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Kelvin—Helmholtz instability in a Hele-Shaw cell: Large effect
from the small region near the meniscus

E. J. Hinch?
DAMTP-CMS, Cambridge CB3 OWA, United Kingdom

F. Plouraboué
DAMTP-CMS, Cambridge CB3 OWA, United Kingdom and Institut de Mécanique des Fluides de Toulouse,
UMR 5502 CNRS, Toulouse, France

In an attempto improve the poor prediction of our previous theory, we examine corrections from
the small region in a Hele-Shaw cell near the meniscus where the flow is three dimensional. At
larger Reynolds numbers, we find &(1) change to the effective boundary condition for mass
conservation which is to be applied to the large scale flow outside the small region.

I. INTRODUCTION above and below the neglected meniscus region. Matching
the asymptotic expansions, we now fi@dl) changes to that
The Kelvin—Helmholtz instability in a Hele-Shaw cell intuitive boundary condition, because hidden in the meniscus
has been studied experimentally by Gondret and Rabaudihere is a large and varying mass flux along the interface.
who observed the interface between two horizontal flows of  In this paper we restrict attention to the critical gas ve-
a fast gas above a slow viscous liquid. They also performetbcity at the onset of the Kelvin-Helmholtz instability. We
a simple stability analysis based on the Darcy equation foshall not study the associated phase velocity of the instabil-
the gap-averaged flow in a Hele-Shaw cell with an additionalty, which involves awkward questions of how the contact
term representing inertial effects, which also just used thdine moves. Fortunately, the calculation of the real and
gap-average velocity. We reexamined this prolt?lebyl re-  imaginary parts of the wave velocity decouple in this linear
placing the gap-averaged description with an asymptotistability analysis.
analysis of the Navier—Stokes equation which exploited the = The details of the three-dimensional flow in the small
thinness of the gap compared with the wavelength of theegion near the meniscus require numerical solution. To sim-
instability. The prediction of our more detailed theory wasplify the numerical problem, we make a gross simplification
some 20% too small for the critical gas velocity at the onsebf the geometry by assuming 90° contact angles of the
of instability, whereas Gondret and Rabaud’s simple theoryiquid—gas interface with the side walls, so making the inter-
was relatively close to their experimental observations. Weace nearly flat across the gap. This unjustified simplification
observed many subtle differences between the theory and thgill mean that we cannot make detailed comparison with the
experimental conditions, but none that we could estimate aexperiments, but instead can only indicate that there is a
counted for the large 20% discrepancy. This paper returns teignificant effect to be taken into account.
the long-wave approximation, to find corrections from the
previously neglected small region near the meniscus.
The appropriate small parameter to measure the thick-
ness of the half gap compared with the wavelength of thek”' GOVERNING EQUATIONS
instability, 2m/k, is e=kh, which had a value around 0.13 in A. Gas-liquid decoupling
the experiments. Our initial hopes were to find a correction
of 2e to remove the 20% shortfall in the previous predic-
tions. Of course the long-wave approximation often has cor- v .y=0,
rections O(e?) which would have been too small. To our
surprise we find ai©(1) correction, a large effect from the D
small region. p— =- Vp+uVu+pg,
Our previous calculation of the large-scale flows away Dt
from the meniscus now becomes the outer approximation ifyging subscriptg andl for the gas and the liquid, initially in
a mgtched asymptptlc expansion in which the inner approxis . o"andz<0, respectively. We apply no-slip boundary con-
mation is the flow in the small region near to the MeniSCUS itions on the vertical sidewalls
Our previous calculation applied an intuitive boundary con-
dition of the conservation of mass flux on the outer flows u=0 ony= +h.

We will solve the Navier—Stokes equations in each fluid

Author to whom correspondence should be addressed. Electronic maion the diSturb_ed in_terfa(?e between the gas and the liguid
ejhi@damtp.cam.ac.uk ={'(x,y,t), which will satisfy
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al’

—+u-VI=w,

ot
we apply continuity of velocity and a jump in the stress due
to capillary pressure

[o-n]==vykn,

where k is the surface mean curvature andthe surface
tension.

The viscosity of the liquid is very much larger than that T
of the gas,u;> ug, and this permits a useful decoupling of
the calculation of the flow in the gas and the quaiBecause FIG. 1. The mean velocity in the gas-0 and in the liquicz< 0 normalized
the length scales of the flow and viscous stresses are simil&Y their different gap-averaged values far from the interfadg} and(Uy),
in the gas and the liquid, the velocities in the gas must b&'Mch differ by a factoru/ ug.
very much larger than those in the liquid, by a factgf u.
Hence as far as the fast gas is concerned, the liquid is virtu-

ally stationary. This means when calculating the gas flow we dp 2a A
may treat the surface perturbation as static and may apply 0= dx + ,u(ﬁ + 2
there a no-slip boundary condition X y
ug=0 onz=¢". Far from the interface, the mean flow becomes parabolic
Once the decoupled gas flow is found, we may calculate the 1dp
viscous stress it exerts on the liquid, u— - 2—&(h2—y2) asz— o,
yo3

o -N=0y-N+yxn.

