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Abstract

In this paper, we study a financial market where risk neutral traders are endowed with a signal
which is perfectly revealing of the direction (but not the exact amount) of the liquidation
value of a normally distributed risky asset. This type of information is known as bullish
or bearish. When the signal is positive (negative) the traders buy (sell) the asset. This
type of information is different with the type of information which is classically considered
in the literature where informed traders are endowed with a perfect or a noisy signal. In
this model, since the optimal trading strategy is not linear, the pricing schedule is also a
non-linear function of the volumes. The main results are the following i) the price function is
a non-linear Sigmöıd-shaped function. ii) A monopolistic bullish-bearish type trader makes
nearly thirty six percent of the profits she would have made with a perfect signal in a linear
model à la Kyle (1985). iii) In the presence of competition, the market reveals his private
information quicker than in a noisy informed strategic oligopoly. Moreover, liquidity is no
longer a monotonic increasing function of the number of competitors.
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1 Introduction

How do people collect information? What type of information is used by traders on financial

markets? Most of the literature in finance has focused on the study of a particular type of

information: either traders collect a perfect signal equal to the liquidation value of the risky

asset or traders collect a noisy signal equal to the liquidation value of the risky asset plus

some noise. This is the case, in particular, in Kyle’s (1985) seminal paper, Kyle (1984, 1989),

Grossman (1976), Grossman and Stiglitz (1980), Foster and Vishwanathan (1990,1994,1996),

Subrahmanyam (1991), Holden and Subrahmanyam (1992), Admati and Pfleiderer (1988a,b),

Vives (1995), Dridi and Germain (1999) and others in the case where the liquidation value of the

risky asset is normally distributed. Several other models such as Glosten and Milgrom (1985),

Easley and O’Hara (1987,1992) study the case where the risky asset and/or the signal follow a

two point (high/low) distribution. In our model, the liquidation value is normally distributed

but the signal can only take two values. Indeed, one of the most popular types of information

is a buy or a sell signal. In effect, this type of information is well known to practitioners and

is referred to as bullish versus bearish trading recommendations. Traders can use this type of

information either because they bought a trading signal (through direct sale of information),1

or because the type of information they collected as insiders is of the bullish/bearish form.

For example, if the firm receives a new order this is clearly “good news”, but quantifying this

information further is a challenge.2 Most of the recommendations given by financial analysts or

banks’ research departments are of the bullish versus bearish variety.3 Nevertheless, in certain

cases the clients are not only delivered the trading direction of the security but also a magnitude

such as the target price or an upper bound for the price. This type of information is different from

the classical “true value plus noise” assumption, as in such cases the traders know with certainty

the direction of the stock price, which is not the case when the signal is noisy. In this article

we propose a theoretical framework to understand price formation when market information is
1Sales of information have been extensively studied in financial economics. Admati and Pfleiderer (1990) have

defined two ways of buying information, by subscribing to newsletters or bulletins (direct sale of information), or

by signing a contract with a financial institution which manages an investment fund on behalf of its client (indirect

sale of information). In direct sale of information, the client can observe the information which is transmitted

by the informed, whereas in indirect sale of information the client can only infer the information of the informed

through the fund’s profits.

2In other cases the insider can obtain the exact value v or v + noise.
3It is worth mentioning at this stage that there are a myriad of web sites devoted to financial recommendations.

A common feature of many of these web sites is that they deliver buy or sell signals without any other refinement.
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such that traders know only the trading direction. The predictions of this type of information

structure are very different from those entailed by the true value plus noise assumption, since

at the equilibrium the reaction of the traders to their information is no longer a linear function

of the signal and the equilibrium price is not a linear function of the order flow. In this paper,

however, we only study the case of “bullish”, “hold” or “bearish” recommendations. One could

of course argue that what is more often observed in a financial market is a multi-level structure

such as “strong buy”, “buy”, “hold”, “sell”, “strong sell”. However, we do believe that the

simpler version “buy”, “hold”, and “sell” intrinsically contains the main relevant features of the

phenomenon.4

Moreover, empirical studies such as Womack (1996) or Kim, Lin and Slovin (1997) show

that this type of signal is commonly collected and used by the market. 5 Thus it seems natural

to consider the issue raised by bullish/bearish informed type of agents trading in a market.

In this paper we explore from the theoretical point of view the consequences of this type of

information on prices. This corresponds to a genuine new problem that cannot be treated

within the standard microstructure literature. In effect, most previous research has focused

on linear equilibria. In the standard Kyle (1985) framework a monopolistic perfectly informed

trader submits a market order to market makers. After having observed the total order flow

generated by the informed and the noise traders, competitive market makers set the price in a

Bayesian way. In this framework it is shown that there exists a unique linear equilibrium if we

assume linearity of prices in order flow. In this equilibrium, strategies are linear - the quantity

bought is linear in the signal - and the price function is a linear function of the order flow no

matter how large the order imbalance. In a setting differing from the standard Kyle (1985)

model where a monopolistic informed trader submits limit orders - or equivalently observes the

realization of the noise trading - Rochet and Vila (1994) demonstrate existence and uniqueness

of the equilibrium regardless of the distribution of the risky asset and that of the noise trading

(see Back (1992) for a continuous time version of the Kyle (1985) model). In another paper, Cho

and El Karoui (1997) relax the assumption of normality and derive a quasi-linear equilibrium in

the Kyle framework. Bhattacharya and Spiegel (1991) and Genotte and Leland (1990) consider

other types of non-linearities, e.g. stemming from the hedging needs of the traders. We take
4We also want to stress that the computational burden for developing the theory within the framework of

multi-level signals (this is notably the question of best response functions defined implicitly through elliptical

forms) is such that we have decided to restrict ourself to the simpler version - namely bullish versus bearish

signals.
5In this paper we study the impact of a buy or a sell signal as private information. This is different from the

empirical studies in the literature which address the question of the impact of these signals as public information.
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here another route. In our framework, the ex–ante distribution of the risky financial asset as

well as noise trading are normally distributed. On the other hand, the process of collection

of information is different. But, when the ex–ante asset value is a gaussian random variable,

the strategy of trading of a bullish/bearish trader is not linear. Hence, such an issue cannot be

studied in the standard Kyle’s (1985) model. 6 Moreover, a number of financial empirical studies

have shown that the linear set-up is counterfactual. The link between the information content

of the price and the order flow has been empirically investigated by Hasbrouk (1988, 1991) and

