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a  b  s  t r a  c  t

Kidney  stone  disease, or nephrolithiasis, is a common ailment. Among the different risk  factors  usually

associated  with  nephrolithiasis  are dehydration, metabolic  defects (especially  with  regard  to calcium

and  oxalate). The  presence of a mineral  deposit  at the  surface of the renal  papilla  (termed Randall’s

plaque)  has  all been recently underlined.  Of  note, Randall’s plaque  is made  of the  calcium  phosphate,

carbapatite,  and  serves as  a nucleus  for kidney  stone  formation. The  process  by which  apatite  nanocrystals

nucleate  and form Randall’s  plaque  remains  unclear. This  paper  deals with  the  possible relationship

between  trace elements  and the  formation  of this  mineral. The  investigation  has been performed  on  a

set  of Randall’s  plaques, extracted  from human  kidney stones,  through m­X­ray  diffraction and m­X­ray

fluorescence  analyses  in order  to determine  the  chemical  composition  of the plaque  as  well  as the  nature

and  the  amount of trace  elements. Our  data provide  evidence  that  Zn  levels  are  dramatically  increased  in

carbapatite  of RP  by comparison  to carbapatite  in kidney stones, suggesting  that  calcified  deposits within

the  medullar  interstitium  are  a pathological process involving  a tissue reaction.  Further studies,  perhaps

including  the  investigation  of biomarkers  for inflammation,  are  necessary  for clarifying  the role  of Zn in

Randall’s  plaque  formation.

Introduction

One of the main challenges for urology in the 21st century is

to understand the biochemical mechanisms associated to the for­

mation of Randall’s plaque (RP) [1]. From an epidemiologic point

of view, the proportion of kidney stones (KS) with RP markedly

increased from 8.9% in the early eighties to 20.6% between 2000

and 2005 in France [2]. A parallel progression of the presence of RP

at the tip of the papilla has been recently reported in the United

States [3,4]. Of note, Kim et al. [5] reported that stone formation is

proportional to papillary surface coverage by RP. Thus, RP can be

at the origin of the significant increase of KS prevalence observed

over the past two decades in industrialized countries [6–9]. More

precisely, in Europe as well as in the US, 6–18% of the population,

depending on the geographical region, are affected by such disease.

Since the seminal work of Randall, numerous studies have been

devoted to RP [10–12]. In a  recent review, we have underlined
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the chemical diversity of such biological samples [2]. If carbonated

calcium phosphate apatite (CA) seems to be the major component

of most RP, other mineral phases can be found, such as amor­

phous carbonated calcium phosphate (ACCP), and less frequently

whitlockite or brushite. Other chemical species, namely sodium

hydrogen urate and uric acid, are also observed. Such chemical

diversity underlines the fact that RP have different origins [13].

Among the possible hypotheses, some trace elements may act

as a catalyst. In the literature, different papers underline the fact

that some elements such as Mg [14], Zn [15], Al [16,17] or Fe3+­

citrate complexes [18] promote or inhibit nucleation and/or crystal

growth of mineral or organic species involved in urinary calculi.

Also different experimental investigations [19–21] have been ded­

icated to the analysis of the spatial partition of trace elements inside

KS by various techniques. In previous studies focused on kidney

stones [22–24] we have suggested that the presence of trace ele­

ments in most cases is not a marker of an active contribution to

stone formation but more probably is a consequence of a passive

adsorption and/or absorption of these heavy elements respectively

on and/or into crystals due to similarity of their charge and radius

with calcium. Such a conclusion is in line with the fact that the

medical classification [25,26] based on a relationship between the

pathology and some structural characteristics of KS ignores the
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Fig.  1. Typical  Randall’s  plaque  (white  area)  attached on a calculus made  of

whewellite  (C1).

nature and the amount of trace elements present inside KS. To date,

however, only a few experiments have directly addressed the ques­

tion of whether trace elements may play a  role in the formation of

RP [27].

The aim of this paper is to establish whether or not there is a

correlation between trace elements and RP. To do so, X­ray diffrac­

tion experiments to determine the composition of the RP as well

as X­ray fluorescence measurements to identify and evaluate the

amount of the trace elements have been performed. Special atten­

tion will be paid to a major oligoelement found in stones, namely

Zn.