In the gas, we need to add to this far-field a harmonic func-
tion which enables the no-slip boundary condition to be sat-
isfied on the interface=0. Thus

This stress then drives the flow in the liquid. Solving this
decoupled flow in the liquid, we eventually find its velocity
at the interface. The component of the liquid velocity at the

surface which is in phase with the surface perturbation is V2
responsible for the growth of the disturbance, while the out-  ug = §<Ug><1 - ﬁ)
of-phase component produces a propagation of the distur-

bance. In this paper we aim to find the onset conditions, i.e., 48(-)" @n+ D) 7Y\ _oni1)maon
the conditions under which the in-phase component of the _<Ug>20 ~2n+ 1)300 on € ,
velocity of the liquid at the interface vanishes. "

There are two stabilizing mechanisms of the Kelvin—
Helmholtz instability, gravity and surface tension, both act-
ing on the length scale of a wavelength. Disturbances to the h2 dp,
interface on the smaller length scale of the gap between the (Uy) =- 30 dx
plates could therefore produce very large capillary pressures Mg OX
which cannot be sustained. Hence the disturbance of the 'rifigure 1 shows that the mean flow achieves the far-field
terface across the gap must have a very small amplitude . . -

. . ) arabolic form very rapidly, well within 1% by> 2h.
which can therefore be achieved very rapidly. Hence thep . S .

) L The mean flow in the liquid is driven by the pressure
cross-sectional shape adopts, quasi-instantaneously and by . . .
. : ) . adient as well as a viscous stress applied by the above gas

very small displacements, a shape consistent with the glveﬁ .

. . ) . low, i.e.,
contact angles which gives no velocity at the interface tha
could distort the shape, leaving just a single net mass-flow g g

|

mode. M—:,u,gﬁ onz=0.

where the gap-averaged mean flow is

B. Mean flow

) N _ One can easily verify that the liquid mean flow is given by
Before we look at the instability, we need to find the

base or mean flow when the interface is flat 0. The mean o P o
flow is driven by a constant horizontal pressure gradient,  Ui(Y,2) = —2[2Ug(y,) = Ug(y,~ 2)].
which by continuity in normal stress must be identical in the H

gas and the liquid, Again the mean flow achieves its far-field form very rapidly.

dpy _dp The flow of the liquid at the interface is exactly twice the
dx _ dx’ far-field parabola, one half being pushed along by the pres-

sure gradient and the other half being pulled along by the
The unidirectional flowsi=[u(y,z),0, 0] satisfy tangential viscous stress from the gas.



C. Linearized perturbation (X, y,1) = L€ 1 + E7(y)].

We now linearize the governing equations for a smalljere we takef, to be the gap-averaged perturbation. The
disturbanceau’ of the base flowu. This linearization requires ygriation of the interface across the gafly), is required to
a small displacement of the interfage<h and a small slope  grive a redistribution of the vertical velocity of the liquid at
d¢' | ix<1. The linearized Navier—Stokes equations are  tne interface which enables the kinematic boundary condi-
V.u'= tion above to be satisfied with the parabalicand ¢’ con-
stant(to leading order). We shall find that this variation of
the interface across that gap is very smaie®).

No-slip boundary conditions must be applied on thelll. GAS FLOW

sidewalls. - ~ A. Nondimensionalization
Linearizing the boundary condition that the gas velocity )
vanishes on the disturbed interface, we have As we must concentrate our attention on the small me-

niscus region, we scale the flow directianby the inverse
wavenumbek™! and the cross-gap directionand vertical
directionz by the gap half separatidn The mean flowy, is
scaled by its gap-averaged value far from the interfagg.
All the perturbed flow in the gas is driven by the first term in The x component of the velocity perturbatian is scaled by
expression above, the nonvanishing mean gas flow on th@ug>§0/h, which is the scale of the mean flow at a height

IUg
(4“’729,0,0) +u;=0 atz=0.

perturbed interface. ={,. The other two components of the velocity perturbation,
Slmllarly ”neariZing the stress bOUndary condition, We 4’ and w’, are scaled bxug>k§01 which is the mean flow
have times the slope of the perturbed interface. Note that in com-

mon with boundary-layer problems the cross-gap and verti-
cal velocity perturbations are smaller than that in the down-
=({ ' uu,0,-¢'py stream direction by the small factkh. Finally the pressure
. P , , perturbation is scaled viscously %(Ug>§0/h2.

+ + + -p' +

(plug +wy), w(vy + W), = p" + 2uw;) Dropping the primes on the perturbation quantities, and
+ (P& — &y, PLy = mlydy, = pdy) remembering that the gas problem is quasistatic, the nondi-

. ) mensionalized equations governing the gas flow are
evaluated atz=0 must jump by the capillary pressure

[0,0,%(&+£;,)]. In the expression for the surface curvature, — Ugx* Vgy + Wz =0,
we have assumed that the interface is nearly flat, as appro-

o, n+d -n+o-n

priate for the 90° contact angle. Now in the gpg,=—p,0. ReUgUgy + vglgy + Wollg) = = €Pgy + €Ugy+ V5Ug,
which is negligibly small compared with the similar term in . . )

the liquid. Moreover on the interfaa=0, ug=0=w for all y Reugvgx=— € "pgy+ 62ngx+ Vg,

andx, and so several terms vanish,, =wg,=Ug,=0. Also .

from our expression for the mean flow in the liquid, we have ~ ReUgWg,=— f_lpgz+ 62ngx+ ngg: 2

MiUi;z=—pgUgz, 0N =0, as well aswu, = ugug,. Finally, the
pressure in the mean flopris continuous az=0. Hence the
viscous stresses exerted by the gas on the liquid=dhare

where
=L Re= Kb/
2= ﬁyz + 92 e_Pg<Ug> Mg

is the reduced Reynolds number comparing advection along
the streamlines with viscous diffusion across streamlines,
and

