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‘‘Tunable’’ fluids such as magnetorheological ~MR! and electrorheological ~ER! fluids are comprised of

paramagnetic or dielectric particles suspended in a low-viscosity liquid. Upon the application of a magnetic or

electric field, these fluids display a dramatic, reversible, and rapid increase of the viscosity. This change in

viscosity can, in fact, be tuned by varying the applied field, hence the name ‘‘tunable fluids.’’ This effect is due

to longitudinal aggregation of the particles into chains in the direction of the applied field and the subsequent

lateral aggregation into larger semisolid domains. A recent theoretical model by Halsey and Toor ~HT! ex-

plains chain aggregation in dipolar fluids by a fluctuation-mediated long-range interaction between chains and

predicts that this interaction will be equally efficient at all applied fields. This paper describes video-

microscopy observations of long, isolated magnetic chains that test HT theory. The measurements show that,

in contrast to the HT theory, chain aggregation occurs more efficiently at higher magnetic field strength (H0)

and that this efficiency scales as H 0
1/2. Our experiments also yield the steady-state and time-dependent fluc-

tuation spectra C(x ,x8)[^[h(x)2h(x8)]2&1/2 and C(x ,x8,t ,t8)[^[h(x ,t)2h(x8,t8)]2&1/2 for the instanta-

neous deviation h(x ,t) from an axis parallel to the field direction to a point x on the chain. Results show that

the steady-state fluctuation growth is similar to a biased random walk with respect to the interspacing ux2x8u
along the chain, C(x ,x8)'ux2x8ua, with a roughness exponent a50.5360.02. This result is partially con-

firmed by Monte Carlo simulations. Time-dependent results also show that chain relaxation is slowed down

with respect to classical Brownian diffusion due to the magnetic chain connectivity, C(x ,x8,t ,t8)'ut2t8ub,
with a growth exponent b50.3560.05,

1
2. All data can be collapsed onto a single curve according to

C(x ,x8,t ,t8)'ux2x8uac(ut2t8u/ux2x8uz), with a dynamic exponent z5a/b>1.42.

@S1063-651X~96!13911-8#

PACS number~s!: 47.50.1d, 83.80.Gv, 83.20.Jp

I. INTRODUCTION

Over the past decade, a great deal of attention has been

focused on the development of a new class of fluids, termed
‘‘tunable’’ fluids @1,2#. Electrorheological ~ER! and magne-
torheological ~MR! fluids belong to this class. These fluids
offer the promise of fast-response devices, which would ef-
ficiently interface mechanical components with electronic
controls. Advantages of such devices include fast switching
speed, miniaturization, and continuously variable control.
The inherent value of these materials lies in their ability to
quickly and reversibly change from a liquidlike state to a
semisolid state when subjected to an electric or magnetic
field, with a response time on the order of a few milliseconds
@3#. This rapid ‘‘tunable’’ phase transition induces a rapid
and drastic increase of the fluid viscosity @4#.

ER fluids are comprised of fine dielectric particles im-
mersed in a medium of different dielectric constant ~i.e., sili-
cone oil, water! @3#. Due to particle chaining in the direction
of the applied electric field, the fluid undergoes a change in
viscosity @3,4#. The development of ER fluids dates back to
the 1940s, with the original work by Winslow @5#. The sys-
tem used was comprised of an ER fluid based on dispersed,
moist silica gel. Winslow observed that, upon application of
an electric field, particles suspended in oil formed fibrous

structures aligned with the field. In addition, working with

field strengths on the order of 3 kV/mm, he determined that

the shear stress [t(E)2t(0)] was dependent on the square

of the applied voltage. Winslow postulated many applica-

tions of ER fluids and described their use in clutches, brakes,
and valves @3#.

After a brief period of intense interest, work in the field
dwindled for almost 30 years. The next extensive work was
carried out by Klass and Martinek @6,7#, who reported their
results from ER fluids comprised of silica and calcium titan-
ate. In two landmark papers @6,7#, these authors described the
t(E)2g interdependence and how shear stress ~t! is ef-
fected by several variables such as electric field strength (E),
frequency ( f ), fluid composition ~w!, temperature (T), and
shear rate ~ġ!. Klass and Martinek @7# also presented bulk
conductance ~s! measurements of the fluid as a whole and
the consequent power demand of these typical ER systems
under use.