Algert (1990) among others. They conclude that the relation is increasing in a nonlinear fashion

and is concave (convex) for positive (negative) order flow i.e. when the quantity of buy orders

is greater (smaller) than the quantity of sell orders. 7 In addition, in recent empirical work,

Kempf and Korn (1999) show that the price function is marginally less sensitive for large order

flow, which entails concavity (convexity) of the shape of the price function for positive (negative)

order flows. Related strands of the literature, one focusing on transaction prices (see for instance

Hausman, Lo and Mac Kinlay, 1992, DeJong, Nijman and Röell, 1995) and the other on the

order book (Biais, Hillion and Spatt, 1995) lead to the same conclusions. Further, as pointed

out by O’Hara (1995), it is now widely acknowledged that “a linear pricing rule is, at best, an

approximation of the actual price behavior”. 8

Our model is set up as follows. N risk neutral informed traders observe a buy or sell signal

S about the liquidation value v of the risky asset which is assumed to be normally distributed

ṽ ; N (0, σ2
v). 9 Uninformed noise traders submit normally distributed orders ũ ; N (0, σ2

u)

independent of ṽ. The informed traders place orders X(S) to risk neutral market makers who

supply liquidity at prices equal to the expectation of the final value of the asset conditionally

on the total order flow generated by informed and uninformed traders.

Our results are summarized below. At the equilibrium, the informed buys a positive quantity

γ∗ after having observed a bullish signal (resp. sells a negative quantity −γ∗ after having

6It is important to notice that setting a linear price is not efficient in this framework.
7Seppi (1990) provides justification for the concave relationship between order size and price impact on the

structure of the market (upstairs versus downstairs). Indeed, he shows that it can be optimal to execute a trade

as a block rather than to break it up into smaller trades.
8The nonlinearity of the price function can also be caused by the non-linearity of the distribution of the random

variables in the economy - see Foster and Viswanathan (1993a) and Nöldeke and Tröger (1998), who characterize

larger classes of distributions for which the linear set-up still holds.
9Without any loss of generality we assume that the mean is zero. Extension to the case where the mean is

different from zero is straightforward and does not change the results.

3



observed a bearish signal.) 10 The equilibrium price functions are Sigmoid-shaped. In other

words, there is a monotone increasing and concave (convex) relation between prices and order

flows for positive (negative) order flows (see Figure 1). Defining the liquidity parameter λ (as the

price sensitivity to the order flow) we find that λ is a bell-shaped curve.11 The trader’s profits

amount to nearly 36% of the profits made by a monopolistic informed trader who knows exactly

the liquidation value of v in a linear setup as in Kyle (1985). In the presence of competition,

revelation of private information is faster than in the linear case and the expected individual

profit (as well as the expected aggregate profit) is decreasing at an exponential rate. When N , the

number of informed agents is large, the pricing schedule approaches a step-shaped function. 12

The market makers are in that case able to infer the strongly efficient price. Namely, if S = 1

then p = p∗ =
2σv√
2π

(and if S = −1 then p = −p∗). Intuitively, the value
2σv√
2π

corresponds to

the mean of the truncated normal distribution on the positive real line. In other words, it is the

value separating the positive real axis into two equally weighted regions of one half probability

each. The liquidity parameter is no longer constant as a function of the order flow for a given

N 13.

The empirical predictions of our theoretical model are not in contradiction with the empirical

findings (namely the non linear aspects of both price function and price pressure) such as in

those of Kempf and Korn (1999) who analyze through a battery of parametric and robust non-

parametric econometric methods the shape of the equilibrium price as a function of the order

imbalance. 14

10This is analogous to the Glosten and Milgrom (1985) model where the informed traders buy or sell a fixed

quantity.
11In other words, ”Liquid markets are generally viewed as those which accomodate trading with the least effect

on price ... in the Kyle (1985) model, λ is a measure of liquidity [and it] measures the order flow needed to move

prices one unit” (O’Hara, 1995, p. 216). Therefore, the smaller is λ, the more liquid is the market.
12This result is analogous to the result e.g. of Easley and O’Hara (1987, 1992) where in a sequential trade

model as the fraction of informed traders increases, the speed of convergence to the liquidation value of the asset

increases.

13In Kyle (1985), the value of λ is independent of the order flow.
14However, in order to compare the predictions of our model with the empirical evidence on the market, one

needs studies that focus on the link between prices and the nature of information collected by informed traders.

Existing empirical studies do not show the effect of information release on the shape of the price function.

According to our model, the non-linearities of the price function should be enhanced by the bullish/bearish type

of information. It would therefore be interesting to attempt to identify this effect in market data.
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The paper is organized as follows. We first lay out in Section 2 the general setup and the

considered model. We extensively analyze in Section 3 the properties of the equilibrium (profits,

liquidity and price). Finally, Section 4 makes some concluding remarks.

2 The Model

We consider a financial market with a risky asset whose value is normally distributed ṽ ;

N (0, σ2
v). We denote the final liquidation value v. There are three types of agents:

1. N risk neutral informed traders who observe in advance the direction of v. In other words,

they are each endowed with a signal S̃ which fully reveals whether the state of the world

is bullish, bearish or neutral 15:

S = −1 if v < 0,
S = 0 if v = 0,
S = 1 if v > 0·

The strategy of the informed agent i = 1, . . . , N is a Lebesgue measurable function:

Xi : {−1, 0, 1} −→ IR, determining his market order as a function of the observed signal

S. For given strategies (X1, . . . ,XN ), let x̃i = Xi(S̃).

2. Liquidity traders who submit market orders ũ ; N (0, σ2
u) independent of ṽ.

3. Competitive risk neutral market makers, who observe the aggregate order flow w̃ =
∑N

i=1 x̃i + ũ set the price equal to the expectation of the value of the security conditional

on the order flow.

