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Abstract

We present experimental light scattering measurements from aluminum surfaces obtained by cold rolling. We show

that our results are consistent with a scale invariant description of the roughness of these surfaces. The roughness

parameters that we obtain from the light scattering experiment are consistent with those obtained from atomic force

microscopy measurements.
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Since an early paper by Berry in 1979 [1], the

study of wave scattering from self-a�ne (fractal)

surfaces has become very active, see Refs. [2±10]

for recent references. Most of these papers consist

in numerical simulations; apart from the early

works of Jakeman [11] and Jordan et al. [12] very

few theoretical results have been published; the

same statement stands for experimental results

while lots of real surfaces [13±15] have been shown

to obey scale invariance. Here we try and test ex-

perimentally recent theoretical expressions ob-

tained for the scattering of a scalar wave from a

perfectly conducting self-a�ne surface [16]. We

report scattering measurements of an s-polarized

electromagnetic wave (632.8 nm) from a rough

aluminum alloy plate (Al 5182). The latter was

obtained by industrial cold rolling. As presented in

Fig. 1 taken from Ref. [15] by Plourabou�e and

Boehm, the rolling process results in a very an-

isotropic surface, the roughness being much

smaller along the rolling direction than in the

orthogonal one. From atomic force microscopy

(AFM) measurements with a long range scanner

the authors could establish the scale invariant

character of the roughness: the surface was found

to be self-a�ne between a few tens of nanometers

and about 50 lm. At the macroscopic scale, they

measured the height standard deviation (RMS

roughness) to be r � 2:5 lm.

Let us brie¯y recall that a pro®le or a one-

dimensional surface is said to be self-a�ne if it

remains statistically invariant under the following

transformations:

Dx ! kx; Dz ! k
f
z;

where the parameter f is the roughness exponent.

A direct consequence of this scale invariance is
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that when measured over a length d geometrical

quantities such as a roughness r or a slope s are

dependent on this length d:

r�d� / df; s�d� / dfÿ1:

The roughness exponent which characterizes the

autocorrelation function is however not su�cient

to give a complete characterization of the statistics

of the surface roughness. The latter also requires

an amplitude parameter. In the context of light

scattering, one can for example normalize the

geometrical quantities with their value over one

wavelength:

r�d� � r�k� d

k

� �f

; s�d� � s�k� d

k

� �fÿ1

:

We will see in the following that the value of the

slope s�k� is the crucial numerical parameter when

dealing with scattering from self-a�ne rough sur-

faces. Note ®nally that the scale invariance of real

surfaces roughness can only extend over a ®nite

domain. The upper cut-o� allows to de®ne a

macroscopic roughness, the lower one allows to

de®ne a local slope in every point. This scaling

invariant formalism has been shown to be relevant

to describe varied surfaces such as the ones ob-

tained by fracture [13], growth or deposition pro-

cesses [14].

We performed our measurements on a fully

automated scatterometer (see Refs. [17,18] for a

full description). The setup is designed for the

measurement of the bidirectional scattering dis-

tribution function. The source is a helium±neon

laser of wavelength k � 632:8 nm, the beam passes

through a mechanical chopper and is submitted to

a spatial ®ltering before reaching the sample. The

latter is placed on a rotating plate which allows to

vary the incident angle. The scattered light is col-

lected by a converging lens and focussed on a

photomultiplier. This detection setup is placed on

an automated rotating arm. Note that the shadow

of the photomultiplier imposes a blind region of

�11° around the back-scattering angle. Two po-

larizers allow us to select the polarization direc-

tions of both incident and scattered lights. The

output signal is ®ltered by a lock-in ampli®er and

processed by a micro-computer. We used a fre-

quency f � 700 Hz and a time constant s � 1 s.

The surface being highly anisotropic, the result is a

priori very sensitive to the orientation of the sur-

Fig. 1. AFM image of 512� 512 points of the aluminum alloy sheet surface. This image has been obtained by Plourabou�e and Boehm

[15] in contact mode on a Park Scienti®c AFM using a long range scanner (100 lm lateral travel and 5 lm vertical travel). The height

standard deviation has been measured to be r � 2:5 lm.



face. In order to select properly one of the two

main directions of the surface, we placed a vertical

slit in front of the photomultiplier. This allows to

reduce the e�ects of possible misorientation of the

sample. The results of the scattering measurements

obtained in s-polarization for incidence angles 0°,

30°, 50° and 65° are displayed in semi-log scale in

Fig. 2.