Our work focuses on the magnetic analogs of ER fluids,
which are termed magnetorheological fluids ~MR fluids!.
Similar to ER fluids in many respects, MR fluids exhibit
several key differences, among which are the absence of
charge, higher strength, better stability over broader tempera-
ture range, and less stringent manufacturing requirements
@1#. In addition, MR fluids are experimentally easier to work
with as several potential difficulties are avoided such as elec-
trode polarization and direct contact with the fluid. MR flu-
ids, therefore, constitute model ‘‘tunable’’ fluids with prop-*Author to whom correspondence should be addressed.
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erties similar to ER fluids but with reduced potential
experimental artifacts. Moreover, MR fluids are not affected
by chemical impurities normally encountered during manu-
facturing and the raw materials are nontoxic and environ-
mentally safe. Despite these advantages, there is currently no
large scale fabrication of mechanical devices using MR flu-
ids as the tribological properties have yet to be well charac-
terized @8#.

Despite all the interest in ER fluids, surprisingly few stud-
ies have been performed on MR fluids. This is difficult to
reconcile with the advantages that MR fluids present. MR
fluids, as mentioned, are the true magnetic analogs of ER
fluids. They are not ferrofluids or magnetic liquids, which are
typically made of nanoparticles and used for applications
such as hermetic sealing; instead, MR fluids are generally
comprised of magnetizable submicrometer particles sus-
pended in a liquid medium such as water or oil @1#. These
paramagnetic particles ~no permanent dipole! have recently
found a wide range of applications such as separating agents
for biopolymers and cells @9# and for the micromanipulation
of individual biological macromolecules @10#. MR fluids dis-
play the viscosity of a concentrated colloidal suspension in
the absence of a magnetic field; under a magnetic field, they
exhibit shear-thinning characteristics and are usually defined
in terms of a Bingham plastic model @4#. Halsey and Toor
@11,12# proposed a comprehensive theory to model the lat-
eral chain aggregation process for MR and ER fluids.

The present work develops a link between the micro-
scopic structure of these fluids and their bulk properties. Pre-
vious works suggest that lateral chain aggregation into col-
umns via attractive dipolar interaction is the principal cause
of the enhanced viscosity effects @13–30#. Our goal is to help
uncover the mechanism by which two chains far apart can
interact. It is assumed that the combined effects of direct
dipole-dipole interaction and thermal-fluctuation-mediated
long-range magnetic interactions govern chain interactions
and, therefore, the kinetics of chain aggregation. This work
reports comprehensive video-microscopy experiments and
preliminary numerical studies of single chain dynamics.

II. THEORETICAL BACKGROUND

A. Introduction

Upon the application of an external magnetic field strong
enough to overcome the random thermal forces ~or Brownian
forces!, the interaction between induced dipoles in each of
the particles causes them to aggregate into chains. Chaining
of paramagnetic particles via anisotropic dipole-dipole inter-
actions is well understood: the dipole-dipole interaction po-
tential between two particles @23#,

U~r ,u !5

~m2/4pm0!~123 cos2u !

r3
~1!

promotes linear aggregation of neighboring Brownian par-
ticles in the field direction as long as the angle u between the
line joining their centers and the direction of the field is
smaller than arccos~1/)!. Here, m54pa3m0xH0/3 is the
induced magnetic dipole moment of a particle. Under typical
experimental conditions, this linear particle aggregation
takes place extremely rapidly ~less than 1 s!. This competi-

tion between the thermal forces and the dipole-dipole forces
can be characterized by a single dimensionless parameter, l,
given by @23#

l5

pm0x
2H0

2a3

9kBT
. ~2!

Here, l describes the ratio between the competing dipole-
dipole energy and thermal disordering energy and is obtained
by equating the dipole-dipole interaction energy of two par-
ticles in contact ~1! to kBT .

U~r52a ,u5p !/kBT52l . ~3!

The denominator in Eq. ~2! describes the thermal disorder-
ing, where kB is the Boltzmann constant and T is the abso-
lute temperature. The numerator in Eq. ~2! describes the
dipole-dipole interaction energy, where m0 is the magnetic
permeability of the vacuum, x is the magnetic susceptibility
of the paramagnetic particles, H0 is the applied magnetic
field, and a is the particle radius. For a system consisting of
two particles, the critical value of l for which the particles
aggregate is exactly lc51. In a system comprised of many
particles, as in a chain, one expects lc,1.

Figure 1 shows two typical series of images of different
realizations of a fluctuating magnetic chain when subjected
to different magnetic field strengths. When l53, the mag-
netic particles are connected into a long chain which exhibits
thermal fluctuations larger than in the case l576, for which
the magnetic chain behaves like a rigid rod.

