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Fractional complex order integrator has been used since 1991 for the design of robust control-
systems. In the CRONE control methodology, it permits the parameterization of open loop
transfer function which is optimized in a robustness context. Sets of fractional order integrators
that lead to a given damping factor have also been used to build iso-damping contours on
the Nichols plane. These iso-damping contours can also be used to optimize the third CRONE
generation open loop transfer function. However, these contours have been built using nonband-
limited integrators, even if such integrators reveal to lead to unstable closed loop systems. One
objective of this paper is to show how the band-limitation modifies the left half-plane dominant
poles of the closed loop system and removes the right half-plane ones. Also presented are how
to obtain a fractional order open loop transfer function with a high phase slope and a useful
frequency response, and how the damping contours can be used to design robust controllers, not
only CRONE controllers but also PD and QFT controllers.

Keywords : Fractional order system; complex order integration; CRONE control; closed loop
stability.

1. Introduction

The CRONE control-system design methodology
has been developed since the 1980s [Oustaloup,
1983, 1991; Oustaloup & Mathieu, 1995b; Lanusse,
1994; Åström, 1999]. It is based on the com-
mon unity-feedback configuration (Fig. 1). The
robust controller K or the open loop transfer func-
tion β is defined using fractional order integro-
differentiation. The required robustness is that of
both stability margins and performance, and partic-
ularly of resonant peak MT of the complementary
sensitivity function T (s).

Three CRONE control design methods have
been developed, successively extending the applica-
tion field. If the CRONE method is devoted to the
linear feedback system design using the controller as
one Degree Of Freedom (DOF), it is obvious that a
second DOF (linear or not) could be added outside
the loop for managing pure tracking problems.

The variations of the phase margin (of a closed
loop system) come both from the parametric vari-
ations of the plant G and from the controller
phase variations around open loop gain crossover
frequency ωcg, which can also vary. The first
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Fig. 1. Common CRONE control-system diagram.

generation CRONE control proposes a controller
without phase variation (fractional differentiation)
around ωcg. Thus, phase margin variation only
results from the plant variations. In order not to
manage the accuracy of the closed loop control-
system and in order to reduce the sensitivity of
the control-system to high frequency measurement
noise, the controller is defined from a band-limited
fractional order differentiator. The rational approxi-
mation of this differentiator is achieved by using the
well-known Oustaloup’s frequency domain approx-
imation method based on log-distributed zeros and
poles [Oustaloup, 1983]. This strategy has to be
used when ωcg is within a frequency range where
the plant phase is constant and also where the plant
variations are only gain-like. Such a range is often
in the high frequencies, and can lead to high-level
control effort.

In second generation CRONE control, when
the plant variations are gain-like around ωcg, the
plant phase variation, with respect to frequency,
is cancelled by that of the controller. Thus, there
is no phase margin variation when frequency ωcg

varies. Such a controller provides a constant open
loop phase (real fractional order integration) whose
Nichols locus is a vertical straight line called a fre-
quency template. It revealed to be very close to the
open loop frequency response proposed by Bode
[1945]. This template ensures the robustness of
phase and modulus margins and of resonant peaks
of complementary sensitivity and sensitivity func-
tions. The stability criterion proposed by Popov is
commonly used to prove the stability of systems
with interconnected memoryless nonlinearity and
rational linear system. It has been shown how this
criterion can be used to analyze the closed loop sta-
bility when the linear system is a fractional order
integrator and when the nonlinear gain lies in a sec-
tor [Lanusse & Oustaloup, 2006]. Then, this gain
has been interpreted as an unstructured uncertainty
added to the structured uncertainty of the linear

part of a plant model to design a second genera-
tion CRONE controller. In order to obtain an effi-
cient controller, only a band-limited fractional order
integrator is used at this step.

