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1Surface du Verre et Interfaces, UMR CNRS/St-Gobain n◦ 125, 39 Quai Lucien Lefranc,
F-93303 Aubervilliers Cedex, France
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Abstract. Tracer dispersion is studied in an open crack where the two rough crack faces have been

translated with respect to each other. The different dispersion regimes encountered in rough-wall

Hele-Shaw cell are first introduced, and the geometric dispersion regime in the case of self-affine

crack surfaces is treated in detail through perturbation analysis. It is shown that a line of tracer is

progressively wrinkled into a self-affine curve with an exponent equal to that of the crack surface.

This leads to a global dispersion coefficient which depends on the distance from the tracer inlet, but

which is still proportional to the mean advection velocity. Besides, the tracer front is subjected to a

local dispersion (as could be revealed by point measurements or echo experiments) very different

from the global one. The expression of this anomalous local dispersion coefficient is also obtained.
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1. Introduction

Tracer dispersion in flows between parallel rough walls displays an amazingly rich

variety of scaling regimes. Even in a perfect Hele-Shaw cell (parallel plate geometry

with a simple plane Poiseuille flow), the vanishing of the fluid velocity at the wall

induces a large dispersion at high Péclet numbers, as shown theoretically by Taylor

[1, 2]. Taking into account aperture fluctuations in a Hele-Shaw cell gives rise to

several different regimes, each of thembeing characterized by a specific scaling of the

dispersion coefficient with the Péclet number. The roughness of the walls of the Hele-

Shaw cell have been shown to play a significant role in dispersion, experimentally

and numerically [3–6], in particular at low velocity. The aim of the present study

is to analyze the peculiar dispersion behavior induced by the multiplicity of length

scales of the crack surface roughness observed experimentally. Indeed, it has been

shown that a self-affine behavior provided an accurate statistical description of the

topography of crack surfaces. In a typical fault, the two walls bounding the flow are

‘conjugated’, and can be matched by a mere translation. The aperture field can thus

be simply characterized by a few physical parameters. Such a case is referred to as a

model for rock ‘joints’. It will be shown that one of the many regimes encountered

in dispersion is strongly affected by such a crack geometry, and results in interesting

size effects.
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The paper is organized as follows. In the second section, the different regimes

classically encountered in Hele-Shaw flow with an imperfect geometry are quickly

reviewed using scaling arguments. However, only the case of a single scale of hetero-

geneity will be considered and aperture fluctuations above this scale will be assumed

to be decorrelated. The cross-over scales are discussed in terms of the Péclet number

constructed on the mean aperture. In the third section, the dispersion in a joint model

in the so-called ‘geometric dispersion regime’ is analyzed. This regime is the most

important one in practice. The dispersion coefficient describes the wrinkling of the

initially straight tracer line, which is shown to develop progressively a self-affine

geometry with an upper scale cut-off proportional to the traveled distance. Finally,

in the fourth section, the intrinsic widening of the tracer line is discussed. The latter

can be measured from point measurements of the dispersion process. The conclusion

summarizes the main results obtained.

2. Different Dispersion Regimes in an Imperfect Hele-Shaw Cell

Tracer dispersion in a Hele-Shaw flow displays an interesting scaling effect with the

flow velocity which has been first theoretically analyzed by Taylor [1]. Although this

case can be solved exactly, a simple scaling argument is proposed which provides the

correct answer up to numerical factors. The discussion will be extended to the case of

inhomogeneous flow. The aim is here, more to clarify the different scaling regimes

than to provide exact estimates. Therefore, in the sequel, all pure numbers which

come as prefactors are omitted. Thus, the equality signs appearing in the following

subsection are implicitly to be understood as ‘proportional to’. It should, however,

be underlined that prefactors may play an important role in practice. For instance, in

the case of Taylor dispersion to be detailed below, the following exact result can be

established [7]:

D =
1

210

U 2h2

Dm

+ Dm, (1)

where U is the mean advective velocity, h the aperture, Dm the molecular diffusion

coefficient. In the scaling arguments, the pure number 1/210 is treated as 1! The

important message here is to retain the dependence of the dispersion coefficient

on crucial parameters, such as mean and standard deviation of velocity, molecular

diffusion coefficients, correlation lengths, etc.

2.1. taylor dispersion

Let us consider a Hele-Shaw cell of aperture h, in which a uniform Poiseuille flow

is established along the x direction. The mean velocity along the x-axis is called U

so that the velocity across the height z is written

u(z) = (3U/2)(1− 4z2/h2) . (2)



Let us introduce Dm the molecular diffusion coefficient of the tracer. The reason for

the anomalous dispersion is due to the vanishing of the velocity near the wall, leading

to a divergent advection time in the absence of diffusion.

To clarify this point, it is useful to consider the following limit of infinite Péclet

number (i.e. Dm = 0 or pure advection). A tracer particle launched at the origin (in

particular, in themiddle plane of the cell) will be convected over a distanceL in a time

T (0) = 2L/3U . If the particle is launched for a point at a distance z above the origin,

the time needed to be convected by the same distance is T (z) = T (0)(1−4z2/h2)−1.