FIG. 1. Video-microscopy snapshots of the thermal fluctuations

of a chain comprised of magnetic particles. The magnetic field is

applied anisotropically in the chain direction. ~a! Chain is ‘‘stiff’’

under a strong magnetic field. Dipole-dipole forces dominate. ~b!

Chain exhibits larger thermal fluctuations under a weak magnetic

field.



In contrast to linear-chain formation, the subsequent slow
lateral column formation ~chain-to-chain aggregation! is only
poorly understood @11,12#. Chain aggregation dominates the
structural dynamics of MR and ER fluids at long times and,
therefore, governs the long time rheology @4#. Chain aggre-
gation into columnar domains also gives rise to the large
yield stress and shear-thinning viscosity displayed by both
MR and ER fluids @4#. When chain aggregation occurs, elon-
gated domains ~or columns! aligned in the field direction are
formed. These columnar domains are made of a concentrated
solidlike material, which hinders the fluid flow, hence in-
creasing the effective fluid viscosity @4#. The length of the
chains formed is governed by the magnetic field strength and
concentration of particles.

Halsey and Toor ~HT! @11,12# have recently offered an
explanation for the long-range interaction between magnetic
chains and their subsequent lateral aggregation. These au-
thors describe aggregation by an effective long-range cou-
pling between long wavelength thermal fluctuations of
neighboring dipolar chains. If thermal fluctuations are ne-
glected, the transverse magnetic field from the chain decays
approximately as exp(2r/a), where a is the particle radius
and r is the distance between the dipolar chain and the ob-
servation point. Thus, ‘‘stiff’’ chains do not interact strongly
if they are separated by a distance greater than their interpar-
ticle spacing, a . However, a one-dimensional object such as
a dipolar chain imbedded in a three-dimensional space al-
ways displays large thermal fluctuations. In this more realis-
tic case, the root mean square of the fluctuating magnetic
field normal to the chain decreases as a power law @11#

A^H2&'
AkTa2

r2
, ~4!

which should yield a long-range, fluctuation-induced dipolar
interaction between chains. The resulting fluctuating field
can generate either an attractive or a repulsive interaction
between chains. It is remarkable that this fluctuation-
mediated magnetic field and the associated interaction are
independent of the applied field, H0 . The HT model @11#
explains this result by an exact compensation effect between
a quadratic decrease of the magnitude of the fluctuations and
a corresponding quadratic increase of the dipole-dipole inter-
action potential with the field strength. Therefore, this
fluctuation-induced long-range interaction should exactly
compensate the shorter-range dipolar interaction ~1! for any
field strength. No experiment @3,6# had yet directly supported
or rejected the HT model of fluctuation-mediated chain in-
teraction.

B. TIME AND SPACE CORRELATION FUNCTIONS

In order to test the HT model @11# and characterize the
thermal fluctuations of a single dipolar chain, one introduces
two types of ensemble-averaged correlation functions:

C~x ,x8![A^@h~x !2h~x8!#2&, ~5!

C~x ,x8,t ,t8![A^@h~x ,t !2h~x8,t8#2&. ~6!

Here, h(x ,t) is the local, instantaneous deflection of the
probed magnetic chain with respect to an axis placed parallel

to the field direction at an arbitrary origin. Figure 2 illustrates
how h(x) is defined as the distance from an arbitrary axis
oriented parallel to the field direction to a point x of the
chain. The ^•••& symbol in Eqs. ~5! and ~6! defines ensemble
averages of independent realizations of a fluctuating chain.
Equation ~5! determines the static height-height correlation
along the chain. This correlation function describes the
steady-state, equilibrium spatial ‘‘roughness’’ of the one-
dimensional solid chain. Equation ~6! determines the time-
dependent height-height correlation along the chain and de-
scribes the relaxation dynamics of the chain. C(x ,x8) and
C(x ,x8,t ,t8) describe how fast two points along a chain be-
come decorrelated.

The dipolar Hamiltonian describing the chain structure in
a magnetic field is time independent; therefore all the asso-
ciated ensemble averages are invariant under time transla-
tion. Similarly, due to the symmetry of the system, the chain
structure is invariant under spatial translation. A conse-
quence of this dual space and time invariance is that the
static and dynamic correlation functions ~5! and ~6! do not
depend on x , x8, t , and t8 individually, but on the differences
ux2x8u and ut2t8u. Hence,

C~x ,x8!5C~ ux2x8u!

and

C~x ,x8,t ,t8!5C~ ux2x8u,ut2t8u!. ~7!