How does the scale invariance of the roughness

a�ect the angular distribution of the scattered

light? The comparison of experimental light scat-

tering data with theoretical models still remains a

delicate matter. A key point is obviously to give a

proper description of the statistical properties of

the surface roughness. When testing new models

or approximations, it is usual to design surfaces of

controlled Gaussian autocorrelation function (this

is for example possible by illuminating photosen-

sitive materials with a series of laser speckles [19±

21]). In the following we want to test the consis-

tency of our scattering measurements with the

roughness analysis. We perform this test via a very

crude approximation: we consider the surface to

be one dimensional and perfectly conducting. We

then compare our experimental results with ana-

lytical predictions obtained in the context of a

simple Kirchho� approximation corresponding to

Gaussian, exponential and self-a�ne correlations.

Although lots of studies have been published

about scattering from scale invariant surfaces in

the last 20 years, very few analytical results can be

found in the literature. The main results are due to

Jakeman and his collaborators [11,12] who showed

that the angular distribution of the intensity of a

wave scattered from a self-a�ne random phase

screen could be written as a L�evy distribution. In a

similar spirit, some of us studied very recently [16]

the case of scattering of s-polarized waves from

Fig. 2. Scattered intensity measurements obtained at incidence angles h0 � 0°, 30°, 50° and 65°, respectively. The experimental results

are shown in symbols. The solid/dotted/dashed lines correspond to the expressions obtained for a Kirchho� approximation in case of

self-a�ne/Gaussian/exponential correlations, respectively.



self-a�ne surfaces and found in the context of a

Kirchho� approximation the following expression

for the scattering cross-section:

oRs

oh

� �

� s�k�ÿ1=f
aÿ��1=f�ÿ1�

���

2
p

cos h0

� cos h�h0
2

cos3 hÿh0
2

L2f

���

2
p

tan hÿh0
2

a�1=f�ÿ1s�k�1=f

 !

; �1�

where a � 2p
���

2
p

cos��h� h0�=2� cos��hÿ h0�=2�,
and La�x� is the centered symmetrical L�evy stable

distribution of exponent a de®ned as

La�x� �
1

2p

Z 1

ÿ1
dk eikxeÿ kj ja : �2�

Note that the form of this analytical result does

not depend on the value of the global RMS

roughness r in contrast to the case of a Gaussian

correlated surface. The scattering pattern is cen-

tered around the specular direction with an an-

gular width w which scales as

w ' s�k�1=f:

It is worth mentioning here that in the context of

this simple Kirchho� approximation, the crucial

geometrical parameter to consider is the slope over

the scale of one wavelength s�k�: the angular dis-

tribution of the scattered intensity is mainly con-

trolled by this ``local'' parameter and does not

depend on the value of the global RMS roughness.

The latter will only come back into the game if one

goes beyond a single scattering approximation.

Using the complete set of experimental scatter-

ing data, we performed a numerical ®tting proce-

dure for the expression (1) and for the expressions

obtained with Gaussian or exponential correla-

tions. The latter have been derived in the case of

very rough surfaces (see Appendix A for details of

the expressions and the derivation). The ®tting

procedure consisted in a numerical minimization of

the quadratic distance between the data and the

tested expression in logarithmical scale. The free

parameters are an amplitude parameter (which is

simply an additive constant in logarithmic scale)

and two geometrical parameters: the roughness

exponent f and typical slope over the wavelength

s�k�. In the case of Gaussian or exponential cor-

relation there is only one geometrical parameter

which is an equivalent slope r=s or 2pr2=ks, re-
spectively. Note that the same parameters are used

for the whole set of experimental data gathering

four di�erent incidence angles.

In order to get rid of shadowing and multiple

scattering e�ects, we restricted the ®tting proce-

dure to a region of �50° around the incidence

angle. In this region we can see in Fig. 2 that there

is a good agreement with the expression (1) which

has been obtained with a roughness exponent

f � 0:78 and a typical slope over the wavelength

s�k� � 0:11. For large scattering angles the ana-

lytical expression systematically overestimates the

scattered intensity. We attribute this behavior to

the shadowing e�ects. None of the Gaussian and

exponential correlations can give a comparable

result. In the Gaussian case, we obtain r=s � 0:08
and in the exponential case 2pr2=ks � 0:10.

Beyond this direct comparison of the di�erent

prediction for the angular distribution of the

scattered intensity, we try also to compare the

geometrical parameters that we obtained with di-

rect roughness measurements performed by AFM.