Materials and methods

Samples

RP  were extracted using a  stereomicroscope from seven human

KS. Table 1 summarizes the chemical composition of the kidney

stones as determined by Fourier Transform InfraRed (FTIR) spec­

troscopy. Fig. 1 shows a photo of a Randall’s plaque attached to a

calculus made of whewellite. All the RP were found to be composed

of CA by FTIR.

The KS sample N17105, which is mainly composed of CA, which

also is the primary chemical form in RP, was chosen as a reference

sample in the present study.

Methods

An  FTIR spectrometer Vector 22 (Bruker Spectrospin, Wissem­

bourg, France) was used according to the analytical procedure

previously described [28]. Data were collected in the absorption

mode between 4000 and 400 cm−1 with a resolution of 4 cm−1.

To obtain X­ray diffraction data on very small samples (such

as RP), a special device was used. Grazing incidence small­angle

Table  2

Zn  and  Sr levels  in  the selected  biological samples.

Samples  Zn level  (mg/g)  Sr  level  (mg/g)

CAinKSa 1539  ± 056  349  ±  181

RPonN4511 5056 ±  438  24 ±  2

RP  on  N7283 4677  ± 405  28.9  ±  0.3

RPonN10986  9948  ± 862  17  ±  2

RP  on  N20872 7939 ± 688  8  ±  1

RP  on  N26345  5559  ± 482  9  ±  1

RP  on  N29244  4572  ± 396  19.9  ±  0.2

RPonN42554  1903 ± 165  46  ±  1

a Average  level of Zn and Sr  measured  in  the  reference  sample (i.e.  KS  mainly

composed  of carbonated  apatite).

X­ray scattering analysis was performed at the Laboratoire de

Physique des Solides (Université Paris­Sud, France) with a  home­

built diffractometer using copper Ka radiation and a microfocus

device. Description of the apparatus has been previously reported

by Chougnet et al. [29]. Diffraction patterns were recorded on

photo­sensitive image plates. After a 2D integration, classical �/2�­

diffracted intensity representations were obtained and compared

to the diffraction data collected for the CA reference kidney stone.

X­ray fluorescence experiments were performed on a RU­200B

rotating anode X­ray generator at the Laboratoire Pierre Süe at the

Centre d’Etudes Atomiques (LPS­CEA, Saclay, France). Runs were

made at 25 mA and 45 kV molybdenum Ka radiation with a  focal

spot size of 30 ×30 mm2 and a dwell time of several hundreds of

seconds with a germanium detector. In order to obtain an evalua­

tion of the quantity of Zn in the samples, X­ray fluorescence spectra

of a set of reference compounds made with a physical mixture of

ZnO and hydroxyapatite were collected.

We use a  program for X­fluorescence analysis developed at

the European Synchrotron Radiation Facility (ESRF), named PyMCA

[30]. First, on the NIST610 material reference and using Ca as inter­

nal reference, we found a relative error on the determination of

Zn concentration about 8.7% between the Nist value and the calcu­

lated one. And then, knowing the Ca concentration deduced from

C1, C2 and CA contents (Table 1), we fit the different spectra using

the same program and thus we obtain the new set of data for Zn

concentration in the samples.

Results  and discussion

The  Zn content of the different RP made of apatite and extracted

from KS made of calcium oxalate is gathered in Table 2. As we

can see, the Zn average level (in mg/g) measured in the dif­

ferent RP is 5665 ± 490 mg/g while the Zn level in CA stones

was 1059 ± 934 mg/g (p <  0.0001) [22]. No correlation was found

between the content of trace elements in RP and the chemical com­

position of the stone as given by FTIR. In spite of the high variability

of the Zn level in the biological specimens analysed, the amount of

Zn in RP appears dramatically increased by comparison with the

reference CA KS.

Table  1

Morphological  type  and composition of the  seven  human  kidney stones  selected  for  the  study.

