

N∑

j=1

1
1 + 2τj








N∑

j=1

1 + τj

(1 + 2τj)
2





3
2

(1 + 2τi)
3

− 2




N∑

j=1

1 + τj

(1 + 2τj)
2





1
2

(1 + 2τi)
2





,

∂λ∗−1

∂τi
(τ) =

1
2

σu

σv

1




N∑

j=1

1 + τj

(1 + 2τj)
2





3
2

(1 + 2τi)
3

hi(τ), with : hi(τ) = 2τib(τ−i) + c(τ−i),

where b(τ−i) and c(τ−i) are defined in Proposition (3.3). It is worth noting that c(τ−i) > b(τ−i),

indeed c(τ−i)− b(τ−i) = 1 +
∑

j 6=i

2
1 + 2τj

. This ends the proof of Proposition 3.3.

If we define ΣN as

ΣN = {σ = (σ1, . . . , σN )′ ∈ IRN
+ | ∀i = 1, . . . , N π∗i (σ1, . . . , σN ) ≥ π∗i (0, . . . , 0),

and ∃i◦ ∈ (1, . . . , N) with π∗i◦(σ1, . . . , σN ) > π∗i◦(0, . . . , 0)},

we have

• for N ≥ 4 ΣN is non-empty. In other words, noise in the collection of signals is ex–ante

optimal;

• for N ≤ 3, ΣN is empty.

In order to show the result of the non-emptiness of ΣN for N ≥ 4, we just need to focus on

the symmetric case where σ1 = . . . = σN and this is the purpose of proposition 4.2. We now

show that ΣN is empty for N ≤ 3.
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Proof for N=2:

(As the proofs for N=2 and N=3 are almost identical, we leave this proof to the reader.)

Proof for N=3:

πi(τ) = σuσv

1 + τi

(1 + 2τi)2



3∑

j=1

1 + τj

(1 + 2τj)2





1
2 {

1 +
3∑

i=1

1
1 + 2τi

} ·

We again denote xi =
1 + τi

(1 + 2τi)2
, i = 1, 2, 3. For τi 6= 0, xi < 1, yi =

1
1 + 2τi

=
√

1 + 8xi − 1
2

.

Therefore, for i = 1, 2, 3 we have

πi(τ) = σvσu
2xi


3∑

j=1

xj




1
2



3∑

j=1

√
1 + 8xj − 1




,

πi(0) =
σvσu

4
√

3
·

We already know that for τ1 = τ2 = τ3 6= 0, π1(τ), π2(τ) and π3(τ) are strictly smaller than

πi(0) =
σvσu

4
√

3
and equal if and only if τ1 = τ2 = τ3 = 0. We thus focus on cases where

∃ (i, j) ∈ {1, 2, 3}2 such that τj 6= τi ⇐⇒ xj 6= xi. Without any loss of generality, we will

suppose (up to a reordering) that:

a) either x1 > x2 ≥ x3,

b) or x1 ≥ x2 > x3.

Now assume that πi(τ) ≥ σvσu

4
√

3
, i = 1, 2, 3.

a)If x1 > x2 ≥ x3:

then x3 ≥ 1
8
√

3




3∑

j=1

xj




1
2



3∑

j=1

√
1 + 8xj − 1




=⇒ 8
√

x3 ≥ 3
√

1 + 8x3 − 1·
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Let f be:
f(x) = 8

√
x− 3

√
1 + 8x + 1,

where 0 ≤ x, so

f ′(x) =
4(1− x)√

x
√

1 + 8x
[√

1 + 8x + 3
√

x
] ·

f is increasing on [0, 1], decreasing on [1, +∞[ and f(1) = 0. Therefore ∀x ≥ 0, f(x) ≤ 0 and

f(x) = 0 =⇒ x = 1.

8
√

x3 ≥ 3
√

1 + 8x3 − 1 =⇒ x3 = 1,

which is ruled out.

b) x1 ≥ x2 > x3: the proof is analogous.