Therefore, for a uniform distribution of tracer across the cell height, the transit time

distribution for a distance L will be a power-law decaying in time as p(T ) ∝ T −2.

When Dm is zero, p(T ) has thus an infinite variance and, therefore, the dispersion

coefficient is infinite. However, as soon as Dm is nonzero, the time distribution

acquires a natural cut-off given by the time needed for a particle to diffuse away

from the wall. This truncation time τ is a diffusion time over a characteristic distance

h, i.e.

τ =
h2

Dm

. (3)

Within the time τ needed to escape from the wall, a tracer located close to the

center of the cell will travel over a distance proportional to 1x = Uτ . Introducing

the dispersion coefficient D, which describes the spreading of the tracer for large

times, t , as a distance proportional to
√

Dt , it suffices to apply this relation at the

largest (limiting) time encountered in the process, τ , above which no correlation is

preserved on the tracer trajectory, and thus, dispersion is normal and D assumes a

constant value. Hence, Dτ = 1x2 or

D = U 2τ =
U 2h2

Dm

. (4)

Introducing the Péclet number Pe ≡ Uh/Dm over the scale h, the so-called ‘Taylor’

regime (label ‘T’) is obtained

D

Dm

= Pe2. (5)

In the previous argument a uniform distribution of tracer across the aperture was

considered. It should be pointed out, however, that other boundary conditions may

be more appropriate to model an actual dispersion experiment.

This description in fact applies for Pe ≫ 1. For lower Péclet numbers, molecular

diffusion gives a larger spreading so that D ≈ Dm at small velocities. The scaling

regimes can be summarised as

D

Dm

=
{
O(Pe0) for Uh/Dm ≪ 1,

O(Pe2) for Uh/Dm ≫ 1.
(6)



2.2. geometrical dispersion

Let us now introduce some inhomogeneities in the flow. The aperture of the Hele-

Shaw cell is now modulated randomly with a correlation function of the aperture,

which decays over a characteristic length scale ξ . The effect of anisotropy will be

discussed in a following section. For the present discussion, ξ denotes essentially

a correlation length for the velocity along the flow direction, and thus is written a

subscript ξ‖. Only small departures from the Hele-Shaw geometry will be considered

so that, locally, a Poiseuille flow across the thickness is preserved. This so-called

Reynolds approximation implies that the cell aperture fluctuations are locally small

in magnitude and the modulations of cell thickness occur at large wavelengths com-

pared to h. Such a geometry leads to small relative fluctuations of the aperture field

δh/h ≪ 1which is similar to aweak disorder permeability field approximation [8, 9].

A second condition is mandatory for the geometrical dispersion regime to occur. The

velocity correlation lengthmust be larger than themean aperture: ξ‖ ≫ h. In practice,

the second requirement is the most restrictive.

The aperture fluctuations give rise to velocity fluctuations called δU . It should

be understood that the Stokes flow hypothesis implies that δU is proportional to

U . Therefore, a dimensionless parameter ε = (δU)/U is introduced which is

independent of the Péclet number. A simple perturbation calculation shows as in

[8] that to leading order, ε is proportional to the relative aperture fluctuation. Those

inhomogenities in the flow modify the dispersion coefficient for intermediate Péclet

numbers, but the two extreme behaviors (molecular diffusion and Taylor dispersion)

remain unaffected. Let us first consider tracer particles confined in the mean plane

of the cell. The inhomogeneity of the flow will induce a spreading of tracer transit

times over the characteristic length scale ξ‖ of order 1T ∝ ξ‖(δU)/U 2 so that the

estimated dispersion coefficient amounts toD = ξ‖ε
2U . The scaling of the dispersion

coefficient in this regime is thus

D

Dm

= ε2
ξ‖U

Dm

= ε2
ξ‖

h
Pe, (7)

implying a simple proportionality betweenD and the mean flow velocity. This linear

scaling ofD vs. U is often called geometrical dispersion, (labeled ‘G’ in the sequel)

in the sense that D is independent of the molecular diffusion coefficient, and merely

controled by the inhomogeneity of the flow. It is however important to note that

even if Dm does not contribute to the expression of D, it nevertheless dictates the

upper and lower bounds for the validity of this regime. It must be underlined that this

geometrical dispersion regime is the most relevant one for practical applications, in

particular for crack flow [6].

In order to account for the Taylor regime, it suffices to perform a simple con-

volution of the exit time distribution by a t−2 kernel truncated at the diffusion time

τ (Equation (3)) as for the case of a simple Hele-Shaw cell explicited above. As a

result, the total dispersion coefficient will appear to be the sum of the above derived

dispersion coefficient plus the one due to Taylor dispersion. Balancing those two



terms, a cross-over is observed from geometrical to Taylor dispersion at a Péclet

number equal to

PeGT =
ξ‖ε

2

h
. (8)

Below, it will be shown that the transverse diffusion may give rise to yet another

‘anomalous’ dispersion regime. If the latter is not present (the condition for this is

detailed below) then the lower Péclet number limitation for this geometrical regime

will come from molecular diffusion.