The outcome of the competition between market makers is described by a Lebesgue measur-

able price function: P (w) : IR −→ IR.

Given (P,X1, . . . ,XN ), we denote p̃ = P (w̃) and let π̃i = (ṽ − p̃) x̃i be the resulting trading

profit of each insider i = 1, . . . , N .

The equilibrium conditions are that the competition in which market makers are involved drives

their expected profits to zero and that the informed traders choose their trading strategies so as

to maximize their expected profits.

15The neutral state occurs with zero probability.
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Definition 2.1 : (P,X1, . . . ,XN ) ∈ LN+1
2 is an equilibrium if:

E [ṽ − p̃|w̃] = 0, (2.1)

and for all Xi ∈ L2, given the (rational) beliefs of the market makers, and the corresponding

price function P (.), each informed chooses Xi to maximize his expected profits:

Xi ∈ Argmax
x∈IR

E




ṽ − P (x +

∑

j 6=i

x̃j + ũ)


x|S


 · (2.2)

Again, we note here that we are in a framework where insiders behave strategically, so that

the informed trader takes into account her impact onto prices. We will now derive the unique

perfect Bayesian equilibrium of this game.

Proposition 2.1 : There exists a unique equilibrium (P,X1, . . . ,XN ) defined for trading strate-

gies Xi(·), i = 1, . . . , N by

x̃i = Xi(S) = −γ∗(N) = − σu√
N

, if S = −1,

x̃i = Xi(S) = 0, if S = 0,

x̃i = Xi(S) = γ∗(N) =
σu√
N

, if S = 1.

(2.3)
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The equilibrium price function is

p̃ = P (w) =
σv√
2π

[K∗
2 (w,N) − K∗

1 (w,N)] ,

where the functions K∗
1 (·, ·) and K∗

2 (·, ·) are defined as:

K∗
1 (w,N) =

2ϕ
(

w

σu
+

√
N

)

ϕ

(
w

σu
−

√
N

)
+ ϕ

(
w

σu
+

√
N

) ,

K∗
2 (w,N) = 2 − K∗

1 (w,N),

(2.4)

where ϕ(·) corresponds to the probability distribution function of the standard normal variable

N (0, 1).

Proof : See Appendix A.

Therefore the equilibrium is a symmetric one, each informed agent chooses the same trading

strategy and submits the same volume. Even though the setup is non-linear, the reaction

function is again, as in the standard Kyle (1985) model, proportional to the level of noise

trading measured by σu. Thus the higher the level of noise trading, the more the informed

trader can camouflage his trade. However it should be pointed out that this is as an unexpected

result in this non-linear framework.

It is also possible to reinterpret the pricing schedule in terms of the probability which market

makers attach to the two non-trivial states of the world and their associated strongly efficient

prices (p∗ =
2σv√
2π

if bullish and −p∗ = − 2σv√
2π

if bearish). The probabilities are

Pu(w,N) =
K∗

2 (w,N)
2

=
ϕ

(
w

σu
−
√

N

)

ϕ

(
w

σu
−

√
N

)
+ ϕ

(
w

σu
+

√
N

) =
1

1 + exp

(
−2w

√
N

σu

) , (2.5)

Pd(w,N) = 1 − Pu(w,N), (2.6)
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where 0 < Pu(w,N) < 1 (0 < Pd(w,N) < 1) corresponds to the probability that the market

makers rationally assign to the event of a bullish (bearish) state of the nature having observed

the aggregate volume w. Therefore, the price set by the market makers equals:

p̃ = Pu(w,N)p∗ + Pd(w,N) (−p∗) · (2.7)

We note the following properties of the equilibrium price function. First, the quoted price

always lies between the floor price −p∗ and the ceiling price p∗. The interpretation is that

informed agents know at best the trading direction i.e the bearish or bullish state of the risky

asset. Second, the price function is a Sigmoid-shaped curve. Price pressure is not constant and

decreases with order imbalance. This is consistent with the empirical evidence, see Kempf and

Korn (1999).

The price function is non linear because at the equilibrium, the greater is the order flow,

the greater is the probability of the presence of informed traders and the closer is the price to

the ceiling price. In standard linear models, this is not the case as the quantity bought by the

informed traders is increasing linearly with the collected signal. Hence, price is also increasing

linearly with aggregate volume.

In all the forthcoming graphs, we have normalized the parameters σu and σv to 1. The

variable N corresponds to the number of informed traders. The legend on the horizontal axis

“order flow” refers to the aggregate submitted order both by the informed traders and the noise

traders.

Figure 1 and figure 2 represent the market makers’ beliefs and pricing schedules, respectively,

for different oligopoly sizes. The effect of competition is that the strength of the beliefs of the

market makers is increasing with the number N of competitors. This is essentially due to the

fact that although the individual orders γ∗(N) is decreasing with N the aggregate informed order

Nγ∗(N) is increasing with N . We also see that competition brings about more efficient prices.

This result is similar with the results found by Foster and Viswanathan (1996) and Holden and

Subrahmanyam (1992) that the more competitive is a market the quicker market efficiency is

achieved.

Note that the empirical literature (see Saar, 2001, and the references therein) argues that

response of prices to buys and sells is asymmetric. While in our model the bullish and bearish

regions are symmetric around zero, any asymmetry would in turn lead to an asymmetric price

response.

8



−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Market Makers’ Beliefs N=1,5,25

Order flow

N=1
N=5
N=25

Figure 1: Market Makers’ Beliefs About the Probability of the Bullish State.
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3 Properties of the equilibrium

3.1 Expected profits

In this subsection, we are interested in the expected profit of each informed agent. Futhermore,

we analyze the behavior of the individual and the aggregate expected profit when the number

of informed traders is large.