To study the mechanism of lateral coalescence and test
the HT model @11#, the static and dynamic fluctuation spectra
of a dipolar chain composed of monodisperse particles are
measured as a function of the control parameters of the sys-
tem such as field strength and suspension concentration.
Video-microscopy measurements of the chain-fluctuation
spectra provide both a direct test of HT theory @11# and a

FIG. 2. Schematic of a single-chain image analysis. Image of a

chain is binarized and skeletonized. The pixel coordinates of the

skeletonized chain are recorded and used to calculate the correlation

functions C(x ,x8) and C(x ,x8,t ,t8). Note that h(x) is the horizon-

tal coordinate in this schematic.



new insight into the problem of chain aggregation, especially
regarding the fluctuation dynamics of dipolar chains.

If we assume that the growth and steady-state fluctuation
spectra follow scaling power laws, we can write

C~x ,t !'tb for t!tx ~unsteady state!, ~8!

C~x ,t !'xa for t@tx ~steady state!, ~9!

tx'x
z. ~10!

Here, tx is the crossover time scale which delimitates the
initial growth regime of the fluctuations at short times
(t!tx), from the steady-state regime at long times (t@tx). a,
b, and z are the roughness exponent, the growth exponent,
and the dynamic exponent, respectively: a characterizes the
steady-state roughness of the one-dimensional magnetic
chain, b characterizes the initial stage of the relaxation of the
magnetic chain before the chain reaches a new steady state,
and z characterizes how fast the chain reaches this new
steady state. According to the HT model @11#, a5

1
2, which

can be obtained from the assumption of Gaussian indepen-
dent fluctuations. In writing Eqs. ~8!–~10!, the space and
time invariance of the chain structure and equilibrium dy-
namics have been used.

Two key assumptions underlie HT theory @11# and the
associated predictive Eq. ~4!: ~1! The static fluctuation spec-
trum of an individual dipolar chain is that of a directed ran-
dom walk; ~2! hydrodynamic interactions caused by the local
motion of the chained particles do not influence the long-
range interactions between chains. Using video-microscopy
measurements of a single fluctuating magnetic chain and
Monte Carlo simulations, we shall test these two assump-
tions.

III. MATERIALS

Aqueous suspensions of monodisperse paramagnetic par-
ticles purchased from Seradyn Inc. are used in this work. The
particles are spheres of polystyrene with 40% content of
magnetite ~Fe3O4! encapsulated by copolymerization. These
paramagnetic particles have a diameter of 2a50.902 mm, as
measured by quasielastic light scattering, and a magnetic
susceptibility x50.6660.09. The density of the original
aqueous suspension ~5% w/w solids in purified water! is 1.4
g/cm3 and the particles are stabilized with surfactant.

IV. MEASUREMENTS OF THE PLANAR SPECTRA

OF A SINGLE MAGNETIC CHAIN

We now describe the protocols used in the single-chain
dynamics experiments. Using video microscopy, two aspects
of chain fluctuation are examined: steady-state equilibrium
conformations and dynamic equilibrium conformations,
yielding C(x ,x8), C(x ,x8,t ,t8), and tx . Both studies employ
a similar experimental setup, but different image acquisition
schemes. A sample of the magnetic suspension of spherical
magnetizable particles is introduced into a capillary tube
with a rectangular cross section which is then sealed and
placed on a microslide. The microslide is placed between
two coaxial Helmholtz coils which can generate a homoge-
neous magnetic field H0 of up to 54 G. This assembly is

placed on a microscope stage ~Zeiss Axiovert inverted mi-

croscope! and images are captured via a solid-state charge-

coupled device video camera ~COHU, Inc.! with fixed inten-
sity gain. Image analysis software based on NIH-Image

~public-domain software developed at the National Institutes
of Health! has been custom designed to process the large

quantity of images produced and calculate the fluctuation

spectrum profiles, as outlined in Eqs. ~5! and ~6!.
The exponent a, which characterizes the steady-state

roughness, is calculated from Eq. ~5! using 300 images from
independent steady-state conformations of a single, one-
particle-thick magnetic chain. The images are acquired with
a sufficiently large time elapsed between frames to assure
that the chain position recorded in one frame is independent
of that in the previous frame. Since it takes 4.6 s for a par-
ticle to diffuse its own diameter, an elapsed time about twice
the self-diffusion time ~about 8 s! was selected. Here, D and
h > 1 cP are the self-diffusion constant of one particle sus-
pended in water and the viscosity of the suspending fluid at
room temperature. Using the parameters provided previously
for a , x, and H0 in Eq. ~2!, one finds that l has an upper
limit of 78. The suspending fluid used is either water or
binary solutions of glycerol and water, depending on the de-
sired suspension viscosity. The growth, roughness, and dy-
namic exponents are calculated from measurements of the
spectra C(x ,x8) and C(x ,x8,t ,t8) using Eqs. ~5! and ~6!.