/J“I(ulrz + WI,x) - M|U|y§§ = Zgllu«gigzz'i' Mguéza
(o, +Wiy) = Uy = pgvg,,
'Pg— P+ 2uW, = = Py + 2ugWg, + G+ &y (D) e=kh

The liquid flow evaluated at the interfagee0 gives by is the small parameter measuring the thickness of the gap
the kinematic boundary condition the slow evolution of therelative to the wavelength of the instability. The boundary

surface disturbance conditions to be satisfied are
al _al Ug=vg=Wg=0 ony=+1,
—+u—=w atz=0.
ot X

Ug+ {Ug,=vg=Wy=0 onz=0,
We will now consider a perturbation of the interface with
a real wavenumbek and complex velocityc whose imagi-
nary part will give the growth rate and real part the speed o
propagation. Thus [=eX(1+ ).

where the nondimensionalized quasistatic interface perturba-
]tion becomes



B. Inner expansion for the meniscus region Ug+Wgz=0,

The governing equations above have the standard feature .
of boundary-layer equations that the pressure must be con- ReUgUg=—pPgx+ Ugyy,
stant at leading order across the inner region, otherwise there
would be large sideways accelerations fgrand wy. This ReUgWqy = = Pgz + Wgyy,
feature follows from the different scalings of the different

velocity components. Thus we seek an expansion in senall with correctionsO(&).

_ The solution of these outer equations has the following
Pg(X,Y,Zt) ~ €*[Ppgo + €Pgi(Y;2)], potential form(accurate to all orders ig"),

Uug(X,y,z,t) ~ eXugg(y,2). Pg(x,2) = QgPE*Z,

The governing equations then become, at leading order, Ugx,y,2) = Qgeix—Zf(y)'

iUO+UO+WO:0’ (3) .
go ™ Ugoy * Wgoz Wy(X,Y,Z) = Qgie*#f(y),

whereQ, is a matching constant to be determined. The ve-
locity profile f(y) satisfies

— e T\ — U2
Re(ugUgo + vgoUgy + Wgolg,) = Vg,

— - 2
Relugvgo == pgly + Vzvgo,

3
ReiE(l—yz)fz—iP+f” in —1<y<1,

I:zem_gwgo =~ Py1z + nggOv (4)
with boundary conditions with boundary conditions
Ugp =vgo=Wg=0 ony==+1, f=0 ony==+1,
Ugo = -ng, V=Wgp=0 onz=0. (5) and with normalization constaft given by

1
fdy=2.

There is also a matching condition to the outer flow as J
-1

Z— 00,
The inner-region gas flow is driven by the boundary con-
dition ug=-Ug, on z=0. Theu component of the flow is This normalization gives the velocity profile unit mass flux,
controlled by theu-momentum equation. The andw com-  corresponding to the outer flow responding exactly to the
ponents of velocity are then required to be nonzero in ordekinematic movement of the interface without an intervening
to satisfy the mass conservation: they are forced by the tranganer region. The matching consta@, can therefore be
verse pressure gradient fropg,. In normal one-dimensional viewed as the effect on the mass flux produced by the inner
boundary layers there is no need for such transverse pressuggion.
gradients, but in the inner region here the transverse veloci- Results for the velocity profilé(y) at various Reynolds
ties must vary over the short distance of the gap in order teumbers Re were reported earflanhere we also gave re-

satisfy their boundary conditions. sults for the normalization constaR{Re). Due to a different
nondimensionalization of the pressure, a viscous scaling in
C. Outer flow this paper compared with an inertial scaling before, the val-

ues of P in this paper are Re times the values reported

The flow in the outer region is that we calculated .
earlier.

earlier’ Far from the meniscus, as— e, the mean flow

assumes itgnondimensionalparabolic form D. Matching

Ug—> §(1 —yz). Re-expressing the above outer solution in terms of the
2 inner variables and taking the limé— 0, which forcesZ

The cross-gap flow, vanishes in the outer region, while the — 0, gives the matching conditions on the inner solution as
vertical and downstream components become of similar di¢—*

rr_1enS|onaI size. This requires a rescaling of our nondimen- Up— 0, vg—0, Wyo— Qgif(y),

sional velocities

Ug = €Ug. Pgo = QgP: Pg1 — ~ QgPZ+ leP: (6)

Similarly the length scale for variations in the vertical direc- whereQyg, is a smalle correction to the leading order match-
tion is no longer the gap thickness but the wavelength, reing constanQ,.
quiring a rescaling We first note that unlike standard boundary-layer prob-
s= &7 lems the leading-order downstream veloaity, decays out
of the inner region. This is necessary if the downstream com-
With these rescalings, the governing equations become g@inent is to become the same size as the vertical component
leading order in the outer region.