Proposition 3.1 :

The expected profit of each agent π∗
i (N) = E (π̃∗

i ) , i = 1, . . . , N, is a decreasing function of

the number N of informed agents and tends towards 0 when N is large:

lim
N→+∞

π∗
i (N) = lim

N→+∞

σuσv

N
exp

(
−N

2

)
= 0· (3.1)

The aggregate expected profit Nπ∗
i (N) is also a decreasing function of the number N of

informed agents and tends towards 0 when N is large:

lim
N→+∞

Nπ∗
i (N) = lim

N→+∞
σuσv exp

(
−N

2

)
= 0· (3.2)

Proof : See Appendix B.
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Figure 3: Individual Expected Profit: a Comparison.

One way to measure the reward of a bullish/bearish signal is to compare the expected profit of

a bullish/bearish monopoly with the expected profit of the Kyle (1985) monopoly. We find that

a bullsh/bearish monopoly achieves 36% of the expected profits of a trader with a perfect signal.

Whether it is worthwhile to collect more refined information depends on the cost structure of

the information collection process. As a side note, Brav and Lehavy (2003, footnote 5) observe

that certain brokerage houses that issue recommendations have either a formal or an informal

policy barring the issuance of price targets. In figure 3, we have plotted the expected individual

profit expressed as a proportion of the standard Kyle (1985) profit as a function of the number

of informed traders for the bullish-bearish oligopoly (BB) and compare it with two other models.

First, the noisy informed oligopoly as developed by Admati and Pfleiderer (1988b) and where

to facilitate the comparison, σ2
ε is set to be such that the monopoly in this case achieves thirty

six percent of the Kyle (1985) monopoly profits (AP). Second, optimally noisy oligopoly as

developed by Dridi and Germain (1999) 16 for N ≥ 4(ON).

As a standard result, Figure 3 and Proposition 3.1 show that in the bullish/bearish model

competition destroys the expected individual profit which goes to zero when the number of

informed agents is large. This result is similar to the one we could expect to obtain in a Cournot
16Dridi and Germain (1999) have shown that with linear equilibrium and noisy signals with heterogeneous

beliefs, there exists an optimal level of noise in the signals which maximizes each individual profit for N ≥ 4.
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model as it is already the case in Admati and Pfleiderer (1988a,b), Subrahmanyam (1991),

Holden and Subrahmanyam (1992) and Foster and Viswanathan (1996). 17 As an unexpected

result, Proposition 3.1 shows that in this non-linear framework, we obtain that the profit is

proportional as in Kyle (1985) to the product σuσv. When the number of insiders N increases

competition quickly destroys individual profits - whereas in the Kyle model the individual profit

tends towards 0 more slowly. For the sake of comparison, in the monopoly case (N = 1), the

expected profit in the bullish/bearish model is equal to 0.36 times the Kyle one. Moreover,

Figure 3 shows that the individual expected profit goes to zero even faster in the case of the

bullish/bearish oligopoly when the number of competitors in the market is increasing. The

rate of convergence is indeed an exponential one
1
N

exp
(
−N

2

)
. The rate of convergence in

the models of Admati and Pfleiderer (1988b), Holden and Subrahmanyam (1992), Foster and

Viswanathan (1996), and Dridi and Germain (1999) is of the order of
1

N
√

N
.
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Figure 4: Aggregate Expected Profit: a Comparison.

Figure 4 shows that the expected aggregate profit18 in the bullish-bearish setup (dash line) is

a decreasing function of the number of insiders. Moreover, in this case, it goes to zero even faster
17However, Dridi and Germain (1999) show that this is not always the case when traders collect noisy informa-

tion. In effect, for certain regions of noise when the number of competitors is greater than four, one insider could

achieve greater profits with noisy information than with perfect information.

18Again expressed as a fraction of the standard Kyle (1985) expected profits
1

2
σuσv.
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when the number of informed traders is large in comparison with the noisy informed framework

as developed by Admati and Pfleiderer (1988b), see the AP curve.19 This can be interpreted,

all other things being equal, as quicker revelation of information. In the model of Dridi and

Germain (1999) (ON) the aggregate profit does not go to zero for a certain region of noise as

long as there are more than four insiders competing in the market.

3.2 Liquidity

Proposition 3.2 : We define the liquidity parameter as the price pressure, λ∗(w,N) =
∂p̃

∂w
.

Then:

λ∗(w,N) =
8σv√
2πσu

√
N exp

(
2w

√
N

σu

)

[
1 + exp

(
2w
σu

√
N

)]2 · (3.3)

Moreover when N is large, and for any given level of noise trading u, liquidity and the pricing

schedule converge to the following limits:

lim
N→+∞

λ∗ (w,N) = 0, if S = 1 or S = −1, (3.4)

lim
N→+∞

p̃ = p∗ if S = 1, (3.5)

lim
N→+∞

p̃ = −p∗ if S = −1· (3.6)

Proof : See Appendix B.
19Note that in the Admati and Pfleiderer model the aggregate profit is first increasing and then decreasing.

This is due to the fact that the signals are heterogeneous and as it has been shown in Dridi and Germain (1999) in

this case competition does not always destroys the aggregate profit. On the other hand, with homogenous signals

the aggregate profit function is monotone and converges to zero.
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In the proposition we defined naturally the price pressure or the liquidity parameter λ as

the derivative of the price function with respect to the order flow i.e. price sensitivity to a small

change in the order imbalance. Market depth is the inverse of the price pressure ; this is in

accordance with what has been previously introduced in the microstructure literature.

Figure 5 represents the liquidity parameter λ as a function of the order flow for the monopoly

(N = 1), duopoly (N = 2) and oligopoly (N = 6) cases, and respectively for large and small

order flow. Unlike in the Kyle (1985) linear framework, both functions are non-constant in order

flow. We see that price pressure is bell-shaped. 20 Price pressure is high for small order flow

and it then decreases with order imbalance. In other words, the price function is less sensitive

for large aggregate order flow. This is because order flow becomes marginally less informative

as its magnitude increases.

We observe that, while for small order flow, the liquidity parameter is lower for the monopoly

case (N=1), for larger order flow the liquidity parameter is lower in the duopoly case. This is

not the case in Admati and Pfleiferer (1988), or in Holden and Subrahmanyam (1992) where the

liquidity parameter is lower for the duopoly case whatever the amount of the order imbalance.