The cross-over betweenmolecular diffusion and thegeometrical dispersion regimes

can be obtained by noting that the axial diffusion will contribute to a widening of

the tracer cloud, which can readily be obtained from a mere convolution of the

geometric transit times by a Gaussian spreading (for small perturbation of the flow,

i.e. no stagnation points). Thus, the dispersion coefficients are simply additive and

thus a cross-over condition is obtained by balancing the two terms DG = Dm or

PemG =
h

ξ‖ε2
. (9)

Comparing Equations (8) and (9), geometrical dispersion can only exist for

(
δU

U

)2

= ε2 ≫
h

ξ‖
, (10)

i.e. large inhomogeneities or large correlation lengths (besides much larger than h

so that the local Poiseuille flow approximation remains valid). Figure 1 summarizes

the Péclet dependence of D/Dm and cross-over scales.

2.3. anomalous dispersion regime

The rich variety of behaviors encountered in this apparently simple problem is how-

ever not exhausted yet. Long-range correlation of the velocity field could result in

another ‘anomalous’ regime. Numerous works have shown, using a renormalization

group approach, that velocity field correlated over a long range could produce non-

diffusive macroscopic dispersion at very small Péclet number [10–13]. However,

these works were developed in the limit of vanishing mean velocity, with non-

vanishing velocity fluctuations. Theydonot apply here, because of the proportionality

between mean velocity and fluctuations.

Another possible origin of anomalous diffusion, reported some time ago byMath-

eron andMarsily [14], is a stratified flowwhich displays a ‘hyper-diffusive’ behavior.

Here, a simple scaling argument due to Bouchaud and George [15] is reproduced.

The velocities are assumed to be slowly variable along each streamline as compared

to the velocity fluctuations observed in the direction perpendicular to the streamlines.

This may be due to a highly anisotropic modulation of the permeability, producing a

strong chanelling of the flow. In this case, the diffusive motion across the streamlines



Figure 1. Schematic log–log plot of the dispersion coefficient as a function of the Péclet

number based on themean aperture. The lettersM,G andT refer to ‘Molecular’, ‘Geometric’

and ‘Taylor’ regimes respectively, where the slope of the curve is 0, 1 and finally 2. The

cross-over Péclet numbers and dispersion coefficients are indicatedwith notations introduced

in the text.

will induce a longitudinal dispersion along the flow due to the difference of velocity

between the streamlines. δU still denotes the amplitude of the velocity fluctuation

and ε = (δU)/U . Let ξ⊥ be the transverse correlation length of the velocity. The time

needed to diffuse perpendicular to the flow direction is 1t = ξ 2⊥/Dm. After a time t

larger than 1t , the tracers will have sampled n =
√

t/1t independent streamlines,

thus spending roughly
√

t1t time units in each streamline. The fluctuating part of

the distance travelled in each streamline is of order (δU)
√

t1t . A sum over n such

independent random distances is needed to obtain a final spreading which amounts

to (δU)
√

t1t
√

n. Bringing all pieces together, the longitudinal spreading of a tracer

spot after a time t can be written as

1x = εU

(
ξ 2⊥
Dm

)1/4

t3/4. (11)

This spreading is not proportional to
√

t , hence the term anomalous dispersion to

characterize this regime. It is thus not possible to define a dispersion coefficient

independent of time or length.

In order to fully understand this regime, it is necessary to explicit its limits. The

anomalous dispersion law comes from the fact that the transverse tracer motion

samples a small number of channels or streamlines, and each visited channel will

induce a much wider spreading. This effect may only be effective if the velocity in

one streamline is actually constant. If the longitudinal velocity fluctuation along a

distance ξ‖ is restored, the anomalous dispersion holds only for times smaller than
the time needed to be convected over ξ‖, i.e. t∗ = ξ‖/U (assuming small relative



fluctuations of velocities). Thus, at this upper time limit, the spreading is equal to√
Dt∗, which allows to define the dispersion coefficient observed for times longer

than t∗, the expression of which is

D =
(

δU

U

)2
(

ξ⊥ξ
1/2
‖ U 3/2

D
1/2
m

)
. (12)

In a dimensionless form, using the Péclet number constructed with the mean aperture

of the cell,

D

Dm

= ε2

(
ξ⊥ξ

1/2
‖

h3/2

)
Pe3/2 (13)

and hence a Péclet dependence for this regime which is intermediate between the

geometrical O(Pe) and Taylor O(Pe2) dispersions.

The necessary condition for observing this regime is that the transverse diffusion

time ξ 2⊥/Dm be smaller than the longitudinal convection time ξ‖/U . Therefore, the

cross-over from anomalous to geometric dispersion occurs for

PeAG =
hξ‖

ξ 2⊥
. (14)

The lower limitation comes from a competition with molecular diffusion. Equat-

ing both dispersion coefficient provides the cross-over Pe:

PemA = ε−4/3 h

(ξ 2⊥ξ‖)1/3
. (15)

Figure 2 shows the typical evolution of the dispersion coefficient with the Péclet

number in a case where the anomalous regime can be seen.

Figure 2. Same as Figure 1, with the anomalous (labelA) regime included, with a 3/2 slope.