The interplay between the inner and outer regions of the  ReIIe*) - p, + 2ew;, = - Py + 2eWy, + egggyer—ct)
gas flow can now be understood. The inner flow is driven by
the boundary conditiomigo=-ug, on z=0, and through the plus someO(€%) terms not exhibited, where
mass conservation produces a vertical flogy=Qif(y) out )
of the inner region. The outer flow responds to this mass flux I1=(pglk + ¥K)/pg(Ug)
Q. out of the inner region, producing a press@gP on the . . . oL .
in?]er region, which passes straight through thfinner regiohS the ratio r? f tr:je Stag.'ll.'z.mg g;gawtatllcl)_nal and caplltljary prehs-
as the constamy, to apply a pressure on the liquid below, sures to the destabilizing Bernoulli suction and another
This pressure will drive a flow in the liquid which in turn parameter
will move the interface. . . G= ykzhzl,ug<Ug)
The important matching consta@y, is the net mass flux
out of the inner region. This can be found by integrating thewhich is necessarilpp(Rell).
mass conservation equati¢d) in the inner region over the
width of the gap —XKy<1 and through the depth of the B. Inner expansion

inner region to some large heightr<H. Thus ) - L :
! g g '9 . With a similar expansion in smal as employed in the

1 H . . .
as inner meniscus region,
J dyf dz(ugy + vgoy + Wgor) = 0. 9 g
o0 p(xY.zt) ~ €% pg + epa(y,2)],
Now thevy, term integrates across the gap between vanish-
ing b.oundary condjtions on the ;idgwalls, while W‘@o;_ u(x,y,zt) ~ €%y,(y, 2),
term integrates vertically from vanishing boundary condition
at z=0 to the outer formwy— Q4if(y), where the profile the governing equations at leading order then become
f(y) integrates across the gap by normalization to 2. Hence

1t ”
Qg=——f dyf dz yy. (7)
2 -1 0

In our previous paper, we ignored the small meniscus
region in the gas and assumed that the outer gas flow moved 0=-p;;, + Vavio,
up with the interface, i.e., we assumed the mass conservation

iUjg + vjoy + Wi, =0, (8)

0= Vauy,

boundary (iOI’ldI'[IOﬂ gav&,=1. We shall find thatQy=1 0=—-p,+ V§W|o, 9)
only at Re=0.
with boundary conditions
IV, LIQUID FLOW Uo=vio=Wo=0 ony==*1, (10)
A. Nondimensionalization and onz=0
The formulation of the flow in the liquid follows closely Uioz = 2Ugy,+ Ugoy,

that for the gas. The nondimensionalization of the length

scales in the inner region are the same, while for the .

velocities the gap-averaged mean liquid velodity;) re- Uiz * Wioy = Uiyl = Ugoz,

places that for the gaglJg). The viscous scaling of the pres-

sure in the liquidw(U,){,/h? is identical to that in the gas Rell - po= - Pgo,

becausew(U))=uq(Ug). With the slower velocities in the

quuid., the int_erche is now seen to propagate, at a compl_ex = i1+ 2Wig, = — Pg1 + 2Wgo, + L. (11)

velocity ¢ which is scaled by the gap-averaged mean liquid

velocity (U)). There is also a matching condition to the outer flow as
The resulting nondimensionalized equations governingg— —.

the liquid flow are then the same as those for the @as Finally the complex wave speedis given by the kine-

except all the inertial terms are set to zero, because the Reyratic boundary condition or=0,

nolds number for the liquid is very smafhuZ/ pgui smaller _

than in the gas. The no-slip boundary conditions on the side-  i[ti(y,0) = c]=wio(y,0). (12)

walls are unchanged by the nondimensionalization. Th

stress boundary conditions on the interfétgtake the non-

dimensional form

eI'his must be satisfied at each position across the gap, -1

<y<1. This is made possible by the redistribution of g

_ flow driven by the small variation of the shape across the gap

Uy, + €Wy = 267Uy, + Ug,, Z'(y). Itis the need for” to occur in the last equation of Eq.
(11) which dictated this perturbation to the flat interface was

vzt Wiy —Eyiei(x_“) =Vgz 0(63)
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+Rell e FIG. 2. Schematic representation of the matching
) + analysis.
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outer ’ Q

w; D
C. Outer flow servation equatioii8) over the width of the gap <y<1

The outer flow in the liquid has the same rescalings as i nd through the depth of the liquid inner regiod <z<0.

the gas and so is governed by the same equations as for t gus

outer flow of the gas except that the inertial terms are negli- 1 0

gible in the liquid. Thus the solution for the outer flow in the f dyJ dz(iujg + vjgy + Wig,) = 0.
liquid is (for all orders ine") -1 -H

— i Al (X Z . . . .
PI(xZ,t) = Q3ie! "2, The velocity vjp, term integrates again between vanishing
3 boundary conditions on the sidewalls, while thg), term
Ui(xY, Z,t) = Qe 22 (1 —y?), mtegrat'es from the input from the outer to the vertical flow
2 on the interface,

. 3 1
wi(x,y,Z,t) = - Qliel(x_Ct)+Z§(1 -y?, - 2IAQ + f dy wo(y,0) +2Qji =0,
1

whereQ, is a matching constant corresponding to the mass
. o where
flux in the liquid outer flow.

. 1 (2 0
D. Matching AQ =- Ef dyJ dz yq (14)
-1 —

Matching the above outer flow in the liquid to the inner
flow, we find that ag— — the inner solution must have the s the extra mass flux contributed from the liquid inner re-

following behavior: gion. We now integrate the kinematic boundary condition on
3 the liquid (12) across the width of the gap, using the result
Uo—0, vio—0, Wo—-— Q|i§(1 -y?), that the liquid mean flow on the interface is twice its value

far from the interface,

Po— Q3i, pi1— Q3iZ+Q43i, (13)

whereQ,; is a smalle correction to the leading-order match-
ing constant.