In our model, there is no straightforward interpretation of this feature, however, because order

flow itself depends on N .

20The market depth function not plotted here is U-shaped.
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Figure 5: Liquidity parameter λ.

Market depth in the bullish-bearish case is increasing faster with the number of traders than

in the case of Admati and Pfleiderer (1988b), Holden and Subrahmanyam (1992), and Foster

and Viswanathan (1996). Indeed, in those models the liquidity parameters are the following 21:

1. computing the liquidity parameter in Holden and Subrahmanyam (1992) i.e when the

signals collected by the informed traders are perfect (S = v), the liquidity parameter is

λ =
√

N
N+1

σv
σu

,

2. computing the liquidity parameter in Admati and Pfleiderer (1988b) in the case where

the signals collected are homogeneous and noisy (S = v + ε), the liquidity parameter is

λ =
√

N
N+1

σv
σu

1√
1+

σ2
ε

σ2
v

,

21In those models N is the number of informed traders, σ2
v , σ2

u and σ2
ε are the variances of u the noise trading,

v the liquidation value of the asset, and εi or ε the noise in the signal of the informed traders ; u, v and ε or εi

are mutually independent.
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3. computing the liquidity parameter in Foster and Viswanathan (1996) or in Admati and

Pfleiderer (1988b) i.e when the signals collected are heterogeneous (Si = v + εi), the

liquidity parameter is expressed by λ = σv
σu

√
N

√
1+

σ2
ε

σ2
v

N+1+2
σ2

ε
σ2

v

.

The liquidity parameters in those models decreases with the number of informed traders at

a rate of 1√
N

whereas in the bullish-bearish case it decreases at an exponential rate (for non-zero

order flow). 22

4 Concluding Remarks

We have proposed, in this paper, to study a financial market where risk neutral traders are

endowed with information of the bullish/bearish type. At the equilibrium, the optimal strategy

consists of buying (respectively selling) when bullish (respectively bearish) a fixed quantity. The

pricing schedule is a non-linear function of the volumes. The main results of the paper are the

following i) the price function is Sigmoid-shaped. ii) Liquidity parameter λ is a bell-shaped

curve of the order flow. This is consistent with the empirical evidence. iii) A monopolistic

bullish/bearish trader makes nearly thirty six percent of the profits she would have made with a

perfect signal in a linear model à la Kyle (1985). iv) In the presence of competition, the market

reveals private information quicker than in a perfect informed strategic oligopoly.

Our results suggest several directions for future research. A key testable implication of

our model is a link between coarseness of the information structure and concavity of the price

function. This is an interesting prediction to test experimentally. On the theoretical side, it

would be interesting to generalize this model to a multi-level bounded information structure

where the traders would be endowed of the probability that the value of the risky asset belongs

in different ranges. An example of this type of generalization is a signal the structure of which

would be “strong buy”, “buy”, “hold”, “sell”, “strong sell”. Another interesting study would

generalize this model in a multi-periodic setting.

22This result is also different from the results in Subrahmanyam (1991) as in his model, due to the risk aversion

of the market makers and of the informed traders, the liquidity parameter λ is first increasing and then decreasing

with the number of traders. Nevertheless, in Subrahmanyam (1991) the liquidity parameter is greater than in the

standard risk neutral case of Admati and Pfleiderer (1988b).
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Appendices

A Proof of propositions 2.1

The informed agent i maximizes his conditional expected profit conditionally on the observed

signal S. If the informed agent i observes the value S = 0 (which occurs with probability 0), it

is straightforward to show that he optimally submits 0. Given the structure of his information

and the symmetry of the problem, his optimal strategy is of the form:

x̃i = γi, if S = 1,

x̃i = −γi, if S = −1·

Given their prior, the market makers conjecture that the informed agent i submits the following

order:
x̃ = γc

i , if S = 1,

x̃i = −γc
i , if S = −1,

The market makers set prices according to (4.1):

p̃ = E[ṽ/w] =
σv√
2π

[K2(w,N) − K1(w,N)],

where :

ϕ(x) =
1√
2π

exp
(
−1

2
x2
)

,

K1(w,N) =

2ϕ




w+
N∑

i=1

γc
i

σu




ϕ




w−
N∑

i=1

γc
i

σu


+ ϕ




w+
N∑

i=1

γc
i

σu




,

K2(w,N) = 2 − K1(w,N)·

(4.1)

The proof proceeds in two steps. We first compute the joint density of (ṽ, w̃) : fṽ,w̃ and therefore
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the conditional p.d.f. of ṽ given w. We thus deduce the conditional expectation E[ṽ/w].

Fṽ,w̃(v, w) = Prob[ṽ ≤ v, w̃ ≤ w],

= Prob[ṽ ≤ v, w̃ ≤ w/ṽ < 0]Prob[ṽ < 0] + Prob[ṽ ≤ v, w̃ ≤ w/ṽ > 0]Prob[ṽ > 0],

=
1
2

{
Prob[ṽ ≤ v,−

N∑

i=1

γc
i + ũ ≤ w/ṽ < 0] + Prob[ṽ ≤ v,

N∑

i=1

γc
i + ũ ≤ w/ṽ > 0]

}
,

=
1
2

{
Prob

[
ṽ ≤ v,−

N∑

i=1

γc
i + ũ ≤ w/ṽ < 0

]
+ Prob

[
ṽ ≤ v,

N∑

i=1

γc
i + ũ ≤ w/ṽ > 0

]}
,

= Prob

[
ṽ ≤ min(0, v),−

N∑

i=1

γc
i + ũ ≤ w

]
+ Prob

[
0 < ṽ ≤ v,

N∑

i=1

γc
i + ũ ≤ w

]
,

= Φ
(

min(0, v)
σv

)
Φ




w +
N∑

i=1
γc

i

σu


+

[
Φ
(

v

σv

)
− Φ(0)