It should benoted that the limitingprocesswhichwas assumed tobe the anomalous

regime was, in fact, the geometrical dispersion regime. It could also be supposed that

the Taylor regime could be the limiting process. This case imposes that the upper

time limit for the anomalous regime is given by the molecular diffusion time over a

distance h. This however would necessitate that ξ⊥ ≪ h, a condition that can never

be fulfilled (otherwise the flow problem is three-dimensional, and thus this entire

discussion does not justify). Thus, it is concluded that a cross-over from anomalous

to Taylor dispersion is unphysical.

To conclude this subsection, the condition for which anomalous dispersion occurs

has to be specified. This condition has the simple following form

ε ≫
ξ⊥

ξ‖
, (16)

since ε ≪ 1, this condition imposes that the velocity correlation is extremely

anisotropic ξ⊥ ≪ ξ‖. In particular, for an isotropic correlation, it is impossible to
observe the anomalous dispersion regime. An alternative possibility, not explored

here, is that the diffusion tensor itself is highly anisotropic. However, in order to

observe an anomalous regime in the case where ξ⊥ = ξ‖, one requires D⊥ ≫ D‖,
which is a rather unusual situation.

3. Geometrical Dispersion in Cracks

Let us extend the previous analysis to the case of heterogeneities which are closer

to reality, with applications to flow in open cracks. Dispersion in such structures has

already been investigated numerically [5, 16]. The geometrical dispersion regime is

examined here theoretically within our model for the aperture geometry.

It has been shown (see [17] for a recent review) that the crack surface z(x, y) can

be accurately described as a self-affine topography. The latter is such that the surface

roughness obeys (statistically) to a scale invariance which stems from the absence

of characteristic length scales. Thus, for any scale factors λ, the height difference

[z(x + λδx) − z(x)] has the same statistical features as µ(λ)[z(x + δx) − z(x)].

The scale factor along the z-axis µ is a function of the scale factor λ along x.

Combining two such scale transformations, the identity µ(λ1)µ(λ2) = µ(λ1λ2)

implies that µ is a homogeneous function of λ: µ = λζ where ζ , the Hurst or

roughness exponent, characterizes a class of such scale-invariant topographies. It is to

be noted that such surfaces have long-range spatial correlations. As a consequence of

the above symmetry, the standard deviation of the height distribution z(x) estimated

over an interval [x, x + δx] is proportional to (δx)ζ and thus depends explicitly

on the span δx. For crack surfaces, the self-affinity is often observed over a large

range of scales [12]. Moreover, a large number of experimental determinations [18–

20] of the roughness exponent in rocks fall in a narrow interval of values around

ζ ≈ 0.8. Figure 3 shows the geometry of the considered crack with a synthetic

random self-affine surface with a roughness exponent ζ = 0.8.



Figure 3. Illustration of the crack geometry considered in this study. The two crack faces

are conjugated and translated with respect to each other. The crack surface is self-affine as

observed experimentally. Flow takes place as shown with bold arrows.

A flow between the two opposite faces of a crack is considered, and thus the local

aperture a(x) is introduced such that

a(x) = h + z(x) − z(x + d), (17)

where d is the in-plane relative shift of the two faces, and h is the mean aperture of

the crack. h cannot assume any value. It has to be larger than a minimum value hmin
such that the faces have exactly one contact point. In the following, it is assumed that

h > hmin and, hence, a(x) > 0 everywhere.

The covariance of the aperture can be obtained exactly [21] for a self-affine

surface, and is given by the following expression for two points separated by x:

Cov(x) =
|d+ x|2ζ + |d− x|2ζ − 2|x|2ζ

2|d|2ζ
. (18)

From the previous formula, two distinct scaling regimes appear. For distances

smaller than the shift, the aperture is a self-affine function of exponent ζ , whereas,

for larger distances, the covariance of the aperture decreases with the distance as

Cov(x) ∼ ζ

[
1+ 2(ζ − 1)

(
x · d

|x| |d|

)2
](

|x|
|d|

)−2(1−ζ )

. (19)

The relative shift of the two surfaces thus appears to be an intrinsic scale in the

aperture which might have been guessed to play a similar role as ξ in the previous

analysis. It will be shown in the following that it is not the case. The key reason for this



difference is the long-range correlation of the velocity field induced by the structure

of the aperture. Previous studies proposed to relate an anomalous dispersion regime

in fractured rocks to long range correlated velocity field [22, 23] for high Péclet

number regime. In the following, such velocity correlation results from the crack

surface topography and the joint geometry and, hence, the anomalous dispersion

regime will be the consequence of such geometrical effects.

Our analysis is first briefly introduced in the next section using a scaling approach

and a simple description of the phenomenon at play, whereas the following section

presents a more detailed mathematical presentation of the same phenomenon.

3.1. scaling argument

The fluctuation in aperture will modify locally the flow, and to first order in the

relative aperture fluctuation δa/h, the velocity is given by

v = v(0)[1+ Ŵ ∗ (3δa/h)], (20)

where v(0) is themean velocity for an aperture a,Ŵ is the dipolarGreen function of the

Laplacian operator, scaling as 1/r2 with the distance, and ∗ denotes a convolution.