The third CRONE control generation must
be used when the plant uncertainties are of var-
ious types (not only gain-like). The vertical tem-
plate is then replaced by a generalized template
always described as a straight line in the Nichols
chart, but of any direction (complex fractional
order integration) [Oustaloup, 1991; Lanusse et al.,
1992; Lanusse et al., 1993; Lanusse, 1994]. An opti-
mization allows the determination of the indepen-
dent parameters of the nominal open loop transfer
function. This optimization is based on the min-
imization of the stability degree variations, while
respecting other specifications taken into account
by constraints on sensitivity function magnitude.
Iso-damping contours can be used to minimize the
closed loop damping variations. The complex frac-
tional order permits the parameterization of the
open loop transfer function with a small num-
ber of high-level parameters. Thus, it makes eas-
ier the nonlinear optimization that needs to be
used. Finally, the corresponding CRONE controller
is synthesized as the rational transfer function that
fits the desired frequency response the best. The
third generation CRONE CSD methodology is able
to design controllers for plants with right half-
plane zeros or poles, time delay, and/or with lightly
damped modes [Oustaloup et al., 1995c; Pommier
et al., 2008]. Associated with the w-bilinear vari-
able change, it also permits the design of digi-
tal controllers. The CRONE control has also been
extended to linear time variant systems [Sabatier
et al., 2002] and nonlinear systems whose nonlinear
behaviors are taken into account by sets of linear
equivalent behaviors [Lanusse et al., 1992; Pommier
et al., 2002, 2006]. For multivariable plants, two
methods have been developed [Lanusse et al., 1996,
2000; Pommier et al., 2005; Nelson-Gruel et al.,
2008]. The choice of the method (multi-SISO,
decentralized or fully MIMO) is made through an
analysis of the coupling rate of the plant.

Even if they have been used for many years
to design robust controllers and also to build a
network of iso-damping contours around the −1
point of the Nichols chart, it is time to explain how
the frequency band-limitation of fractional complex
order integrators can modify the closed loop poles
location and then how it ensures the closed loop
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stability. Section 2 shows the properties of a sys-
tem whose open loop transfer function is defined by
a pure complex order integrator. Section 3 explains
how the complex order integrator can be band-
limited and how to obtain integrators whose order
has a high imaginary part. Section 4 presents how
the band-limitation of the integrator can mod-
ify the closed loop pole location. Section 5 shows
how these contours can be used to design a sim-
ple PID robust controller. Then it is explained how
the contours can be taken into account to design
robust controllers using either the CRONE or QFT
methodology.

2. Closed Loop Transfer Function
Based on a Non-Band-Limited
Complex Order Integrator

Even if the third generation of the CRONE method-
ology is based on an open loop transfer function
defined by a non-band-limited complex order inte-
grator around the gain crossover frequency ωcg

β(s) =
(

cosh
(

b
π

2

))sign(b) (ωcg

s

)a

× Re
i

((
ωcg

s

)ib
)−sign(b)

, (1)

using the Nyquist stability criterion, it is simple to
show that without any band-limitation, the closed
loop which would be obtained would be unstable
when b �= 0. Re/i means that only the real part
with respect to the imaginary number i (in the inte-
gration complex order) is taken into account. The
i number is not to be confused with the imaginary
number j that is used in the s Laplace variable. i
is a genuine imaginary number without any physi-
cal meaning whereas j is used to model a dynamic
behavior.

Proof. Oustaloup et al. [2000] showed that a com-
plex order differentiator can be approximated by
an infinite number of left half-plane complex zeros
and poles. The two complex recursive factors that
characterize the distribution are functions of the
complex fractional order of the differentiator. As
an infinite number of zeros and poles is used, the
modulus of the two recursive factors tend to 1 from
above. Thus, each fractional order part of the open
loop transfer function (1) can also be approximated
by left half-plane zeros and poles only, that is to say
without any right half-plane pole.

Fig. 2. Nichols diagram of β(jω) for a given real integration
order a = 1.5 and various imaginary integration orders.

The magnitude and phase of β defined by (1)
are:

|β(jω)| =
(

cosh
(

b
π

2

))sign(b)(ωcg

ω

)a

×
(

cos2

(
b ln
(

ωcg

ω

))
+ sinh2

(
b
π

2

))−sign(b)
2

arg β(jω) = −a
π

2
− sign(b)

× atan
[

tan
(

b ln
(

ωcg

ω

))
tanh

(
b
π

2

)]
.

(2)
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Fig. 3. Nichols diagram of β(jω) for a between 1 (red)
and 1.9 (green) and b between −2 (solid) and 2 (dash).
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Fig. 4. Nyquist diagrams of β(jω) for a = 1.5 and: (a) negative b, (b) null b and (c) positive b.

Then for ω = ωcg:

|β(jω)| = 1; arg β(jω) = −a
π

2
;

∂|β(jω)|dB

∂ log10 ω
= −20a and

∂ arg(β(jω))
∂ log10 ω

= ln(10)sign(b)b tanh
(

b
π

2

)
.