Image processing follows a three-step protocol ~Fig. 2!.
The 256 pixel, gray-scale image of a chain is first binarized
~pixels are reduced to either black or white!. This image is
then skeletonized ~converted to a one-pixel-thick chain via a
self-consistent ‘‘pruning’’ procedure!. Finally, the pixel co-
ordinates „x ,h(x ,t)… of points along the chain are obtained.
This image processing procedure greatly enhances the spatial
resolution of the positions of the spheres that compose a
chain. The correlation functions C(x ,x8) and C(x ,x8,t ,t8)
are calculated using the length and time invariance properties
of the problem. Since the quality of the statistics depends
largely on the number of data samples collected, this quality
of the statistics decreases rapidly with increasing values of
ux2x8u. The long length-scale structure of a fluctuating
chain is resolved using large collections of images of inde-
pendent chain configurations.

To measure the fluctuation spectrum of an isolated dipolar
chain, video-microscopy experiments using suspensions of
low volume fractions w,0.08% are conducted. Upon appli-
cation of a magnetic field on such a dilute suspension, well-
separated, one-particle-thick chains are generated and lateral
chain interaction is minimized as the interspacing between
chains is relatively large ~30–60 particle radii!.

Chains of between 30 and 120 particles are formed at high
magnetic field (l.lc), which is subsequently decreased to
allow for the probed chain to fluctuate. Images of a single
chain are recorded, analyzed, and the correlation functions
are calculated. The formation of chains follows a typical pat-
tern: in the absence of a magnetic field, the suspended par-
ticles move about randomly due to thermal forces; upon the
application of a strong magnetic field, dipole-dipole forces
dominate and particles begin to aggregate forming growing
chains; this growth continues until the chains approach a
constant length, which is dependent on the particle concen-
tration and magnetic field strength. The chains undulate due



to random thermal fluctuations with a magnitude decreasing
with increasing magnetic field strength.

In order to obtain meaningful statistics, many images of
independent realizations of a fluctuating chain need to be
captured. The steady-state experiments utilize 300 frames
while the dynamic experiments use 500 frames. In order to
obtain meaningful statistics, more images are necessary to
monitor the roughness dynamics. Our video-microscopy sys-
tem is limited to the video rate of image capture ~20 Hz!. It
is possible to improve the time resolution in the dynamic
experiments by using a more viscous suspending fluid com-
prised of a glycerol-water mixture. This has the effect of
slowing down the chain fluctuations, which results in better
image sampling.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The dynamic, growth, and roughness exponents are cal-
culated as a function of field strength using Eqs. ~5! and ~6!.
From Fig. 3, we find

C~x ,x8!'ux2x8ua with a50.5360.02 ~ ut2t8u@tx!,
~11!

which suggests that the fluctuations grow in a fashion similar
to that of a biased random walk: C(x ,x8)'ux2x8u1/2. Figure
3 shows the fluctuation growth profile as a function of inter-
spacing distance between particles. Each curve represents an
experiment performed at a different magnetic field strength.
Notice that, as the magnetic field strength increases ~dipole-
dipole forces increase!, the size of the fluctuations decreases.
The limiting case, that of an infinitely strong field, would
show no fluctuations or a chain of particles which behaves
like a rigid rod. The exponent a was found to be independent
of the magnetic field strength.

The studies of the dynamic-equilibrium case yield a value
for b which describes the initial growth of chain fluctuations
as a function of time. Figure 4 yields

C~x ,x8,t ,t8!'ut2t8ub

with b50.3560.05 ~ ut2t8u!tx!.

~12!

In the purely diffusional case, this value would approach that
of Brownian diffusion, or b5

1
2. Figure 4 also reveals two

distinct phases of growth for the dynamic correlation func-
tion. These two phases can be partially explained by analogy
with a polymer Rouse chain. The Rouse model of relaxation
of a connected polymer chain @31# predicts that the root
mean square ~rms! displacement of a Rouse chain link grows
as t1/4 over time intervals smaller than the maximum relax-
ation time tx , and only for t.tx does it become proportional
to t1/2 as in the ordinary diffusion of a Brownian particle.
The results shown in Fig. 4 seem to support this idea, to the
extent that the growth exponent is smaller than 1

2 at times
smaller than tx .