We can now see how the liquid responds to the gas. ASubstituting the result above from integrating the mass con-
explained in the matching of the gas flow, the outer gas flovgervation and the result for the matching const@ntwe
exerts a pressur@,P on the inner gas flow, which passes obtain an expression for the complex wave velocity
straight through the gas inner region as the constant pressure
Pgo=QqP- This pressure is applied to the interface. After add-
ing the stabilizing effects of gravity and surface tension in
Rell, the pressure available to drive the liquid flowgg
=pgo+ Rell. This pressure passes straight through the liquidrhis expression based on net mass fluxes avoids the need to
inner region as the constant presspygto become the pres- find the small perturbation to the interfagethat ensures the
sure driving the outer flow vid3i=p,o. The liquid outer correcty dependence ofvy on the interface which satisfies
region responds with a flow into the inner regiam, the kinematic boundary conditiaii2) at eachy.
=—Q|i§(1—y2). The net mass flow into the liquid inner re- In our previous paper, we ignored the small meniscus
gion is thereforeQ,=—i(Q4P+Rell)/3. region in the liquid. Thus we assumégifli(y,O) dy=1 in-

In order to obtain a simple expression for the complexstead of its correct value of 2, and we also omitted the term
wave velocityc, we now repeat the trick at the end of the AQ,. We shall find thatAQ,=1 at Re=0, so that these two
section on matching the gas flow. We integrate the mass comtrors cancel when there is no inertia.

1
2i2-0= J dy wo(y,0).
-1

c:2—AQ,—é(QgP+ Rell). (15)



E. Structure of the problem y=iA fori=-nytony, z=jA forj=-nztonz

It is worth pausing here to review the structure of theyyhereA =1/nyand typicallynz=3ny. The variables are held
stability calculation, see Fig. 2. Due to the viscosity of theq, 5 staggered grid in order to produce a compact pressure
gas being much smaller than that of the liquid, we can firsty,glecule without spurious pressure modes, i.e.,
solve the fast flow of the gas over an effectively stationary

liquid. The liquid then moves slowly in response to the  UgU, atiA,jA,

stresses exerted on it by the flowing gas. The vertical veloc-

ity of the liquid at the interface gives the complex wave .

speed of the perturbations. VgorUio at'A’<J * E)A'
Ensuring no-slip of the gas on the perturbed interface

drives a perturbation to the downstream gas flgyyin the 1\

inner meniscus region. Conserving mass requires a vertical Wgo:Wio at<| + E)A,JA,

gas flowwg, in the inner region. This leads to a mass fl@x

of gas into the outer region. The response of the gas in the 1 1

outer region requires a pressure fipld This pressure passes Ugo, Ui, Pgr, P11~ at <i + —)A, (j + —)A,

straight through the gas inner region, is reduced across the 2 2

interface by Rdl, the stabilizing effects of gravity and sur- the normal components of velocity to any boundary are

face tension, passes straight through the liquid inner regiofherefore held on the boundary, as is the mean flow, while the

to become a pressure figilin the liquid outer region. There  ongential velocity perturbations are held half a grid-block

it drives a viscous Hele-Shaw flow, which produces averucalaway from the boundary. The momentum equations are sat-

velocity w with @ mass fluxQ, of liquid into the inner re- sfie for each component of velocity at the staggered point

gion. In the liquid inner region, there is also a downstreamyhere that component is stored, using second-order central

flow ujo driven by the stressyo, from the perturbed gas flow  gigterencing of derivatives and second-order interpolation of

and the stress from the mean flow on the perturbed interfacg, japles held on different staggers. Boundary conditions are

U, A divergence in this downstream flow in the liquid inner 45jied with second-order accuracy by extrapolation onto the

produces the extra mass flix, which must be added to the p5ngary with up to three interior points as required, along

mass fluxQ entering the inner region to give the vertical it interpolation of other variables. Far-field conditions of

velocity wi(y,0) on the interface, and hence the complexq change in value between the boundary and one grid-block

wave speed. inside are applied to each component of velocity.
Mass conservation is achieved exactly, not just to
V. NUMERICAL SOLUTION second-order accuracy, by a pressure-projection method. In

retrospect, a pressure-update method would have been better.

The problem has now been reduced to calculating th&he mass conservation equations are satisfied at each pres-
complex wave velocitye using Eq.(15), in which there ap- sure node and then the velocity componenjsnd w, up-
pears the mass flux from the gas inner regi@ngiven by  dated. In order to satisfy exactly the mass conservation at the
integral (7), the extra mass flux from the liquid inner region next-to-boundary points while not disturbing the normal ve-
AQ, given by integral(14), and the pressure normalization locity component on the boundary, it was found necessary to
constantP(Re) given by our previous studyf the gas outer precompensate the boundary velocity for the postprojection
region. To evaluate the two integrals, we need to find the gaaddition, the latter being of course the pressure boundary
and liquid inner flowsug, anduy,, by solving Eqs(3), (4),  condition(obtained to second order by suitable extrapolation
(8), and(9) with associated boundary conditiofs), (10),  onto the boundary).
and(11) and matching condition&) and (13). These equa- The steady solution of the system of equations was
tions require numerical solution, except when the remainindgound by a time-like relaxation. First the mean flowsvere
parameter, the reduced Reynolds number Re, is small. Welaxed to equilibrium with 15riyiterations. Then the veloc-
shall later give the simple solution for small Reynolds num-ity perturbationsug,vq, andw, were simultaneously relaxed

ber, which yields a test of the numerical method. to equilibrium with again 16y? iterations, and for each it-
eration the pressurp; was relaxed with Ay iterations of
A. Method successive overrelaxation using an overrelaxation parameter

between 1.6 and 1.8. This approach is thereforengh
method, which severely reduces the opportunities of dou-
bling the spatial resolution many times.