(3)

Figure 2 presents the Nichols diagram of β(jω) for
a = 1.5 and various values of the imaginary inte-
gration order.

Then, Fig. 3 shows the Nichols diagram of β(jω)
computed for a set of values of a between 1 and 1.9
(with increments of 0.05), for a set of values of b

Fig. 5. Loci of the left half-plane pole of β(s)/(1+β(s)) with
a positive imaginary part for a between 1 and 1.9, b between
−2 and 2 and ωcg = 1.

between −2 and 2 (with increments of 0.1) and for
ωcg = 1. Figures 4(a)–4(c) show the shape of the
Nyquist diagram of β(jω) for a = 1.5 and respec-
tively for negative, null and positive values of b.

As the phase of β(jω) goes from +∞ to −∞
for negative b [Fig. 4(a)], β(jω) reveals an infinite
number of counter clockwise encirclements of −1
critical point. As the phase of β(jω) goes from −∞
to +∞ for positive b [Fig. 4(c)], β(jω) reveals an
infinite number of counter clockwise encirclements
of −1. Only for null b [Fig. 4(b)], β(jω) does not
encircle −1.

Thus, as there is no right half-plane pole in the
open loop transfer function β(s) whatever the value
of b, the Nyquist stability criterion shows that the
closed loop system is only stable for null b. �

a = 1 b = -2 

a = 1.9

b = 2 

a = 1 

Fig. 6. Iso-a and iso-b loci of the stable upper pole of
β(s)/(1 + β(s)) for a between 1 and 1.9 (with increments
of 0.05), b between −2 and 2 (with increments of 0.1) and
ωcg = 1.
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Even if the closed loop transfer function
β(s)/(1 + β(s)) includes right half-plane poles, it
also includes one left half-plane complex conjugated
pole pair. The stable roots of β(s) + 1 = 0 had
been used to build iso-damping contours [Lanusse,
1994; Oustaloup et al., 1995a, 2003]. Figure 5 shows
how the left half-plane closed loop pole (numeri-
cally found) with the positive imaginary part moves
when a and b vary.

Figure 6 presents the “shell” that builds this
stable pole when either a or b varies.

3. Closed Loop Transfer Function
Based on a Band-Limited
Complex Order Integrator

In order to ensure the stability of the closed loop
system, and thus to ensure that the used poles are
the genuine dominant poles that govern the time-
domain response, the imaginary order part of the
integrator needs to be band-limited. Thus defini-
tion (1) of β(s) can be replaced by:

β(s) = K

(
ωcg

s

)a Re
i




α0

1+
ωh

s
1+

ωl

s




ibq




−q sign(bq)

,

(4)

where K ensures that |β(jωcg)| = 1, α0 =
√

ω2
cg+ω2

l

ω2
cg+ω2

h

and q is a positive integer number.
Figure 7 shows how the band-limitation modi-

fies the Nichols locus of β(s).

arg )cg

-π

ω

ω
ω l

ω h

ω
ω

ω
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ω B

-π/2

|β (j

ωβ (j

)|dB

Fig. 7. Nichols diagrams of β(jω) for a = 1.5 and: null bq

(- -); negative bq and β defined by (4) ( ); negative bq and
β defined by (1) (−−).

Figure 7 shows that the open loop frequency
response with the band-limited integrator looks like
the initial open loop frequency response on a fre-
quency range [ωA, ωB], shorter more narrow than
the frequency range [ωl, ωh].

When ω tends to 0 and +∞, it has been shown
(already used in [Lanusse, 1994]) that the phase of
β(jω) tends to aπ/2 if and only if:

|bq| < min


 π

2 ln(α0)
,

π

2
∣∣∣∣ln
(

α0
ωl

ωh

)∣∣∣∣

. (5)

For ω = ωcg, the slope of the phase of β(jω) is now
given by:

∂ arg(β(jω))
∂ log10 ω

= γ ln(10)q sign(bq)bq tanh(bq(θh − θl)) (6)

where

γ = ω2
cg

(
1

ω2
cg + ω2

h

− 1
ω2

cg + ω2
l

)
and

θl,h = atan
(

ωcg

ωl,h

)
.

For bq = b and q = 1, it is easy to verify that (6)
tends to its value in (3) when ωl tends to 0 and
when ωh tends to ∞.