The crossover time tx increases with ux2x8u/a because
larger length scales ux2x8u/a relax more slowly and, hence,
take longer to reach a steady-state fluctuation size. To com-
pute tx , we arbitrarily define a saturation time as the moment
at which C(x ,x8,t ,t8) reaches 90% of its steady-state value,

FIG. 3. Steady-state correlation function of a single magnetic

chain for three increasing magnetic field strengths. The inset shows

the log-log curve of Eq. ~5!, from which the exponent a can be

determined. An average of the three experiments yields a50.53

60.02. Only 20% of the data points are shown here.

FIG. 4. Dynamic correlation function of a single magnetic chain

for three increasing magnetic field strengths. Each curve represents

the correlation function for a different ux2x8u/a . The inset displays
the log-log curve of Eq. ~6!, from which the exponent b can be

determined. An average of the four data sets yields b50.3560.05,
1
2. Only 20% of the data points are shown here.

FIG. 5. Crossover time ~or saturation time! as a function of

ux2x8u/a . The linear fit of this curve yields tx'ux2x8uz with

z51.4160.18.



C(x ,x8). Figure 5 displays the crossover time ~or saturation
time! tx at which the one-dimensional magnetic line crosses
over from the behavior described by Eq. ~12! to that de-
scribed by Eq. ~11! as a function of ux2x8u/a . A linear fit of
the log-log plot of tx vs ux2x8u/a yields

tx'ux2x8uz with z51.4160.14. ~13!

We can summarize results ~11!–~13! by rescaling the dy-
namic correlation function C(x ,x8,t ,t8) with its saturated
value C(x ,x8) and the time difference ut2t8u by tx . Figure 6
collapses the data into a single curve. This result suggests
that we can write

C~x ,x8,t ,t8!

ux2x8ua
'cS ut2t8u

tx
D , ~14!

where c is a scaling function of the dimensionless time
ut2t8u/tx . We can rewrite this last equation as

C~x ,x8,t ,t8!'ux2x8uacS ut2t8u

tx
D . ~15!

Of course, c(u)'ub for u!1 and c(u)'const for u@1. In
view of this important result, we can recalculate what the
value of the dynamic exponent z should be. At the crossover
point,

C~x ,x8,t ,t8![C~ ux2x8u,ut2t8u!5C~ ux2x8u,tx!'tx
b.

At the same crossover point, C(ux2x8u,tx)'ux2x8ua.
Therefore, ux2x8ua't x

b, which according to Eq. ~10!, im-
plies the following scaling law for the nonindependent expo-
nents a, b, and z:

z5
a

b
>1.51, ~16!

in remarkable agreement with our experimental value ~13!.
Of course, the values of the dynamic exponents z and b that
describe the fluctuation dynamics of a single magnetic chain
should not necessarily compare with the kinetic exponents
that describe the domain growth in concentrated MR or ER
suspensions subject to the sudden inception of an electric @3#
or a magnetic field @23#. Note that we experimentally verified

that the growth, roughness, and dynamic exponents are inde-
pendent of the quiescent viscosity of the suspending fluid.

In order to find the scaling dependence of C(x ,x8) with
respect to l, we assume the relation

C~x ,x8!'
f ~ ux2x8u!

l« ~ ut2t8u@tx!, ~17!

where f is another scaling function of the argument ux2x8u.
Both sides of Eq. ~17! can be multiplied by l« and we can
collapse the correlation profiles to a ‘‘master’’ curve. The
value « which results in a good collapse of the correlation
profiles ~Fig. 7! is found to be «>0.25 or

C~x ,x8!'l2« with «50.2560.02. ~18!

Figures 7~a! and 7~b! display the correlation curves before
and after scaling of the correlation function by l0.25. As dis-
cussed next, this result has important implications.

According to the HT model @11#, long-range chain inter-
action is controlled by two factors: ~1! dipole-dipole interac-
tions and ~2! the long-range fluctuation-mediated transverse
magnetic field. On the one hand, the amplitude of the ther-
mal fluctuations is decreased as the applied magnetic field is
increased. By symmetry, the HT model @11# predicts that
C(x ,x8);1/l . On the other hand, the amplitude of the
dipole-dipole interaction potential increases as U(r ,u);l .
Therefore, according to the HT model @11#, this long-range

FIG. 6. Scaled correlation function for a single magnetic chain.

All data in Figs. 3 and 4 collapse onto a single curve, yielding

z5a/b . Only 5% of the data points are shown here.