A minor factor, linear in δa, coming from the translation of the flux in terms of local

velocity, is neglected.Next subsectionprovides a cleaner derivationofv.Nevertheless

the scaling properties of this equation are preserved.

The time needed to travel a distance L1 along the flow (direction x1) scales, to

first order in δa/h, as

T =
L1

v(0)

(
1−

3

h

∫ L1

0

Ŵ ∗ δa dx1

)
. (21)

The integral in the right-hand side has now to be estimated. For a shift d much smaller

than the integration distance L1, using the expression of δa = z(x) − z(x + d) and

the r−2 behavior of Ŵ can be used to obtain
∫ L1

0

Ŵ ∗ δa dx1 ≈
∫ L1

0

d · ∇∇∇Ŵ ∗ z dx1

∝
dL

ζ

1

L1

.

(22)

Thus, the fluctuation 1T = (T − 〈T 〉) of transit time over L1 is

1T ∝
dL

ζ

1

hv(0)
. (23)

Repeating the argument used in the geometric dispersion section, leads to the deter-

mination of the dispersion coefficient, D, through D = L1v
(0)(1T/T )2:

D ∝
v(0) d2L

2ζ−1
1

h2
. (24)



The important scaling is obtained from Equation (22), and the following section

is aimed at providing a more detailed justification of it. The above key result of

Equation (24) will be discussed at the end of the next section.

3.2. detailed computation

The most important object to deal with in the analysis of tracer dispersion is the

velocity field. To obtain it from the aperture map, it is proposed here a simple first-

order perturbation analysis. Several preceeding works have extensively used such

weak disorder expansion approach in the context of tri-dimensional heterogeneous

porous media in direct space [24, 25] or in Fourier space [9]. A particularity of

the crack geometry is that the flux is conserved, and hence the velocity field is not

divergence free. This will necessitate, a specific treatment, albeit close to [9].

Our analysis is based on two important restrictions:

• It is assumed that slopes are small, |∇a| ≪ 1 so that locally a Poiseuille flow in

the aperture direction can be used, i.e. Reynolds or ‘lubrication’ approximation.

• Only small deviations from the constant aperture are considered, i.e. δa(x) =
(a(x) − h) ≪ h.

The Reynolds approximation allows to relate the (aperture-averaged) velocity

field in the crack to the pressure gradient, ∇P , as

v(x) = −
a(x)2

12η
∇P, (25)

where η is the fluid viscosity. The total fluid flux at a point is the velocity times the

aperture and, hence, fluid incompressibility imposes

∇ · (a(x)v(x)) = 0 (26)

so that,

∇ · (a(x)3∇P) = 0. (27)

A perturbation computation of the velocity field, in the small parameter ε =
(δa/h) is proposed. All quantities like the pressure P are expanded as P = P (0) +
εP (1) + ε2P (2) . . . . The zeroth-order solution (i.e. a(x) = h) gives for an imposed

pressure gradient (∇P (0)):

v(0)(x) = −
h2

12η
(∇P (0)). (28)

The first-order correction is obtained through the identification of all terms of order

ε. The first correction to pressure is such that

∇2P (1) = −
3

h
∇δa · ∇P (0). (29)



Hence, in Fourier space, (Fourier transforms are denoted by a superscript tilde, k is

conjugated to x, and k denotes its norm, k2 = k · k)

∇̃P
(1) = −3

ã(k)

h

k(k · ∇P (0))

k2
. (30)

Since a and δa only differ by a constant h, ã can be substituted to δ̃a as long as

k 6= 0. The first-order velocity term, v(1), is

v(1) = −
2hδa

12η
(∇P (0)) −

h2

12η
(∇P (1)) (31)

which in Fourier space gives

ṽ(1) = |v(0)|
ã(k)

h

[
3
k(k · e1)

k2
− 2e1

]
, (32)

where e1 is a unit vector along the flow direction. The latter rewriting shows that v(1)

is proportional to v(0) and of order 1 in ε.

In this geometry, the molecular diffusion and Taylor regimes are trivially recov-

ered at, respectively, very lowandhighPe numbers. The anomalous dispersion regime

cannot be observed since the geometry is not stratified along the flow. Thus, the only

regime of interest is the geometric dispersion. When Pe < 1, the actual advection

velocity is the aperture-averaged velocity, i.e. the two-dimensional field considered

in the present section. In order to estimate the dispersion coefficient, advection of

the tracer along the two-dimensional flow only has to be considered.

For convenience of the analysis, a line of tracer launched in the flow along the

x1 = 0 line at time t = 0 is considered, and the arrival time T (L1, x2) after a

prescribed convection distance L1 is studied. The crack surface will conveniently

be generated in Fourier space, and L denotes its size. Not to be restricted by the

boundary conditions or the periodicity of the system, only L1 ≪ L is considered.

The arrival time amounts to (first-order in ε)

T (L1, x2) =
1

|v(0)|

(
L1 −

∫ L1

0

v(1) · e1
|v(0)|

dx1

)
. (33)

The latter integral only requires the axial velocity perturbation. This result is, at this

approximation order, equivalent to those obtained by various approches in [9, 26, 27],

giving the longitudinal dispersion coefficient in term of a simple integral over the

velocity field covariance in the mean flow direction. Let us introduce

φ(L1, x2) =
∫ L1

0

v(1) · e1
|v(0)|

dx1. (34)

In order to perform the integration, one should treat separately the k1 = 0 components

of the Fourier transform, since the latter prevents the integral ofφ frombeing periodic.