For given values of ωcg, ωl and ωh, and for
a desired value of the slope of the phase (related
to a given initial value of b), q is defined as the
smallest integer number that leads to a value of bq

that meets (5) and is the solution of the nonlinear
equation:

qsign(bq)bq tanh(bq(θh − θl))

= sign(b)b tanh(b(θh − θl)). (7)

For large values of tanh(b(θh − θl)), bq is very close
to b/q.

4. Pole Location of a Closed Loop
System Defined From a
Band-Limited Complex Order
Integrator

The risk of closed loop instability is reduced when
the band-limitation is managed with a reduced
ωh/ωl ratio. When this ratio is close to 1, α0 in (5)
is also close to 1 and thus the limit value of bq is
very large. Figure 8 shows the Nichols diagram of
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Fig. 8. For ωh/ωl = 10: (a) Nichols diagram of β(jω) for a between 1 (red) and 1.9 (green), b between −2 (solid) and 2
(dash); (b) iso-a and iso-b loci of the stable upper pole of β(s)/(1 + β(s)).

β(jω) defined by (4) and obtained for several values
of a between 1 and 1.9 (with increments of 0.05),
several values of b between −2 and 2 (with incre-
ments of 0.1), and for ωcg = 1, ωl = 1/100.5 and
ωh = 100.5.

Figure 8(a) shows now that the phase of all
the frequency responses tends to −aπ/2 when ω
tends to ±∞. As above, the poles of β(s)/(1+β(s))
are searched. Now there is only one left half-plane
conjugated complex pair pole (no right half-plane
pole) and one of them is plotted [Fig. 8(b)]. As the

band-limitation reduces the linearity of the Nichols
diagram of β(jω) around the critical point, the
deformed shell obtained would not provide the iso-
damping contours proposed in [Lanusse, 1994] and
used in [Oustaloup et al., 2003].

Figure 9(a) shows the Nichols diagram of β(jω)
obtained now for ωl = 0.1 and ωh = 10. As
the ωh/ωl ratio increases, for a same phase slope
(related to the value of b between −2 and 2), the
integer number q needs to increase in order that
bq meets (5). When the phase of these frequency
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Fig. 9. For ωh/ωl = 102: (a) Nichols diagram of β(jω) for a between 1 (red) and 1.9 (green), b between −2 (solid) and 2
(dash); (b) iso-a and iso-b loci of the stable upper pole of β(s)/(1 + β(s)).
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Fig. 10. For ωh/ωl = 104: (a) Nichols diagram of β(jω) for a between 1 (red) and 1.9 (green), b between −2 (solid) and 2
(dash); (b) iso-a and iso-b loci of the stable upper pole of β(s)/(1 + β(s)).

responses becomes positive, Fig. 9(a) shows that
the gain increases (also for frequencies greater than
ωcg). Figure 9(b) presents the loci of the upper pole
of β(s)/(1 + β(s)). Even, if the difference is weaker
than before, this new shell remains different from
the shell of Fig. 6 used to build the iso-damping
contour.

Finally, the open loop transfer function β
is computed with ωh/ωl = 104. Figures 10(a)
and 10(b) show respectively the open loop fre-
quency responses and the closed loop poles. It
can be concluded that when the frequency band
[ωl, ωh] increases and when the closed loop stabil-
ity is ensured by using the power parameter q and
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0.2
0.40.3

0.60.5 0.90.7 0.8

Fig. 11. Set of iso-damping contours on the Nichols plane
for ζ between 0.1 and 0.9 (with 0.1 increments).

the order bq of (4), the closed loop poles tends to
the closed loop left half-plane poles pair related to
b and (1).

Thus, the shell presented by Fig. 6 can really
be used to build iso-damping contours (Fig. 11),
each contour being defined as the envelope of all
the open loop frequencies leading to a same closed
loop damping ratio value ζ (that is, for a same
closed loop pole argument). From these contours
and using interpolation methods, it is possible to
define approximative iso-damping contours. A poly-
nomial function is used to draw the contour Cζ for
ζ between 0.1 and 0.9:

Cς : X◦ =
2∑

j=0

fj(ς)Y
2j
dB with fj(ς) =

3∑
k=0

ajkς
k,

(8)

where X and Y are the Nichols-plane coordinates
of a point of Cζ . The coefficients ajk are given in
Table 1.