The above cases imply that Σ3 is empty.

C.1. Proof of Proposition 4.2

N ≥ 4, π∗i (σ1) > π∗i (0),

⇐⇒
√

1 + τ√
N (N + 1 + 2τ)

>
1√

N (N + 1)
, where τ =

σ2
1

σ2
v

> 0

⇐⇒ σ1 <
σv

2

√
N − 3

√
N + 1·

π∗i (τ) = σvσu

√
1 + τ√

N (N + 1 + 2τ)
,

∂ lnπ∗i
∂τ

(τ) =
∂

∂τ

{
1
2

ln (1 + τ)− ln (N + 1 + 2τ)
}

,

=
1

2 (1 + τ)
− 2

N + 1 + 2τ
=

N − 3− 2τ

2 (1 + τ) (N + 1 + 2τ)
·

Therefore π∗i (τ) is maximized for τ =
N − 3

2
. This ends the proof of Proposition 4.2.

C.2. Proof of Proposition 4.3
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


ṽ

w̃


 Ã N







0

0


 ,




σ2
v

√
Nσuσv√
1 +

σ2
1

σ2
v

√
Nσuσv√
1 +

σ2
1

σ2
v

σ2
u


1 +

N + σ2
1

σ2
v

1 + σ2
1

σ2
v










,




ṽ

ũ


 is normal =⇒




ṽ

w̃


 is normal. Moreover, we have:

• Cov (ṽ, w̃) = Cov

(
ṽ, Nβ∗(σ1, N)ṽ +

N∑

i=1

β∗(σ1, N)ε̃i + ũ

)
= Nβ∗(σ1, N)σ2

v =

√
Nσuσv√
1 + σ2

1
σ2

v

·

• V ar (w̃) = V ar

(
Nβ∗(σ1, N)ṽ +

N∑

i=1

β∗(σ1, N)ε̃i + ũ

)
= N2β∗

2
(σ1, N)σ2

v + Nβ∗
2
(σ1, N)σ2

1 + σ2
u,

V ar (w̃) =
Nσ2

u

1 + σ2
1

σ2
v

+
σ2

u
σ2
1

σ2
v

1 + σ2
1

σ2
v

+ σ2
u = σ2

u


1 +

N + σ2
1

σ2
v

1 + σ2
1

σ2
v


 ,

• V ar (ṽ | w) = V ar (ṽ)− [Cov (ṽ, w̃)]2

V ar (w̃)
= σ2

v


1− N

N + 1 + 2σ2
1

σ2
v


 ·

The rest of Proposition 4.3 is proved using the central limit theorem and is therefore omitted.
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Fig. 1. Aggregate profit of the traders as a function of both the level of noise in the signal of

one trader and the level of noise in the signal of the other traders.

Figure 1:

This figure shows the aggregate expected profit of 11 traders in the specific case for which we

have on the one hand a trader with his own level of noise τ1 and on the other hand 10 traders

with the same level of noise τ2.
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Fig. 2. Normalized aggregate profit as a function of both the level of noise in the signals and

the number of insiders.

Figure 2: This figure represents the normalized aggregate profit as a function of the level of
noise in the signals and the number of insiders. The normalization is performed with respect to

the profit achieved by the monopoly in Kyle’s (1985) setup (π∗(0, 1) =
1
2
σuσv).
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Fig. 3. Individual profit as a function of both level of noise in the signals and the numbers of

insiders with a number of insiders higher than 4.

Figure 3: This figure shows the individual profit of the informed traders as a function of both
the level of noise in the signals and the number of insiders for more than four insiders. We have
plotted in bold the optimal amount of noise as a function of the number of insiders.
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Fig. 4. Aggregate profit: Optimal symmetric noise versus perfect information.

Figure 4: This figure shows the aggregate profit as a function of the number of insiders for both
the optimal noise and the perfect information cases.
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