FIG. 7. Collapse of the steady-state correlation functions into a

single curve by multiplying C(x ,x8) by l0.25. ~a! Steady-state cor-

relation function showing growth of correlation similar to a biased

random walk. ~b! A good universal curve is obtained after rescaling

the correlation functions with l0.25. Only 20% of the data points are

shown here.



interaction between chains is independent of the applied field
with the magnitude of interaction ;C(x ,x8)U(r ,u)
;l/l51. In contrast with the model, the experimental re-
sults imply that the dependence of these two interactions
with l does not exactly compensate and that the controlling
factor is the applied magnetic field. Our experimental results
suggest that the efficiency of the long-range chain interac-
tions scales as l/l0.255l0.75.

To verify this assertion, we generated long magnetic
chains following the usual protocol described earlier, and we
either reduced or increased the field strength by changing the
applied electric current. In most cases ~more than 90% of all
experiments!, we found that increasing the field strength and,
therefore increasing the dipole-dipole interaction potential,
was indeed more efficient in bringing initially isolated chains
together than decreasing the field strength, and therefore in-
creasing the size of thermal fluctuations. One possible expla-
nation for the discrepancy between the predictions of the HT
model and our experimental observations might simply be
due to the fact that this model assumed infinitely long dipolar
chains. This model applies for ER fluids for which the chains
span the gap between the conducting electrodes, which gen-
erate images dipoles. The resulting dipolar chains are effec-
tively infinite. In the case of MR fluids, the chains are not
infinite and the resulting finite chains act as interacting di-
poles at large length scales. Further theoretical work needs to
be done to understand the origin of the unexpected exponent,
C(x ,x8)'l2« with «50.2560.02. By symmetry, we would
expect C(x ,x8)'l21. This might imply that there must be
another energy scale entering the local interactions. Below,
we verify that this energy scale is not set by hydrodynamic
interactions.

VI. MONTE CARLO SIMULATIONS

A. Introduction

As discussed previously, chain formation in dipolar fluids
and the subsequent chain aggregation are caused by the mag-
netic interparticle interactions, which are responsible for the
unusual viscoelastic properties and the stability of the mag-
netic fluid. One way of probing these interparticle interac-
tions is through the use of molecular simulations. In this
work, we use Monte Carlo simulations to probe the spectrum
of chain fluctuation and allow for direct comparison with the
video-microscopy measurements.

The fundamental basis for the application of Monte Carlo
~MC! simulations to magnetic fluids has already been pre-
sented in detail by Chantrell et al. @32# and Menear, Brad-
bury, and Chantrell @33#. As in their simulations, our system
consists of a colloidal suspension of magnetizable particles,
which display only very small van der Waals forces. The
dipole-dipole energy of the particles is given by Eq. ~1!,
where u is the angle between the direction of the magnetic
field and the line of centers of the two particles and we
ignore higher order dipolar moments.

The Monte Carlo method used here is based on that pro-
posed by Metropolis in 1953 ~Allen and Tildesley @34#!. We
calculate the energy E(i) of the system of N particles with
coordinate vector x(i). The particles are then moved at ran-
dom to new coordinates x8(i) and the new energy E8(i) is
also calculated. Here, the index i represents the number of

the MC step and, during each move, the particles are re-
stricted to move within a sphere of size 6a .

If the energy difference DE5E8(i)2E(i) is negative, the
move is accepted and the particles keep their new coordi-
nates. If, instead, DE is positive, a random number X (0,X

,1) is generated and compared to exp(2DE/kBT). If
exp(2DE/kBT).X , the move is accepted. However, if
X.exp(2DE/kBT), the move is rejected and the particles
are returned to their original position. This procedure is re-
peated for all the N particles of a chain at each step and, after
a sufficiently large number of moves, the resulting confor-
mation represents a good picture of the system in equilib-
rium. Periodic boundary conditions are used here.

Our simulation scheme differs from previous works
@32,33# in that the initial state corresponds to a set of N
particles connected to each other in a rigid-rod-like configu-
ration and are subsequently subjected to a magnetic field of
desired strength, which allows the chain to relax and fluctu-
ate. Previous works @32,33# focused on the kinetics of chain
formation for which the appropriate initial state is a random
configuration of the set of N particles. We simulate the ther-
mal fluctuations of a single chain of variable length ~N532
particles to N5108 particles!, where all particles of the chain
are moved in each MC step; the motion of one particle at a
time is not sufficient to generate independent configurations
and therefore calculate the ensemble averages. The dimen-
sionless parameter l ~which is the ratio between the induced
dipole-dipole interactions and the thermal energy! and the
number of particles in the chain are the only parameters in
the MC simulation. The fluctuation spectra of the chains
were simulated using different magnetic field strengths and
chain lengths. The configurations generated by the MC simu-
lations were studied by calculating the same correlation
functions that were used to treat the experimental data @Eqs.
~5! and ~6!#. The results are presented in Figs. 8–11.