Table 1. Values of coefficients ajk .

k

0 1 2 3

0 −180.36 117.70 −74.316 40.376
j 1 −1.1538 3.8888 −5.2999 2.5417

2 −0.0057101 0.0080962 −0.0060354 0.0016158
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5. Design of Controllers Using
Damping Contours

5.1. Design of a robust PID
controller

Let the transfer function of a perturbed plant be:

G(s) =
k

s

(
1 +

s

ωc

)

with k ∈ [0.5, 2] and ωc ∈ [0.5, 2]. (9)

For the nominal parametric state of the plant, the
parameters are k0 = 1 and ωc0 = 1. Using a PID
controller, our first objective is to ensure a closed
loop pole damping ratio greater than 0.5 for all the
possible parametric states of the plant. The con-
troller is defined by:

K(s) = K0
1 + s

s

1 +
as

ωm

1 +
s

aωm

. (10)

The other objectives are: the nominal open loop
gain crossover frequency equals 1 rad/s; a lead effect
as small as possible (the smallest value of a). Param-
eters K0, a and ωm which ensure tangency to the 0.5
iso-damping contour are K0 = 0.25, a = 3.5 and
ωm = 0.85. Figure 12 shows a set of 25 possible
open loop Nichols loci and the tangencies both to
the specified 0.5 iso-damping ratio and to a 3.34 dB
Nichols magnitude contour. Using the relationship
between resonant peak MT and damping ratio ζ,
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MT =3.34dB

ζ=0.5

Fig. 12. Open loop Nichols loci, 0.5 iso-damping and 3.34 dB
magnitude contours (nominal in red).
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Fig. 13. (a) Closed loop step responses, (b) poles and 0.5
damping ratio limit. Nominal in red, perturbed in green.

defined for second order systems, this resonant
peak value would predict a 0.36 damping ratio.
Figure 13(a) gives the corresponding closed loop
step responses.

Figure 13(b) shows the location of the closed
loop-poles. From these poles, the actual small-
est value of closed loop-pole damping ratios
is 0.54. This example shows that the damping
ratio predicted in the frequency domain using iso-
damping contours (0.5) is much closer to its actual
value (0.54) than when using common magnitude
contours (0.36). It is thus demonstrated that these
iso-damping contours can be used in frequency-
based design for angular placement of closed loop
poles. Finally, this example shows that iso-damping
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contours can also be used when the open loop locus
is not rectilinear but close to a rectilinear locus near
the resonant frequency.

5.2. Robust control design using the
CRONE control methodology

The third generation CRONE control methodology
is also able to use iso-damping contours [Pommier
et al., 2008]. Its principle is to optimize the param-
eter of a nominal open loop transfer function that
includes a band-limited complex fractional order
integration:

β(s) = βl(s)βm(s)βh(s), (11)

where βm(s) is a set of band-limited generalized
templates:

βm(s) =
N+∏

k=−N−
βk(s), (12)

with

βk(s) = C
sign(bk)
k


αk

1 +
s

ωk+1

1 +
s

ωk




ak

×


�e

i




αk

1 +
s

ωk+1

1 +
s

ωk



ibk





−qksign(bk)

(13)

and

αk =
(

ωk+1

ωk

)1/2

for k �= 0 and

α0 =




1 +
(

ωr

ω0

)2

1 +
(

ωr

ω1

)2




1/2
(14)

where βl(s) is an integer order nl proportional inte-
grator and where βh(s) is a low-pass filter of integer
order nh:

βl(s) = Cl

(ω−N−

s
+ 1
)nl

,

βh(s) = Ch

(
s

ωN+

+ 1
)−nh

.

(15)

Gains Cx (Ck, Cl and Ch) are such that ωr is the
closed loop resonant frequency. Order nl has to be
set to manage the accuracy provided by the control-
system. Order nh has to be set to obtain a proper
or bi-proper controller. When it is useful, N− and
N+ are different from 0 to increase the number of
tuning parameters.

Even if the open loop parameters are often
optimized in order to reduce the variation of the
resonant peak MT, the optimal open loop transfer
function can also be obtained by the minimization
of one of the following robustness cost functions:

• J = ζ0 − inf
G

|ζ|, (16)

• J =
(

ζ0 − inf
G

|ζ|
)2

+
(

sup
G

|ζ| − ζ0

)2

, (17)

• J = sup
G

|ζ| − inf
G

|ζ|, (18)

where ζ0 is a required value of the nominal closed
loop damping ratio (for the nominal plant G0),
while respecting the following set of inequality con-
straints for all plants G and for ω ∈ R