Samples Morphological type  Stone  composition

Reference  compound  N17105 IVa  89%  CA,  6% C2, 3% C1, 2% Prot

N4511 IIb,  Ia,  IVa 55%  C1,  39%  C2,  6% CA

N7283 Ia,  IIb 80%  C1,  12%  C2, 4% CA, 2%  ACCP,  2%  Prot

N10986  Ia,  IIb 86%  C1,  11%  C2,  2% CA,  1%  Prot

N20872 Ia,  IIb,  IVa 55%  C1,  40%  C2, 3%CA, 2% Prot

N26345 Ia, IIb 55% C1,  42%  C2,  2% CA,  1%  Prot

N29244 Ia,  IIb 84%  C1,  11%  C2,  3% CA,  2%  Prot

N42554 Ia, IIb 60%  C1,  35%  C2, 3% CA, 2%  Prot

CA,  carbonated  calcium  hydroxylapatite;  Prot, protein;  C1, whewellite; C2,  weddellite;  ACCP,  amorphous carbonated  calcium  phosphate.



Fig.  2. Typical  X­ray fluorescence  spectra collected  for  a  Randall’s plaque (counting

time  7200s).

From a medical point of view, pathological calcification refers

to two very different entities. One is a concretion defined as a

deposition of crystalline material in excretory ducts (KS but also

gallstones, salivary stones, etc.) and the other one is referred to

as ectopic calcification [31], defined as an inappropriate biomin­

eralisation occurring in  soft tissue (which can be related to severe

pathologies like mammary or testicular cancer). Interestingly, KS

belong to the first family while RP to the second one.

Fig.  2 shows that the different X­ray diffraction patterns

obtained for RP are clearly similar to the one collected on a KS made

of CA which is used as a reference sample in this study (sample

N17105). The selected RP samples are made mostly of nanocrys­

talline apatite exhibiting the usual anisotropy along the c axis.

These typical structural characteristics are associated in the X­ray

diagram with a relatively fine (0 0 2) diffraction peak (at 2� = 26◦)

and several poorly resolved lines constituting a  broad peak between

2� = 30◦ and 2� = 35◦.  These structural characteristics are shared

by numerous biological apatites [32,33] associated not only with

pathological calcifications but also with normal ones (bone, den­

tine, etc.).

Of  note, significant structural differences may exist among these

biological apatites regarding the amount of trace elements. X­ray

fluorescence [34] is a well established and powerful tool for ele­

mental analysis of biomaterials. One important reason for this

success is the fact that such experiments are non­destructive. This

technique has been successfully used in several investigations of

concretions such salivary [35] and gallbladder [36] stones.

In  Fig. 3 are shown the X­ray fluorescence emission spectra of

the different biological samples. The contribution of Ca2+ as well

as trace elements such as Zn2+, Pb2+ and Sr2+ are clearly identified

by the presence of two main peaks characteristic of each of these

elements. Considering our previous study dedicated to KS analy­

sis [22] and the experimental conditions (i.e. only photons with

energy higher than 3 KeV were detectable), we classified the differ­

ent elements found in the kidney stone specimen as follows: first,

the major element involved in the crystalline mineral phases, i.e.

Ca, then trace elements such as Sr (Sr is in the same column of the

periodic table as Ca), a group of transition elements including Fe,

Cu, and also Zn, and finally pathological elements such as Pb. Most

of the Fe present in KS probably results from residual blood at the

surface or within layers of the stones (see Fig. 4).

Regarding Sr2+, this element follows the same metabolic paths

as Ca2+. This property has been used to study calcium metabolism

in idiopathic hypercalciuria by a strontium oral load test [37].

Fig. 3. X­ray diffraction  diagrams collected  for  different  RP  and a  KS made  of apatite

used as  a biological apatite  reference  sample  in this  study.

Regarding their location in the body, most of the strontium cations

are present in bone. Interestingly, the Sr content of RP is sig­

nificantly lower than that observed in CA KS (21.8 ± 1.1 mg/g vs.