The Fourier transform of the periodic part φp of φ is written as

φ̃p =
i

k1

ã(k)

h

(
k21 − 2k22

k2

)
, (35)



whereas the k1 = 0 case corresponds in real space to

φnp(L1, x2) ≡ L1f (x2) = −2

∫ L1

0

δa(x ′
1, x2)

h
dx ′

1. (36)

In most cases, this nonperiodic part can be dropped whenL goes to infinity. It simply

reflects a spurious finite size effect. Moreover, since only time differences matter,

this contribution will vanish.

The expression of the tracer transit timewith its correction tofirst order in the small

parameter ε = δa/h has been established. This result also assumes |∇δa| ≪ 1. This

result is quite general and not restricted to the particular crack surface topography

and aperture of the rock joint model. The above result is now specialized to self-affine

crack surfaces.

3.2.1. Self-Affine Crack

Let us now use the specific crack geometry considered in this section. The self-affine

crack surface z can conveniently be generated in Fourier space as

z̃(k) = A|k|−1−ζ α̃(k), (37)

where the α̃ are uncorrelated random complex Gaussian variables of zero mean and

unit variance (including usual conjugation properties for z to be real).A is a prefactor

which sets the absolute roughness at a unit scale. Indeed the mean variance of z over

a domain of size L is obtained directly from Parseval theorem as

σ 2(L) ≡
1

L2

∫∫

L×L

z2d2x ∝ A2L2ζ (38)

up to numerical prefactors. One important point to note is that the small wavelength

cut-off only contributes to a small correction dropped from the above expression.

The aperture fluctuation part is δa(x) = z(x) − z(x + d) which in Fourier space

is written

ã = (1− eikd)̃z. (39)

At large wavelengths k · d ≪ 1, a Taylor expansion of the exponential gives ã =
−i(k · d)z̃, i.e. the gradient of z in the d direction times d . This allows us to retrieve

simply the large-scale behavior of the covariance of the aperture, which can be seen

as a self-affine field of exponent ζ − 1 < 0. As a side remark, an interesting analogy

can be drawn between the aperture field and a dipolar effect.

All the necessary ingredients to analyze the scaling features of the transit times in

a crack are now available. The expression of a in the equation giving the function φ

is now used to arrive at the following scaling behavior for long wavelength k ·d ≪ 1:

φ̃p =
A

h

kd |k|−1−ζ α̃αα(k)

k1

(
k21 − 2k22

k2

)
. (40)



The nonperiodic part is linear in L1, and the Fourier transform along x2 of its ampli-

tude, f , has a modulus scaling as k
−ζ

2 ; hence, it is a self-affine profile of exponent

ζ − 1/2 above a scale d2. As already mentioned above, this term will only result in

a minor (sub-dominant) contribution to φ.

The inverse Fourier transform of expression (40) gives the final result as

φ(L1, x2) = φp(L1, x2) − φp(0, x2) + L1f (x2). (41)

One may also note that, in the particular case where d is along the x1 axis (since

the main flow is supposed to occur along x1, the relative shift of the crack faces is

parallel to the mean flow), φ̃(0, k2) is identically 0.

The important property to be noted in Equation (40) is the homogeneity of φ̃p with

respect to k, with a degree (−1 − ζ ). This is similar to the Fourier transform of the

crack surface z̃. It is thus concluded thatφp is itself a self-affine function characterized

by a roughness exponent ζ . Although φ is markedly anisotropic, the same roughness

exponent ζ appears along any direction in the (x1, x2) plane. Finally, the Fourier

transform of φ includes contributions from wavenumbers as low as 2π/L, where L

is the system size. However, when performing the difference φp(L1, x2)−φp(0, x2),

the wavenumber smaller than 2π/L1 will be filtered out from the final expression of

φ. Hence,φ(L1, x2) considered as a function of x2 is a self-affine function of exponent

ζ from the lower cut-off scale up to L1 (and not L). For distances 1x2 ≫ L1, the

expectation value of (φ(L1, x2 + 1x2) − φ(L1, x2))
2 saturates to a value A2L

2ζ
1

independent of 1x2.