The difficulty for a numerical approach is that the flows
are driven by the boundary conditiomg,O:—UgZ on z=0 for
the gas andig,=2ug,,+Uge, 0n z=0 for the liquid. Moreover,
the cross-gap and vertical components of the velocity in theB Checks
gas,vg andwy,, are driven by the mass conservation equa-—
tion (3). Boundary conditions and mass conservation are of- A number of tests were applied to the code. First, various
ten treated less precisely by standard numerical methods. quantities were seen to have a second-order behavior when

A finite difference method is employed. Having madethe spatial resolution was changed througf 10, 15, 20,
the gross simplification of 90° contact angles, an equispacednd 30. Second, the distance to infinity was varied through
Cartesian grid can be employed with nz=ny, 2ny, 3ny, and 5y, with 3ny being found to be very



adequate. Third, the mean flow in the liquid was checked to
obey the reflection law(y,z)=2ugy(y, ) —ug4(y,~2). This is
a good test for whether the stress boundary conditions are
being applied to second-order accuracy. Fourth, the mass
conservation was checked to be satisfied exactly.

A more demanding fifth test of the code is the behavior
at small Reynolds number Re. At Re=0, the inner equations
in the gas and the liquid have a solution

W=, o=

V=0, Wg= iu_, FIG. 3. The real part of the downstream velocity perturbation in thezgas
g g 9 >0 and in the liquidz<0 for Re=15. The nondimensionalizations of the
gas and liquid velocities differ by the factg/ u.

Ugo == ng,

U|0:_U|zi v)p=0, WIO:iu_l' VI. RESULTS

This solution represents the streamlines of the flow being F|gur_e 1 gives _numencal resuIFs for the mean flow in the
displaced exactly with the interface perturbation. Further itJas and in the I'qu'df each normgllzed by their gap-averaged
gives zero streamwise acceleration, although there is a vertY-aIu,es far from the mterfac.:e. It IS seen .that th(_a meoan flow
cal acceleration. This means that whilg, and sovg, have attains a far-field parabolic profile rapidly, with 1% by
O(Re) corrections, the downstream flowsg, and u,, have |2/>2h.

only O(Ré) corrections. The numerical solutions are found
to have such a behavior.

The solution for Re=0 also provides a test of the com-  The downstream perturbation velocityy has real and
putational accuracy, because it gives exact answers for thenaginary parts. Figure 3 gives the real part at Re=15. The
mass-flux integralQy=1 andAQ,=1. In the table below, we gas flow is driven by the boundary conditiougJ:—UgZ on
give the results forQ, and AQ, for four different spatial z=0, i.e., the gas flow must vanish on the perturbed interface.
resolutions. The results are not very good, particularly for theOn the crests, where;>0, one must therefore havgy,
liquid which is more prone to errors being driven by a stress<0, with the reverse in the troughs. Hence the real part of
boundary conditions. FortunatelyA#-extrapolation of adja- Ugo, Which is the value on the crests, must be negative. This
cent pairs improves the accuracy to an acceptable level afan be seen in Fig. 3.
around 1%. A refined extrapolation assuming the error has an  The liquid perturbation flowu,,, on the other hand, is
0O(A?) and anO(A%) component, applied to adjacent triples, driven by the boundary condition of the continuity of the
gives satisfactory accuracy of nearly four significant figuresstress on the perturbed boundany,+U;,,=Ugq,+ Ug,» In the

gas, there is little change in the stress exerted by the gas on

A. Downstream velocity g

ny Q A2 AN AQ A% APHAS e perturbed interfacely,+Ugy,,~0; it is O(R€?) at small

Re. Now the mean velocity gradient in the liquid can be seen
10 0.9462 0.8844 in Fig. 2 to increase upwards to the interface. Hence we
15 0.9741 0.9964 0.9408 0.9859 expect a negative perturbation to the liquid viscous stress,

20 0.9848 0.9986 0.9997 0.9641 0.9941 0.9986y,,,<0. This results in the negative velocities in the liquid
30 0.9930 0.9996 1.0001 0.9828 0.9978 0.9998seen in Fig. 3. Although Re=15 is not small, the general

. . . form of the real part of th wnstream perturbation veloci
The more refined extrapolation was applied to all the results0 of the real part of the downstream perturbation velocity

. . Ug is not dissimilar to the Re=0 resuliy=-u,.

given below for th.ese two mass-_flux integrals. At larger Rey- The imaginary part of the downstream velocity perturba-
nolds numbers, higher than 60, it was found necessary to use Uy is given in Fig. 4 at Re=15. Without inertia, the

a finer grid withny=40 in order to obtain good results. Note

that, as a consequence of ttény®) CPU cost, the 1.4%
accuracy obtained from extrapolation frony=10 andny

=15 would require without extrapolatiory> 30 taking over
36 times the CPU fony=15, while the 1.4 1072 accuracy
obtained from extrapolation fromy=10, ny=15, andny

=20 would require without extrapolationy>101 taking

over 3330 times the CPU fary=20. o f
Finally a sixth test of the code was available by exam- 1
ining the ratio of the pressure gradient far from the interface 0