We imaged an area of size 2:048� 2:048 lm2

with a lateral step of 4 nm. From these roughness

measurements we compute the typical height dif-

ference Dz between two points as a function of the

distance Dx separating the two points. This quan-

tity is obtained via a quadratic mean over all

possible couples of points separated by a given

distance Dx. In case of self-a�ne, Gaussian or

exponential correlations, we expect respectively:

Dzsa � ks�k� Dx

k

� �f

; �3�

DzGauss � r
���

2
p

�������������������������������������

1ÿ exp ÿ Dx2

s2

� �

s

; �4�

Dzexp � r
���

2
p

������������������������������������

1ÿ exp ÿ Dx

s

� �

s

: �5�

We show in Fig. 3 the results of the roughness

analysis and the predictions corresponding to the

self-a�ne correlations. Both the value f � 0:78 of

the roughness exponent and the slope over one

wavelength s�k� � 0:11 that we obtain from the



scattering measurements seem to be consistent with

the experimental roughness data. Note that the

hypothesis of exponential and Gaussian correla-

tions would have lead to power laws of exponents

0.5 and 1, respectively, since we consider horizontal

distances Dx about the wavelength which are far

smaller than the expected correlation lengths.

These ®rst results can be considered as very

promising: let us recall that we assumed the sur-

face to be purely one dimensional and perfectly

conducting and that we used a basic Kirchho�

approximation, neglecting all shadowing or mul-

tiple scattering e�ects, etc. Re®ning the modeling

of shadowing or multiple scattering in the speci®c

case of self-a�ne surfaces could allow to design a

valuable tool to measure the geometrical parame-

ters describing self-a�ne surfaces. This experi-

mental study also makes clear that self-a�ne

correlations can be a relevant formalism to de-

scribe the optical properties of real surfaces. Be-

yond classical optical phenomena this could be

also of great interest in the context of the recent

studies [22,23] modeling thermal emission proper-

ties of rough surfaces.

Appendix A

We derive in this appendix the expression of the

scattering cross-section in the framework of the

Kirchho� approximation for a one-dimensional

very rough surface.

In the following we consider the scattering of

s-polarized electromagnetic waves from a one-

dimensional, rough surface z � f�x�. The height

distribution is supposed to be Gaussian of stan-

dard deviation r and the two-points statistics is

characterized by the autocorrelation function

C�v�. The frequency of the wave is x, the wave

number is k, the incidence angle is h0, the scatter-

ing angle is h.

Following Maradudin et al. [24] the Kirchho�

approximation gives for the scattering cross-sec-

tion oRs=oh from a rough surface of in®nite lateral

extent:

oRs

oh

� �

� x

2pc

� 1

cos h0

cos �h� h0�=2� �
cos �hÿ h0�=2� �

� �2

I�h; h0�;

�A:1�
where

I�h; h0� �
Z 1

ÿ1
dv exp ik�sin hf ÿ sin h0�vgX�v�;

�A:2�

X�v� � expfh ÿ ik�cos h� cos h0�Df�v�gi: �A:3�
Note that the statistical properties of the pro®le

function, f�x�, enters Eq. (A.1) only through X�v�.
With the knowledge of the autocorrelation func-

tion C�v� the distribution of the height di�erences

Df�v� � f�x� v� ÿ f�x� can be written:

P Df; v� � � 1

2r
���

p
p ������������������

1ÿ C�v�
p exp

ÿDf2

4r2 1ÿ C�v�� �

� �

:

�A:4�
This leads immediately to:

X�v� � expfÿk2r2�cos h� cos h0�2 1� ÿ C�v��g:
�A:5�

In case of a very rough surface, we have k2r2 � 1

(in our experimental case, r � 2:5 lm and k �
632:8 nm so that k2r2 ' 600) and the only v to

really contribute to the integral are in the close

vicinity of zero. We can then replace C�v� by the

Fig. 3. Roughness analysis computed from AFMmeasurements

( ) compared with predictions obtained via a ®t of the angular

scattered intensity distribution assuming self-a�ne correlations.

The slope of the line is f � 0:78 and the amplitude parameter is

s�k� � 0:11.



®rst terms of its expansion around zero. Consider

the Gaussian and exponential cases

CG�v� � exp

�

ÿ v2

s2

�

; Cexp�v� � exp
�

ÿ v

s

�

;

�A:6�

where s is by de®nition the correlation length, this

leads to:

XG�v� � exp
h

ÿ k2 cos h� � cos h0�2a2v2
i

; �A:7�

Xexp�v� � exp
h

ÿ k2 cos h� � cos h0�2arjvj
i

: �A:8�

Simple algebra leads ®nally to

oRs

oh

� �

G

� k

4a
���

p
p

cos h0

cos �h� h0�=2� �
cos3 �hÿ h0�=2� �

� exp

"

ÿ 1

4a2
tan

hÿ h0

2

� �2
#

; �A:9�

oRs

oh

� �

exp

� �ark=p cos h0��cos2 �h� � h0�=2�

=fsin2 �h� ÿ h0�=2�
� 4�ark�2 cos2 �h� � h0�=2�
� cos4 �h� ÿ h0�=2�g�: �A:10�
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