455 ± 364 mg/g, p <  0.0001) [22]. In the present study, we focused

on the analysis of the most abundant trace element, i.e. Zn. It  is

well known that Zn2+ is an essential cofactor for the activity of

more than 300 enzymes. This element is also involved in other bio­

Fig. 4. Typical  X­ray  fluorescence spectra collected  for  RP  and calibration  com­

pound NIST610.  For RP,  we  can  clearly  see  the contribution  of Ca (EKa = 3691  eV,

EKb  = 4012  eV),  Zn (EKa =  8638  eV,  EKb  =  9572  eV),  Pb  (ELa  = 10,551  eV,

ELb = 12,613 eV)  and  Sr  (EKa = 14,165  eV,  EKb = 15,835  eV). *Peaks  corresponding

to  absorption  by the germanium  detector  of  the  Compton  and  Mo  Ka elastic  peak.



Table  3

Amount  of Zn, Sr  and Pb oligoelements  in  kidney stones,  kidney  tissue  and  urine.

Zn (mg/g)  Sr  (mg/g)  Pb  (mg/g)

CAKSa 1059  ± 1056  349  ± 181  62  ±  39

RP 5665  ± 490* 22  ± 13* NA

Kidney  tissueb 15–32  0.04–0.12  0.1–0.4

Urineb 0.002–0.1  0.2  0.012–0.030

Urinec 0.3  ± 0.2  0.14  ± 0.076 0.0013  ± 0.014

NA  = not  available.
a [22].
b [5]  (values  are  ranges  observed  in large  populations).
c [37].
* p  < 0.0001  vs. CAKS.

logical functions such as nucleic acid metabolism, maintenance of

membrane structure and function, hormonal activity, as well as

biomineralisation. The body of adult normally contains approxi­

mately 2.2 g of Zn2+.  More precisely, Zn2+ is present in all the tissues

and fluid of the body. As shown in Table 3 [38], the zinc concen­

tration is around 15–30 mg/g in kidney tissue [39]. The biological

and physical–chemical maturation of biological apatites strongly

affects the uptake of trace elements. Forming crystals can easily

incorporate trace elements and freshly formed apatites (imma­

ture) are less stable and more reactive than older mature mineral

deposits [37]. In addition, the mineral density in freshly formed

areas is also lower than that of the older ones, thus favouring ionic

diffusion. Most elements will preferably react with newly formed

biological apatites and if these elements remain within the apatite

they will be distributed throughout the entire calcification because

mineralisation will progress gradually.

However, the ability for an element to enter the apatite struc­

ture is not a good enough reason to verify its location in the mineral

part of biological samples. Trace elements may also be associated

with organic matrix, blood or other biological fluids, and cell con­

stituents. Except for a very few elements like fluoride which are

known to modify the mineral characteristics, it seems very difficult

to determine if a particular trace element belongs to the mineral

or to the organic part as most of them do not have any detectable

effect on mineral structure and/or composition. Deproteinisation or

demineralisation treatments of specimen are not fully reliable tech­

niques to demonstrate the presence of trace elements in mineral or

organic parts as some artefacts are possible due to the alteration of

mineral or organic component reactivity, composition or structure

during these treatments.

From a chemical point of view, biological apatites have been

shown to easily incorporate various metals. This may be explained

by their nanometer size as well as the similarity between the ion

charge and size of Zn2+,  Sr2+ and Ca2+. Of note, different studies

[40–42] have shown that the incorporated cations (Mn2+, Sr2+, Pb2+

for example) substitute for calcium and have a tendency to occupy

preferentially the Ca(II) sites in the apatite structure (vs. the Ca(I)

sites).

As noticed by Li et al. [43], the substitution of the Zn2+ for Ca2+

cations causes a lower crystallinity of hydroxyapatite. Moreover, a

dose­dependence effect has been pointed out by Fujii et al. [44] and

Ren et al. [45]; the crystallites were smaller and of a more irregular

shape as Zn level increased. In addition, chemical analysis of the

cations and anions showed that Zn­containing apatites are cation

deficient (Ca + Zn)/P atomic ratio < 1.67). Mayer et al. synthesised

Zn­substituted carbonated hydroxyapatites and Cuisinier et al. [46]

pointed out that Zn2+ may influence the morphology, the size and

the structure (defects) of the crystals even if it is present at low

levels in carbonate apatite [47,45]. Even if the mode of incorpo­

ration of Zn in apatite is not clearly understood, type II calcium

sites in apatite have been shown to be the most favourable sites

for Zn entering the apatite structure. Zn occurs in tetrahedral coor­

dination and its incorporation is expected to lead to a decrease of

a­lattice parameter and increase of the c­lattice parameter of the

apatite [48,49].