]
1Iv>0Φ




w −
N∑

i=1
γc

i

σu


 ,

Fṽ,w̃(v, w) =

Φ
(

v
σv

)
Φ




w+
N∑

i=1

γc
i

σu


 1Iv≤0 + 1Iv>0

1
2
Φ




w+
N∑

i=1

γc
i

σu


+ Φ

(
v
σv

)
Φ




w−
N∑

i=1

γc
i

σu


 1Iv>0 −

1
2
1Iv>0Φ




w−
N∑

i=1

γc
i

σu


 ,

= Φ
(

v
σv

)

Φ




w+
N∑

i=1

γc
i

σu


 1Iv≤0 + Φ




w−
N∑

i=1

γc
i

σu


 1Iv>0


+

1
2
1Iv>0


Φ




w+
N∑

i=1

γc
i

σu


− Φ




w−
N∑

i=1

γc
i

σu





 ·

If v < 0:

Fṽ,w̃(v, w) = Φ
(

v
σv

)
Φ




w+

N∑

i=1

γc
i

σu




,

fṽ,w̃(v, w) = 1
σuσv

ϕ
(

v
σv

)
ϕ




w+
N∑

i=1

γc
i

σu


 ·
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If v > 0:

Fṽ,w̃(v, w) = Φ
(

v
σv

)
Φ




w−
N∑

i=1

γc
i

σu


+

1
2


Φ




w+
N∑

i=1

γc
i

σu


− Φ




w−
N∑

i=1

γc
i

σu





 ,

fṽ,w̃(v, w) = 1
σuσv

ϕ
(

v
σv

)
ϕ




w−
N∑

i=1

γc
i

σu


 ·

Moreover Fw̃(w) =
1
2


Φ




w+
N∑

i=1

γc
i

σu


+ Φ




w−
N∑

i=1

γc
i

σu





 , therefore:

fw̃(w) =
1

2σu


ϕ




w+
N∑

i=1

γc
i

σu


+ ϕ




w−
N∑

i=1

γc
i

σu





 · We also have, applying Bayes rule, that:

fṽ/w̃(v, w) =
fṽ,w̃(v, w)

fw̃(w)
,

and thus:

• if v < 0, fṽ/w̃(v, w) =
2
σv

ϕ
(

v
σv

)
ϕ




w+

N∑
i=1

γc
i

σu




ϕ




w−
N∑

i=1

γc
i

σu


+ϕ




w+

N∑
i=1

γc
i

σu




,

• if v > 0, fṽ/w̃(v, w) =
2
σv

ϕ
(

v
σv

)
ϕ




w−
N∑

i=1

γc
i

σu




ϕ




w−
N∑

i=1

γc
i

σu


+ϕ




w+

N∑
i=1

γc
i

σu




·
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We define:

K1(w,N) =

2ϕ




w+

N∑
i=1

γc
i

σu




ϕ




w−
N∑

i=1

γc
i

σu


+ϕ




w+

N∑
i=1

γc
i

σu




,

K2(w,N) =

2ϕ




w−
N∑

i=1

γc
i

σu




ϕ




w−
N∑

i=1

γc
i

σu


+ϕ




w+

N∑
i=1

γc
i

σu




·

Of course K1(w,N) + K2(w,N) = 2.

fṽ/w̃(v, w) =
1
σv

ϕ

(
v

σv

)
[K1(w,N)1Iv<0 + K2(w,N)1Iv>0],

E[ṽ/w] =
∫ 0−

−∞

v

σv
ϕ

(
v

σv

)
K1(w,N)dv +

∫ +∞

0+

v

σv
ϕ

(
v

σv

)
K2(w,N)dv,

E[ṽ/w] =
σv√
2π

[K2(w,N) − K1(w,N)]·

We define γ = (γ1, . . . , γN )′ and γc = (γc
1, . . . , γ

c
N )′. The expected profit πi(γ, γc) of agent i is:

πi(γ, γc) = E[γi(ṽ − p̃)/ṽ > 0]Prob[ṽ > 0] + E[−γi(ṽ − p̃)/ṽ < 0]Prob[ṽ ≤ 0],

=
1
2
{E[γi(ṽ − p̃)/ṽ > 0] + E[−γi(ṽ − p̃)/ṽ < 0]} ,

=
1
2





∫ +∞

0

∫ +∞

−∞
γi(v − p̃) 2

σuσv
ϕ
(

v
σv

)
ϕ




w−
N∑

i=1

γi

σu


dvdw

+
∫ 0

−∞

∫ +∞

−∞
− γi(v − p̃) 2

σuσv
ϕ
(

v
σv

)
ϕ




w+
N∑

i=1

γi

σu


 dvdw





·

We make the following change in variables for the second integral

(
v
w

)
→
(

−v
−w

)
while

taking into account that ϕ(x) = ϕ(−x), P (−w) = −P (w). Moreover, for simplification we
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define the change in variables t =
w −

∑N
i=1(γ

c
i )

σu
with dt = dw

σu
.

πi (γ, γc) =
1
2





∫ +∞

0

∫ +∞

−∞
γi(v − p̃) 2

σuσv
ϕ
(

v
σv

)
ϕ




w−
N∑

i=1

γi

σu


 dvdw

+
∫ +∞

0

∫ +∞

−∞
γi(v − p̃) 2

σuσv
ϕ
(

v
σv

)
ϕ




w−
N∑

i=1

γi

σu


 dvdw





,

=
2γi

σuσv

∫ +∞

0

∫ +∞

−∞
(v − p̃)ϕ

(
v
σv

)
ϕ




w−
N∑

i=1

γi

σu


dvdw,

=
2γi

σv

∫ +∞

0




v −
∫ +∞

−∞
2

σv√
2π

(K2(w,N) − 1)

ϕ




w−
N∑

i=1

γi

σu




σu
dw




ϕ

(
v

σv

)
dv,

=
2γi

σv




σ2
v√
2π

− σ2
v√
2π

∫ +∞

−∞
(K2(w,N) − 1)