+:

inf
G

|T (jω)| ≥ Tl(ω), sup
G

|T (jω)| ≤ Tu(ω),

sup
G

|S(jω)| ≤ Su(ω), sup
G

|KS (jω)| ≤ KSu(ω)

and sup
G

|GS (jω)| ≤ GS u(ω),

(19)

with 


T (s) =
K(s)G(s)

1 + K(s)G(s)

S(s) =
1

1 + K(s)G(s)

KS (s) =
K(s)

1 + K(s)G(s)

GS (s) =
G(s)

1 + K(s)G(s)

. (20)

As the uncertainties are taken into account by the
least conservative method, a nonlinear optimiza-
tion method must be used to find the optimal val-
ues. For N− = N+ = 0, only four independent
parameters have to be optimized. The parameteri-
zation of the open loop transfer function by complex
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Sensor 1 (yh)

Sensor 2 (yl)

Actuator 1 (uh)

Actuator 2 (ul)

Fig. 14. Beam and tank system with piezoelectric sensors and actuators.

Empty tank

t(s) t(s)

yh yl Half-full tank

t(s) t(s)

yh yl

Full tank

t(s) t(s)

yh yl

Fig. 15. Open loop time responses for three filling levels of the tank.



May 4, 2012 11:58 WSPC/S0218-1274 1230013

fractional orders, then simplifies the optimization
considerably. During optimization a complex order
has the same function as a whole set of parame-
ters found in common rational controllers. Finally,
the fractional controller KF (s) is defined by its fre-
quency response:

KF(jω) =
β(jω)
G0(jω)

, (21)

where G0(jω) is the nominal frequency response of
the plant. The parameters of a rational transfer
function KR(s) with a predefined low order struc-
ture are tuned to fit the ideal frequency response
KF(jω). Any frequency-domain system identifica-
tion technique can be used. An advantage of this
design method is that whatever the complexity of
the control problem, low values of the controller
order can be used (usually around 6).

The CRONE control methodology has been
extended to MIMO systems [Nelson-Gruel et al.,
2009]. Its main principle is to optimize the param-
eters of a nominal and diagonal open loop trans-
fer function matrix whose diagonal elements are
defined by (11). It can be used to control a beam
and tank system (Fig. 14) that models an aircraft
wing. This system exhibits extremely low-damped
vibrations that depend on the level of filling of the
tank (Fig. 15). About 200 sec was required to obtain
damped vibrations. These vibrations are measured
by two piezoelectric ceramics (yl and yh). Two other
piezoelectric ceramics (ul and uh) will be used as
actuators to improve this damping.

Each open loop nominal and diagonal element
ensures a gain cross-over frequency equal to 3 rad/s,
a closed loop damping ratio ζ greater than ζ0 = 0.1
and a maximum of the sensitivity function KS lower
than 50 dB. It is also defined by a low frequency
order nl = −1 in order to limit the gain of the
controllers in low frequencies and a high frequency
order nh = 4 in order to limit the amplification of
the noise. For the first open loop element β01(s), the
optimized parameters are defined by a0 = 0.0037,
bq0 = 3.05, q0 = 5, ω0 = 1.4 rad/s and ω1 =
3.3 rad/s. For the second open loop element β02(s),
the optimal parameters are a0 = 2.99, bq0 = 1.81,
q0 = 5, ω0 = 1.3 rad/s and ω1 = 3.3 rad/s. Fig-
ure 16 shows the Nichols loci with the uncertain-
ity domains of the optimal open loop frequency
responses computed from the diagonal elements of
the closed loop complementary sensitivity function
T (s) = (I + G(s)K(s))−1G(s)K(s).
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Fig. 16. Open loop frequency response (nominal in green)
and 0.1 damping ratio limit (black).

The matrix of the controller is computed from
the relation:

K(s) =

[
K11(s) K12(s)

K21(s) K22(s)

]

=

[
G110(s) G120(s)

G210(s) G220(s)

]−1 [
β110(s) 0

0 β220(s)

]
.

(22)

The four terms of this matrix are synthesized by
frequency domain system identification. Figure 17
shows how this robust controller is efficient to
improve the damping. Now, the vibrations disap-
pear before 25 sec.