Wu  et al. [50] showed that Zn2+ ions are potent inhibitors of

mineral formation in vitro. This result can be correlated to the

in vitro study of Legeros et al. [51] regarding the precipitation of var­

ious calcium phosphates of biological interest (amorphous calcium

phosphate (ACP), brushite, octacalcium phosphate (OCP), carbon­

ated apatite) from solutions including various concentrations of Zn.

They pointed out the dose­dependent effect of Zn2+ ions on the type

and amount of calcium phosphate phases precipitated: a promotion

of ACP or Zn­substituted b­tricalcium phosphate (b­TCP) formation

was observed for the higher Zn2+ ions level tested (0.5–2 mM/L)

whereas brushite, OCP and apatite formation was inhibited in the

presence of a level of Zn2+ ions in solution as low as 0.1 mM/L.

Legeros et al. [52] have also shown that Zn ions are among the

ions (carbonate, magnesium and pyrophosphate ions) that most

notably inhibit the crystallisation of apatite and brushite and that

the combination of some of these ions can have a synergistic effect

[50,51].

Zn2+ ions can also have an effect on the interaction between

the mineral and organic phases. Fujii et al. [43] showed that due to

favourable factors such as specific surface area, surface charge and

pore size distribution of Zn­containing nanocrystalline apatites, the

latter can selectively control the adsorption of b2­MG protein, a

pathological protein in blood plasma.

To compare the Zn level in RP and in kidney stone made of car­

bonate apatite (Table 3), reference compounds made of a physical

mixing of ZnO and synthetic industrial apatite have been prepared.

Their fluorescence emission was collected in the same conditions

than those used for the RP specimen analysis in order to deter­

mine the Zn amount in the selected samples. The observation of

a dramatically increased Zn content in RP by comparison with the

reference KS (Table 3) is highly suggestive of a relationship with an

inflammatory process. Of note, numerous works have highlighted

the link between zinc and inflammation [53–55].

Similarly to carbonated apatite­based kidney stones, RP exhibit

higher levels of these three elements than reported in urine and kid­

ney tissue. As observed in Table 3, the content of heavy elements is

about 30–1000 times higher in RP than in urine or in kidney tissue.

As a consequence, it cannot be asserted that trace elements may

play a  significant role in the RP formation. As previously reported

[17], the spatial distribution of trace elements inside kidney stones

was homogeneous. Thus the hypothesis of a passive capture of trace

elements by kidney stones was finally more appropriate than a cat­

alytic effect. At this step of discussion, our results from RP lead to a

similar explanation regarding the presence of trace elements. How­

ever, we cannot confirm by our analysis that trace elements are

homogeneously distributed within RP as observed in KS.

A  possible way to answer this question should be based on the

mapping of trace elements performed on RP obtained from kidney

papilla by urological procedures. Already, we have performed an ex

vivo structural investigation in order to precise the chemical nature

of the RP positioned on the kidney [56].

One obvious limitation of our study is the small number of speci­

mens investigated. Also, further studies, including histological ones

and the use of biomarkers of inflammation, are needed to bet­

ter clarify the role of Zn in RP formation and to understand the

mechanisms involved in the genesis of RP.

Conclusion

X­ray fluorescence was used to investigate the possible role of

trace elements in the genesis of RP. The nature and the content of

the trace elements were obtained through X­ray fluorescence. This



set of data thus opens up an interesting possibility for research

in urology using X­ray­based analysis techniques related either to

laboratory set up or synchrotron radiation facilities. The complete

set of data shows that the levels of Zn are significantly increased in

carbapatite of RP by comparison to carbapatite in kidney stones.

Our results suggest that calcified deposits within the medullar

interstitium, despite their high occurrence, are a pathological

process.
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