Estimating the variance of φ (its mean is obviously 0) gives a direct estimate of

the fluctuation 1T of the transit time over a scale L1:
(

1T

T

)2

=
A2

h2L2
1

∫∫ [
(cos(k1L1) − 1)2 + sin2(k1L1)

]
×

× k−2−2ζ

(
k · d
k1

)2 (
3k21
k2

− 2

)2

dk1dk2. (42)

Upon a change of variable, this variance can be recast in a simple form:

(
1T

T

)2

=
A2L

2ζ−2
1

h2
(K‖(ζ )d2

1 + K⊥(ζ )d2
2 ), (43)

where K‖ and K⊥ are two definite integrals which only depends on the roughness

exponent ζ . These two parameters define the dispersion anisotropy induced by the

aperture anisotropy of Equation (19). Previous numerical works [29] have studied the

influence of fracture surfaces anisotropy on dispersion. It is important to note here

that such anisotropy emerges from a direction of translation between two statistically

isotropic surfaces. To obtain the expression of the dispersion coefficient, the same

argument as given in the second section is used to derive

D =
v(0)A2L

2ζ−1
1

h2
(K‖(ζ )d2

1 + K⊥(ζ )d2
2 ) (44)



or introducing the Péclet number scaled on the aperture, and the mean roughness

σ(L1) of the crack surface on the scale L1, and ignoring the anisotropy of the

dispersion tensor, the following scaling estimate is obtained:

D

Dm

= Pe
σ(L1)

2

hL1

d2

h2
. (45)

Different properties are worth mentioning at this stage.

• In spite of the nontrivial scaling of the widening of the front with the distance,

D simply remains proportional to the mean velocity, an essential property of the

geometric regime. This can be understood from the observation that this regime

is purely advective, i.e. independent of the molecular diffusion coefficient, and

thus changing the velocity, without changing the front widening after a fixed

advected distance.

• Although the aperture is mostly controlled by the roughness estimated at the

scale of the shift d , the front width reveals the roughness of the crack surface

itself, over much larger scales.

• The dispersion coefficient is a rough characterization of the dispersion process.

From the previously determined φ function, a more detailed description of the

tracer distribution can be dealt with. The computation is done in an equivalent

infinite two-dimensional Péclet number, sincemolecular diffusion does not play

any role. In fact, it can be shown that the line of tracer will become distorted

as time evolves, and it will finally acquire a self-affine geometry reminicent

of the vertical topography of one crack face. The roughness of the front is

self-affine with an exponent ζ , and its upper wavelength is in a first transient

regime proportional to the travelled distance. Larger wavelengths do not have

enough time to be revealed by the flow. For a persistent geometry, ζ > 1/2 –

the usual case for cracks where ζ ≈ 0.8 – the width of the front, proportional

to Lζ corresponds to an apparently hyperdiffusive process. In addition to the

roughening of the tracer front, the following section shows that the front itself

widens, in a way which can again be characterized extensively.

• The shift of the two crack faces d plays a significant role in the dispersion

coefficient. The fact that the latter vanishes in the limit of a zero shift comes

from the fact that our analysis is restricted to the first order in ∇a and, thus, the

aperture becomes constant for a simple vertical translation of the crack faces.

In fact the flow is affected by such a shift but only to second order in ∇a.

3.3. intrinsic widening of the tracer line

Above, the scaling of the dispersion estimated from the meandering of the tracer

line due to velocity fluctuations has been obtained. The tracer not along an entire

line perpendicular to the flow, but rather at a particular point can be characterized.

Then the previous treatment is inadequate for giving information on the measured



Figure 4. Schematic representation of the tracer curve after a finite time of advection.

The wrinkling of the curve over the scale ξ gives rise to a large dispersion coefficient

which is important for the global tracer distribution. However, a point measurement is

unable to capture this global quantity, but is rather sensitive to the ‘intrinsic widening’ of

the tracer locus (scale λ in the figure). These two processes are analysed respectively in

Sections 3 and 4.

signal. The previously computed dispersion coefficient would provide the point-

to-point fluctuation of the mean transit time, thus, it is relevant for analyzing the

statistics of an ensemble of such measurements. Locally, a point detector would see

a tracer spreading much smaller than the one estimated from formula (45). This

effect, illustrated in Figure 4, is analyzed in the present section.

Different effects may contribute to this intrinsic widening. Focusing on a single

streamline, themolecular diffusion along theflowdirectionx1will provide adispersion

mechanism which plays a role only at very small Péclet numbers. Tracer diffusion

along the aperture direction x3 will induce a Taylor dispersion mechanism, if the

Péclet number is large enough. These two cases are essentially similar to the case

discussed in the second section of this paper. The most interesting case is the one

where diffusion may occur along x2 perpendicular to the streamline, but in the mean

crack plane. Indeed, following the streamline, a close analogy with the stratified

flow case can be drawn and, thus, it may be expected that an anomalous dispersion

mechanism will take place, contributing to the ‘intrinsic’ widening of the tracer

around its mean locus.

A fixed advected distance equal to L1 is considered. Molecular diffusion will

allow the tracer to explore a distance perpendicular to the flow lines of order 1x2 =
(DmT )1/2. One difference with the stratified flow case as analyzed previously



(Section 2) is that now the velocity is not constant along the streamlines. However, the

advection time difference between flow lines can be treated as roughly independent

from x1 since the longest wavelengths of the aperture fluctuation contribute domi-

nantly to the advection, and thus the wavelengths smaller than the entire trajectory

play only a minor role. Another (more important) difference is the existence of long-

range correlations in the aperture field. However, the previous analysis has revealed

all the necessary information to proceed. Indeed, the tracer locus lies on a self-affine

curve of exponent ζ , and thus the difference in transit time for two points at a distance

x2 perpendicular to the flow scales as1T ∝ x
ζ

2 as long as x2 ≪ L1. (More precisely,

1T (x2) = (Ax
ζ

2d)/(v(0)h).) From this estimate, the difference in mean velocity

along the streamlines is deduced.