—Pg1, to mass fluxQy, which should be equal to the pressure
normalization constanP that we found in our previous
study” This last test checks the behavior of the code at NoNgg_ 4. The imaginary part of the downstream velocity perturbation in the
zero Reynolds numbers. gasz>0 and in the liquidz<0 at Re=15.
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FIG. 5. The imaginary part of the vertical velocity perturbation in the gas at 0 20 40 60 80 100 120
Re=15. Re

FIG. 6. The mass flux in the gag, as a function of Reynolds number Re.
The continuous curves gives the real part, while the broken curve is the

imaginary part would vanish: at Re=15, it is small, about™9mnar part

10% of the real part. With a spatial variation sucheisthe

imaginary part is the value at=-/2, i.e., a quarter wave- ) ) ) )

length before the crest, where the interface has its maximum Figure 6 gives the real and imaginary parts of the gas
positive slope. In the gas, the imaginary part must vanish of?atching constan@, as a function of the Reynolds number.
the boundaryz=0. The positive value at the quarter wave- 1€ negative real part and positive imaginary pangfgive
length before the crests is due to the inertia of the mean flofhe mass-flux integra(7) for Q, a positive real part and
carrying forward the positive value in the trough before. Then€gative imaginary part. At Re=0, we have the valdg
imaginary part of the downstream velocity in the liquid is not =1- After a small peak, the real part Qf decreases, falling
due to inertia in the liquid, because the liquid Reynolds numPelow 0.8 by Re=40, while the imaginary part becomes
ber is zero. Instead this component of the liquid velocity is"@dative, approaching —0.2 by Re=40. This behavior is due

driven by the viscous stress exerted by the imaginary part d° advection by the mean flow. The real partugj diffuses

the gas flow, which is positive. into z>0 from its value fixed by the boundary condition at
z=0. As the fluid moves faster with stronger mean flows, it
B. Vertical velocity w, has less time to respond to this diffusion, and so the magni-

] ) ) ) tude of Qq decreases with Re. The advection also produces

Figure 5 shows the imaginary part of the vertical veloc-5n gyt-of-phase imaginary part. There is a hint that the de-
ity in the gas at Re=15. The velocity vanishes at the inter aase in magnitude may be following an®2trend, ap-
face and rapidly achieves the curious double-peaked form Oﬁropriate for boundary layers in shear flows.
the outer flow. This form was gxplamed in our previous Figure 7 gives the real and imaginary parts of the liquid
pape? as due to the faster advection by the mean flow on thgyta mass fluxAQ as a function of the Reynolds number
centerline giving less time for the gap-independent pressurge as the signs of the real and imaginary part of the down-
gradient to accelerate the flow. The imaginary part describegyeam liquid velocityy, are the same as fary, in the gas,
the flow at the quarter wavelength before the crests. A poSiqe mass-flux integrall4) gives the same signs for the real
tive value of the vertical velocity corresponds to a mass-fluxy,q imaginary parts okQ, as forQ,. At Re=0, we have the

there out of the inner region into the outer region above. Thig,5) e AQ,=1. The liquid extra mass fluAQ, has a similar
efflux results from the convergence of the downstream ve-

locity, which is forward in the trough behind and backwards
at the crest in front. In addition to the imaginary part, there is 12
a smaller real part from a convergence of the imaginary part

. > 1 1
of the downstream velocity. As the downstream velocity is \
forward on the up slope of the interface before the crest and 08 1 1

backwards on the down slope after the crest, the real part of 061
the vertical velocity has a small positive mass flux. The de- AQ 04 1
tailed profile is rather complex. Lol
0 -

C. Mass-fluxes Q, and AQ, o2} e

From the velocity profiles described above, we can now oal T
evaluate the mass-flux integrdlg) for Q, and(14) for AQ,. 06 ) ) ) ) . ”
The extrapolation described in Sec. V B was applied to the 0 20 40 60 80 100 120
values of these integrals obtained from three different spatial Re

. . 2 3
resolutions, assuming the error haxiA ) and O(A) parts. F|G. 7. The extra mass flux in the liquiiQ, as a function of Reynolds

These integrals have real and imaginary parts which depengmper Re. The continuous curves gives the real part while the broken
on the Reynolds number Re. curve is the imaginary part.
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FIG. 8. The combinationP(Re)=Re/(-Qq P, +QyP;—3AQ;) representing  FIG. 9. The critical gas velocityJ, scaled byV. as a function of the

the reduction of the critical Kelvin—Helmholtz velocity. The broken curve is wavenumbek scaled by 1l for Re.=40. The continuous curve is the result

the corresponding result of our first pag&ef. 2), in which we effectively ~ for Eq. (18). The dashed curve is the corresponding result for our previous

took Qu=1 andAQ,=1. theory (Ref. 2) for the outer ignoring the existence of the inner meniscus
region. The dotted curve is for the simple Euler—Darcy the&sf. 1).

dependence on the Reynolds number as the gas maggflux
with the real part decaying half as much while the imaginaryFortunately with our viscous scaling of the pressure, the

part decays twice as much. wavenumbek only enters our resufb in the combination of
. N the reduced Reynolds number R,@géng>kh2/Mg. It is con-
D. Marginal stability venient to introduce a capillary length scaleand the gas