ϕ




w−
N∑

i=1

γi

σu




σu
dw




,

=
2γiσv√

2π

[
1 −

∫ +∞

−∞
[K2(tσu +

N∑

i=1

γi, N) − 1]ϕ(t)dt

]
,

=
4γiσv√

2π

[
1 − 1

2

∫ +∞

−∞
K2(tσu +

N∑

i=1

γi, N)ϕ(t)dt

]
,
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=
4γiσv√

2π





1 −
∫ +∞

−∞

ϕ




t+

N∑

i=1

γi − γc
i

σu




ϕ




t+

N∑

i=1

γi − γc
i

σu




+ϕ




t+

N∑

i=1

γi + γc
i

σu




ϕ(t)dt





·

To simplify the remaining computations we define

µi =
γi

σu

,

µc
i =

γc
i

σu

and according µ = (µ1, . . . , µN )′, µc = (µc
1, . . . , µ

c
N )′:

πi (µ, µc) =
4µiσuσv√

2π

∫ +∞

−∞

ϕ


t+

N∑

i=1

(µi + µc
i )




ϕ


t+

N∑

i=1

(µi − µc
i)


+ϕ


t+

N∑

i=1

(µi + µc
i)




ϕ(t)dt,

πi(µ, µc) =
2σuσv

π
µi

∫ +∞

−∞

dt

exp
(

1
2
t2
)

+ exp


1

2

(
t + 2

N∑

i=1

µc
i

)2

 exp

(
2

N∑

i=1

µc
i

N∑

i=1

(µi − µc
i)

) ,

At the value µi = 0 and when µi tends towards infinity the value of the expected profit is zero,

therefore there exists an interior solution µ∗
i (µ−i, µc) which maximises the expected profit. This

solution must verify the first order condition.

∂πi

∂µi
(µ, µc) =

2σuσv

π





∫ +∞

−∞

dt

exp
(

1
2
t2
)

+ exp


1

2

(
t + 2

N∑

i=1

µc
i

)2

 exp

(
2

N∑

i=1

µc
i

N∑

i=1

(µi − µc
i )

)−

µi

∫ +∞

−∞

exp


1

2

(
t + 2

N∑

i=1

µc
i

)2

 2

N∑

i=1

µc
i exp

(
2

N∑

i=1

µc
i

N∑

i=1

(µi − µc
i )

)
dt


exp

(
1
2
t2
)

+ exp


1

2

(
t + 2

N∑

i=1

µc
i

)2

 exp

(
2

N∑

i=1

µc
i

N∑

i=1

(µi − µc
i)

)


2





·
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Each agent i chooses µi to maximise his expected profit, and therefore at equilibrium we have:





∂πi

∂µi
(µ, µc) = 0,

µc
i = µi, i = 1, . . . , N,

This implies that:

∫ +∞

−∞

dt

exp
(

1
2
t2
)

+ exp


1

2

(
t + 2

N∑

i=1

µi

)2


−µi

∫ +∞

−∞

2
N∑

i=1

µi exp


1

2

(
t + 2

N∑

i=1

µi

)2

dt


exp

(
1
2
t2
)

+ exp


1

2

(
t + 2

N∑

i=1

µi

)2





2 = 0,

(4.2)

Thus, for all i = 1, . . . , N we have

µi =

∫ +∞

−∞

dt

exp
(

1
2
t2
)

+ exp




1
2


t + 2

N∑

j=1

µj




2



∫ +∞

−∞

2
N∑

j=1

µj exp




1
2


t + 2

N∑

j=1

µj




2

 dt


exp

(
1
2
t2
)

+ exp




1
2


t + 2

N∑

j=1

µj




2






2

We have proved, at the equilibrium, that the first order conditions implie that all agents have the

same strategy, in other words, there exists µ∗(N) independent of i such as for all i = 1, . . . , N

we have

µi = µ∗(N). (4.3)

Let H(·) and K(·) be two functions defined by :

H(x) =
∫ +∞

−∞

dt

exp
(

1
2
t2
)

+ exp
(

1
2
(t + 2x)2

)
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and

K(x) =
∫ +∞

−∞

2x2 exp
(

1
2
(t + 2x)2

)
dt

[
exp(1

2 t2) + exp
(

1
2
(t + 2x)2

)]2

For all x, it can be shown that

K(x) = x2H(x) (4.4)

Using the definitions of H(·) and K(·) and (4.2) and (4.3) implie that

H (Nµ∗(N)) − 1
N

K (Nµ∗(N)) = 0,

Reorganising terms using (4.4)

⇐⇒ H (Nµ∗(N))
(
1 − Nµ∗2

(N)
)

= 0,

⇐⇒ µ∗(N) =
1√
N

,

Concerning the second order conditions, we need to prove that
∂2π

∂µ2
i

(
1√
N

, . . . ,
1√
N

,
1√
N

, . . . ,
1√
N

)
< 0.
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∂2π

∂µ2
i

(µ, µc) =

2σuσv

π





−4
N∑

i=1

µc
i

∫ +∞

−∞

exp


1

2

(
t + 2

N∑

i=1

µc
i

)2

 exp

(
2

N∑

i=1

µc
i

N∑

i=1

(µi − µc
i )

)
dt


exp

(
1
2
t2
)

+ exp


1

2

(
t + 2

N∑

i=1

µc
i

)2

 exp

(
2

N∑

i=1

µc
i

N∑

i=1

(µi − µc
i)

)


2−

4µi

(
N∑

i=1

µc
i

)2 ∫ +∞

−∞

exp


1

2

(
t + 2

N∑

i=1

µc
i

)2

 exp

(
2

N∑

i=1

µc
i

N∑

i=1

(µi − µc
i )

)
dt


exp

(
1
2
t2
)

+ exp


1

2

(
t + 2

N∑

i=1

µc
i

)2

 exp

(
2

N∑

i=1

µc
i

N∑

i=1

(µi − µc
i)

)


2 +

8µi

(
N∑

i=1

µc
i

)2 ∫ +∞

−∞

exp



(

t + 2
N∑

i=1

µc
i

)2

 exp

(
2

N∑

i=1

µc
i

N∑

i=1

(µi − µc
i )

)
dt


exp

(
1
2
t2
)