All the material is now at hand to conclude. The widening of the tracer locus

amounts to

1x1 ∝
Ad (DmT )ζ/2

h
. (46)

This expression is now used to define the ‘local’ dispersion coefficient Dl through

1x1 ≡ (DlT )1/2. Hence,

Dl =
A2d2 D

ζ
m(v(0))1−ζ

h2L
1−ζ

1

. (47)

Which can be rewritten in dimensionless form as

Dl

Dm

=
A2d2

h2

(
Pe

hL1

)1−ζ

=
d2

h2

σ(h)σ (L1)

hL1

Pe1−ζ . (48)

It is also instructive to express the ratio of the local dispersion coefficient Dl to the

global one, D, computed in the preceding section:

Dl

D
=
(

L1Pe

h

)−ζ

. (49)

From these last expressions, which constitute the second key result of this paper,

it is noted that

• The local dispersion coefficient is much smaller than the global dispersion

coefficient obtained previously, as long as the diffusion distance is much smaller

than L1. This justifies the qualitative picture of Figure (4).

• The local dispersion coefficient displays an anomalous dependence on the Péclet

number as a power law with an exponent (1 − ζ ). In the case of cracks, using

ζ = 0.8, the velocity dependence of the dispersion coefficient is weak.

• The relative shift (d/h) appears quadratically in the expression forDl as already

seen for the expression of the global dispersion coefficient D.



• The surface roughness appears both at the aperture scale h and at the advection

scale L1 in Equation (48). This may appear as surprizing but simply results

from the choice of introducing the Péclet number based on the crack aperture

h. A different (and legitimate) choice consists in using L1 instead of h, Pe∗ =
v(0)L1/Dm. This would turn the previous expression into

Dl

Dm

=
d2

h2

σ(L1)
2

L2
1

Pe∗1−ζ
, (50)

i.e. the same prefactor to the Pe∗ number as for the global dispersion coefficient.

• Similarly, the ratio of the local to global dispersion coefficient takes the simple

form

Dl

D
= Pe∗−ζ

. (51)

• Finally, a possible way to reveal the local dispersion mechanism is to perform

‘echo’ experiments [6] where the flow is reversed after some period of time,

as done numerically in [28]. In this case, the geometric dispersion is erased

and the ‘intrinsic widening’ of the tracer line is the major source of dispersion.

An anomalous dispersion coefficient similar to Dl with L1 equal to the mean

convected distance at the point of flow reversal is expected.

4. Conclusion

After having recalled the scaling features of the dispersion mechanisms in an imper-

fect Hele-Shaw cell, a realistic open crack geometry has been taken into account,

with themultiple scale surface topography, for the only regime (geometric dispersion)

which is controlled by the large-scale flow inhomogeneities. Using a perturbation

expansion up to first order, the expression of the dispersion coefficients have been

developed either for global or local measurements. These coefficients are shown to

depend on the global roughness of a crack face, on the mean aperture and on the

relative shift between the crack faces. Finally, the Péclet dependence of both types

of measurements has been shown to be dramatically different.

The importance of this final result is now emphasized. In contrast to laboratory-

scale experiments which most naturally focus on global measurements, field mea-

surements are much easier to perform through local measurements of the tracer

concentration in a narrow region. It is thus essential to be able to bridge up both

determinations. Large-scale features of the crack surface, which are mostly wiped

out from the aperture field, do reappear in dispersion problems. In particular, they

give rise to a dramatic difference between local and global dispersion properties.
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21. Plouraboué, F., Kurowski, P., Hulin, J. P., Roux, S. and Schmittbuhl, J.: Aperture of rough

cracks, Phys. Rev. E 51(3) (1995), 1675.

22. Neuman, S. P.:On advective transport in fractal permeability and velocity fields, WaterResour.

Res. 31(6) (1995), 1455–1460.



23. Berkowitz, B. and Scher, H.: On characterization of anomalous dispersion in porous and

fractured media, Water Resour. Res. 31(6) (1995), 1461–1466.

24. Dagan, G.: Solute transport in heterogeneous porous formation, J. Fluid Mech. 145 (1984),

151–177.

25. Dagan, G.: Theory of solute transport by groundwater, Ann. Rev. Fluid Mech. 19 (1987),

183–215.

26. Avallaneda, M. and Majda, A. J.: Renormalization theory for eddy diffusivity in turbulent

transport, Phys. Rev. Lett. 68 (1992), 3028–3031.

27. Glimm, J., Lindquist, W. B., Pereira, F. and Zhang, Q.: A theory of macrodispersion for the

scale up problem, Transport in Porous Media 13 (1993), 97–122.

28. Flekkøy, E. G.: Symmetry and focussing inmixing Fluids, to appear in Phys. Rev. Lett. (1997).

29. Thompson, M. E. and Brown, S. R.: The effect of anisotropic surface roughness on flow and

transport in fractures, J. Geophys. Res. 96(B13) (1991), 21923–21932.