5.3. How to use iso-overshoot and
iso-damping contours with
QFT design

QFT (Quantitative Feedback Theory) is a
frequency-based method developed by Horowitz to
design robust controllers [Horowitz et al., 1972;
Horowitz, 1991, 1993; D’Azzo & Houpis, 1995].
When using the QFT technique [Banos et al.,
2008; Cervera & Houpis, 2008] complex fractional
order transfer functions were also used to design
controllers with the QFT technique, the time
requirements need to be translated into closed loop
frequency bounds, and then into open loop bound-
aries constructed on the Nichols chart.
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Empty tank

t(s) t(s)

yh yl

uh ul

t(s) t(s)

Half-full tank

yh yl

uh ul

t(s) t(s)

Full tank

yh yl

uh ul

Fig. 17. Closed loop time responses for three filling levels of the tank.

The peak magnitude MT of T (s) is known to
be strongly correlated to the step response over-
shoot, and the magnitude contours are used by
frequency-based control-system designs. So limiting
the upper value of the overshoot is obtained through
avoiding penetration by the open loop Nichols locus
of the area within the corresponding MTu magni-
tude contour of the Nichols chart. As QFT design
deals with uncertain systems, the limitation of the
step response overshoot for a set of plant models,
is obtained using a set of boundaries {BTu(ωi)}
constructed from the MTu magnitude contour and
from the set of plant frequency-response uncertainty
domains {D(ωi)} (called template in QFT termi-
nology) computed for a set of well-chosen frequen-
cies {ωi}. For a given frequency ωi, the boundary

BTu(ωi) is constructed to ensure that the uncertain
open loop frequency responses β(jωi) (described by
its nominal value plus {D(ωi)}) do not penetrate
the area of BTu(ωi) when the arbitrary nominal
open loop frequency response β0(jωi) does not.

Figure 18 shows how boundaries can be con-
structed. The black dot of uncertainty domain
D(ωi) locates the nominal point corresponding
to a nominal plant G0(s). The boundary is the
locus drawn by the nominal point when D(ωi)
moves around and tangents the MTu magnitude
contour. Thus the black dots are the “vertices”
of BTu(ωi). Figure 18(a) shows the construction
for a polygonal uncertainty domain. Figure 18(b)
shows the construction for a rectilinear uncertainty
domain resulting from a plant where only a gain is



May 4, 2012 11:58 WSPC/S0218-1274 1230013

0 dB
-π

MTu

BTu(ω i)

D(ωi)

-π

MTu

BTu(ω i)

D(ωi) 

Fig. 18. Construction of BTu boundaries of QFT designs for
two types of uncertainty domains D(ωi): (a) polygonal; (b)
rectilinear.

uncertain. In this case the boundary is a U -contour
as described by D’Azzo and Houpis [1995].

What is commonly done using magnitude con-
tours to limit the upper value of the step response
overshoot, can also be done using iso-damping con-
tours to limit the lower value of the closed loop
damping ratio at ζl. Figure 19 shows that the con-
struction method of the boundary Bζl(ωi) is similar
to that of BTu(ωi): the MTu magnitude contour is
only replaced by the iso-damping contour Cζl. As
the iso-damping contour Cζl is open, the bound-
ary Bζl(ωi) is finally closed by connecting the two
extreme points obtained.

Figure 19 shows that the critical point (−π,
0 dB) can be outside the area defined by this bound-
ary. This does not really matter as the compos-
ite boundary B0(ωi) finally used in QFT design is
defined from the most restrictive parts of the set of
boundaries. Indeed other boundaries defined from

0 dB
-π

Cζ l
Bζl(ω i) 

D(ω i) 

-π
Bζl(ω i)

D(ω i)

Cζ l

Fig. 19. Construction of Bζl boundaries for QFT designs
for two types of uncertainty domains D(ωi): (a) polygonal
shape; (b) rectilinear shape.

0 dB
BTu(ω

π

i)

Bζl(ω i)

B0(ω i)

-

Fig. 20. Construction of a B0 composite boundary for QFT
design.

MTu and MSu ensure that the critical point is not
approached. Figure 20 presents the construction of
a composite boundary from peak magnitude and
damping boundaries.

6. Conclusion

This paper showed that the two poles of the stable
closed loop transfer function β(s)/(1 + β(s)) with
β(s) defined by (4) tends to the right half-plane
conjugated poles of the unstable transfer function
β(s)/(1+β(s)) with β(s) defined by (1). Thus, these
right half-plane poles can be taken into account as
the dominant poles of a closed loop defined from a
lightly band-limited complex order integrator, and
can be used to build iso-damping contours. Then
three control design methodologies have been pre-
sented to show how these contours can be used to
obtain robust controllers (PID, CRONE and QFT).
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