B. Results

In Fig. 8, we present the correlation function for a chain
of 64 particles, subjected to three different field strengths,
given by l50.2, 0.5, and 0.7. As can be seen from the plot,
the behavior observed is qualitatively the same as observed
from the experiments. From the log-log curves of C(x ,x8) vs

FIG. 8. Steady-state correlation function for a single chain ob-

tained by Monte Carlo simulations. This simulation used 64 par-

ticles and 400 configurations. Each curve represents a simulation

performed at a different magnetic field strength. Only 20% of the

data points are shown here.



ux2x8u/a ~see Fig. 9!, we obtain the roughness exponent
a50.3960.03. Figure 10 presents the same analysis for a
chain of 108 particles and subjected to magnetic field
strengths given by l50.5, 0.7, and 1. The behavior again is
qualitatively the same as seen before and this time the expo-
nent obtained from Fig. 11 is a50.4460.02. Effects of the
length of the chain can be noticed from the previous results:
when the size of the chain in the simulation is increased, the
‘‘roughness’’ exponent increases, approaching the value
found in the experiments.

We observe a saturation effect of the correlation function
for large length scales. The onset of this saturation can be
viewed as the distance after which there is no effect of the
fluctuations of the particles on each other. In all cases pre-
sented here, the number of configurations used to calculate
the ensemble averages was 400 and the total number of MC
steps during the simulations were of the order 106, which is
required to ensure that the configurations used for the aver-
aging are independent from each other. Steady-state height-
height correlation functions C(x ,x8) were calculated as a
function of l and rescaled ~not shown here! as C(x ,x8)/l«.
The collapse of the curves onto a single scaling curve is
obtained for «50.2760.02, in agreement with our video-
microscopy measurements. Since these Monte Carlo simula-

tions ignore hydrodynamic interactions, hydrodynamic inter-

actions do not set a new energy scale, which could explain

the unexpected exponent «.
We also probe the aggregation of chains by simulating the

behavior of two chains that are initially far apart. The same

procedure described previously is used in this case but, even

after a sufficiently large number of steps, the two chains are

still away from each other and we are not able to reproduce

the experimental observations. The fact that the dipole-

dipole interactions alone cannot account for the chain aggre-

gation leads us to believe that long-range hydrodynamic ef-
fects are important and should be taken into account when
simulating the chain aggregation. Molecular dynamics stud-
ies of the fluctuation dynamics of magnetic chains are under-
way and these simulations will include hydrodynamic ef-
fects.

VII. CONCLUSIONS

‘‘Tunable’’ fluids have generated acute interest due to the
possibility of their use in fast-response mechanical devices.
This paper presented video-microscopy observations and
MC simulations, which characterized the steady-state and re-
laxation spectra of a single magnetic chain. This study shows
that steady-state, single-chain fluctuations behave in a fash-
ion similar to that of a biased random walk with respect to
interspacing distance along the chain, C(x ,x8)'ux2x8ua

with a50.5360.02. The numerical results agree qualita-
tively and semiquantitatively with the experimental results
for the single-chain steady-state fluctuations. The studies of
the dynamic fluctuation show that single-chain time-
dependent fluctuations grow slower than diffusion due to the
fact that the particles are part of a connected object and this
connectivity reduces the freedom of movement. The initial
growth of the chain roughening ~or relaxation at early times!
is characterized by a growth exponent b such that
C(x ,x8,t ,t8)'ut2t8ub with b50.3560.05. All data can be
collapsed onto a single curve according to C(x ,x8,t ,t8)
'ux2x8uac(ut2t8u/ux2x8uz) with a>0.53, z>1.41, and
b5a/z>0.35.

Our experimental results also indicate that long-range
fluctuation-mediated interaction and the shorter-range
dipole-dipole interaction are not in true compensation: the

FIG. 9. Log-log curve of Eq. ~5! for the simulation of 64 par-

ticles. The roughness exponent is found to be a50.3160.03. Only

20% of the data points are shown here.

FIG. 10. Steady-state correlation function for a single chain

from the Monte Carlo simulations. This simulation used 108 par-

ticles and 400 configurations. Each curve represents a simulation

performed at a different magnetic field strength. Only 20% of the

data points are shown here.

FIG. 11. Log-log curve of Eq. ~5! for the simulation of 108

particles. The roughness exponent is found to be a50.3960.02.

Only 20% of the data points are shown here.



applied magnetic field is the dominating factor in the mecha-
nism of chain interaction.
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