+ exp


1

2

(
t + 2

N∑

i=1

µc
i

)2

 exp

(
2

N∑

i=1

µc
i

N∑

i=1

(µi − µc
i)

)


3





,

∂2π

∂2µi
(µ∗(N), µ∗(N)) =

2σuσv

π




−8

√
N

∫ +∞

−∞

exp
(

1
2

(
t + 2

√
N
)2
)

dt

[
exp

(
1
2
t2
)

+ exp
(

1
2

(
t + 2

√
N
)2
)]2 +

8
√

N

∫ +∞

−∞

exp
((

t + 2
√

N
)2
)

dt

[
exp

(
1
2
t2
)

+ exp
(

1
2

(
t + 2

√
N
)2
)]3





,

∂2π

∂2µi
(µ∗(N), µ∗(N)) = −16σuσv

√
N

π

∫ +∞

−∞

exp
(

1
2

(
t + 2

√
N
)2
)

exp
(

1
2
t2
)

dt

[
exp

(
1
2
t2
)

+ exp
(

1
2

(
t + 2

√
N
)2
)]3 < 0·

This ends both proofs of existence and uniqueness.

πi (µ∗(N), µ∗(N)) =
2σuσv

π
√

N

∫ +∞

−∞

dt

exp
(

1
2
t2
)

+ exp
(

1
2

(
t + 2

√
N
)2
) ·

B Proof of propositions 3.1 − 3.2 :
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Profits:

The individual expected profit is given by:

π∗(µ∗(N), µ∗(N)) =
2σuσv

π
√

N

∫ +∞

−∞

dt

exp
(

1
2
t2
)

+ exp
(

1
2

(
t + 2

√
N
)2
) ,

=
2σuσv

π
√

N

∫ +∞

−∞

dt

exp
(

1
2

(
t −

√
N
)2
)

+ exp
(

1
2

(
t +

√
N
)2
) ,

=
4σuσv

π
√

N

∫ +∞

0

dt

exp
(

1
2

(
t −

√
N
)2
)

+ exp
(

1
2

(
t +

√
N
)2
) ,

=
4σuσv

π
√

N

∫ +∞

0

exp
(
−1

2

(
t +

√
N
)2
)

dt

1 + exp
(
−2t

√
N
) ,

=
4σuσv

π
√

N
θ
(√

N
)

,

with θ(x) =
∫ +∞

0

exp
(
−1

2
(t + x)2

)

1 + exp(−2tx)
dt,. For x > 0, we perform the following changes in vari-

ables: u = tx.

θ(x) =
1
x

∫ +∞

0

exp
[
−1

2

(
u
x + x

)2]

1 + exp(−2u)
du,

θ(x) =
1
x

∫ +∞

0

exp
(
−1

2x2
)

exp(−u) exp
(
−1

2
u2

x2

)

1 + exp(−2u)
du,

θ(x) =
1
x

exp
(
−1

2
x2
)∫ +∞

0

exp(−u) exp
(
−1

2
u2

x2

)

1 + exp(−2u)
du·

lim
N→+∞

θ
(√

N
)

=
1√
N

exp
(
−1

2
N

)∫ +∞

0

exp(−u)
1 + exp(−2u)

du =
1√
N

exp
(
−1

2
N

)∫ 1

0

dv

1 + v2
,

lim
N→+∞

θ
(√

N
)

=
1√
N

exp
(
−1

2
N

)
π

4
,

therefore:

lim
N→+∞

π∗
i (µ∗(N), µ∗(N)) =

σuσv

N
exp

(
−1

2
N

)
,

lim
N→+∞

Nπ∗
i (µ∗(N), µ∗(N)) = σuσv exp

(
−1

2
N

)
·
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In other words, at the limit we have :

lim
N→+∞

π∗
i (µ∗(N), µ∗(N)) = lim

N→+∞

σuσv

N
exp

(
−1

2
N

)
= 0, (4.5)

lim
N→+∞

Nπ∗
i (µ∗(N), µ∗(N)) = lim

N→+∞
σuσv exp

(
−1

2
N

)
= 0· (4.6)

Pricing Schedule:

P (w) =
2σv√
2π

[K∗
2 (w,N) − 1] ,

K∗
2 (w,N) =

2ϕ
(

w

σu
−

√
N

)

ϕ

(
w

σu
+

√
N

)
+ ϕ

(
w

σu
−

√
N

) ,

P (w) =
2σv√
2π

ϕ

(
w

σu
−

√
N

)
− ϕ

(
w

σu
+

√
N

)

ϕ

(
w

σu
+

√
N

)
+ ϕ

(
w

σu
−

√
N

) ,

P (w) =
2σv√
2π

exp

(
−1

2

(
w

σu
−

√
N

)2
)
− exp

(
−1

2

(
w

σu
+

√
N

)2
)

exp

(
−1

2

(
w

σu
−

√
N

)2
)

+ exp

(
−1

2

(
w

σu
+

√
N

)2
) ,

thus we obtain the result:

lim
N→+∞

P (w,N) =
2σv√
2π

, (4.7)

if S=1,

lim
N→+∞

P (w,N) = − 2σv√
2π

, (4.8)

if S=-1
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Liquidity:

λ (w,N) =
∂p

∂w
(w) is the price pressure and corresponds to the inverse of the market depth:

λ (w,N) =
8σv√
2πσu

√
N exp

(
2w

√
N

σu

)

[
1 + exp

(
2w

√
N

σu

)]2 ,

if S=-1,

lim
N→+∞

λ (w,N) =
8σv√
2πσu

√
N exp

(
2w

√
N

σu

)
,

if S=1,

lim
N→+∞

λ (w,N) =
8σv√
2πσu

√
N exp

(
−2w

√
N

σu

)
,

lim
N→+∞

λ (w,N) = lim
N→+∞

8σv√
2πσu

√
N exp (−2N) exp

(
2u

√
N

σu

)
= 0, (4.9)

if S=-1,

lim
N→+∞

λ (w,N) = lim
N→+∞

8σv√
2πσu

√
N exp (−2N) exp

(
−2u

√
N

σu

)
= 0, (4.10)

if S=1.
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