The complex wave velocite in (15) has a real part velocity V. whose Bernoulli's pressure has the capillary pres-
which is the speed of propagation of the disturbance and afureé of this length, along with a reduced Reynolds number
imaginary part which gives the growth rate. We are inter-R& based on these two quantities

ested in the conditions and, in particular, the mean speed of y 2y poVeh?
the gas(Ug), which gives no growth. The imaginary part of =A== Ve=1 L Re = JI_ (17)
the wave speed vanishes when m9 Pyl Kyl
plU? 1 Re With these definitions, Eq16) can be rearranged to
Plg/k+ Vk_ I _(D(Re)_ _QgrPr+QgiPi _SAQIi ’ <<—qu)2—Lkh)2(I>(Re) (18)
(16) \VA T2kl

where the final subscripts denote the real and imaginaryith
parts. From our evaluation of the mass flugsandAQ, in Uy
Sec. VI C and from our evaluation of the pressure normal- Re= Revg—kh-
ization constanP in our previous papér(there a factor Re :
smaller), we can now evaluate(Re) defined to be the right- We now plot in Fig. 9 the right-hand side of E{.8) as
hand side of(16). The result is plotted in Fig. 8. For small a function ofkl. for Re.=40. We also plot the corresponding
Reynolds numbers, we found previoufsipow converted to  results of our previous theory which used PjRe)in place
the viscous scaling of pressuitbpt P,~3i—§—gRe, while our  of the ®(Re) of this paper, along with the results of the
numerical test for the meniscus region in Sec. VB g&@ye simple Euler-Darcy theory which setb=1. The simple
and AQ=1+0O(R€&) as Re-0. Hence<D~g—2. As Re in- Euler-Darcy theory has a minimum mean gas velocity of
creasesd increases, passing through the value 1 by RgUg=V: at kl.=1. Our previous theory gave a minimum
=30. Also plotted in Fig. 8 is the corresponding result of ourvelocity of 0.899V at kl.=0.875 when Re=40, while our
first paperz, in which we effectively tookQ, andAQ=1 and  new theory has a minimum of 1.0¢1 at kl.=0.725. The
so had®=1/-P,(Re). That previous theory passed through simple Euler—Darcy theory takes the destabilizing Bernoulli
—-P,=1 at Re=185. The valu®=1 is important in that it is pressure to b@Q(ng2 independent of the Reynolds number.
the value taken by the original simple thednghich gave a  Our previous theory of the velocity profile across the gap in
better prediction of their experiments than our “improved”the outer region found a higher pressure. An increase in the
theor)f incorporating the correct velocity profile across the pressure requires a lower mean gas velocity to overcome the
gap in the outer region. stabilizing effects of gravity and surface tension. Our new
Equation(16) gives the condition of no growth. We now theory reduces the destabilizing pressure by reducing the flux
wish to minimize the mean gas velocity,) which satisfies out of the inner meniscus region into the outer region. As
this condition, minimizing over the wavenumberThere is  well as the increase in the minimum mean gas velocity, the
a slight complication that our calculation of the flow in the wavenumber which minimizes the velocity decreases pro-
inner and outer regions was nondimensionalized uging gressively from the Euler—Darcy valké =1 to our previous



(a) 15 . . . . terface across the gap. This form of the interface changes
two details, first the flow in the meniscus region and second
the stabilizing capillary pressure. We have not yet been able
to extend our numerical calculation of the flow in the menis-
cus region to the curved geometry of the semicircular inter-
face, and so our comparison with experiments must be less
than satisfactory. The stabilizing capillary pressure, on the
other hand, can be corrected by application of the Park and
Homs;f1 7l 4 factor, which we will now include.
The original experimen{sused nitrogen gas of density
07 - - - - pg=1.28 kg M and viscosity u4=17.5X 10° Pas with a
0 20 40 60 8 100 silicon oil of densityp, =965 kg nT® and interfacial tension
(b) y=20.6x 103 N m™%. The half-gap thickness was=0.175
11 ' ' ' ' X 107° m and the gravitg=9.81 m s2. Replacingy by the
Park and Homsy corrected valugw/4) in the capillary
length and velocity in Eq.(17), we have for these
experiments

L=1.31X10°%m, V.=4.40ms! R.=7.54.

14 | +

13t

06 | 1 At the latter Reynolds number, we now predict the minimum
05| - ] gas velocity for an instability,=0.814\ occurring at a
04| ] wavenumbek l.=0.956. This is hardly any different to our
. N . . previous predictionsU./V.=0.815 at k.«=0.956. The
03 20 40 60 30 100 experiments foundU./V.=1.05 at k.«=0.75. Our new
Re, theory therefore fails to make any progress in reducing the

o _ _ y disagreement between theory and observations for the first
FIG. 10. (a) The minimum mean gas velocity, for an instability as a

function of the Reynolds number Rand (b) the minimizing wavenumber experiments. . . ﬁ .
k.. The continuous curve is our new theory, while the dashed curve is the IN @ second series of experimentghe same nitrogen
corresponding results of our previous theory. The points are experimentaind a slightly different silicon oil of density,=952 kg m3

results(Ref. 3). and interfacial tensiory=20x 103 N m™ were used. These
give the capillary length and velocity of E¢L7)

theory, to our new theory. These reductions in the wavenum- - =1.30x 10°m, V.=4.35ms™

ber reflect the reduction ob with Re and sd. Several gap widths were use=0.175, 0.25, 0.35, 0.48,
Figure 9 is for Re=40. We have plotted similar f|g.ur.es 0.60, and 0.83 mm. We have plotted the experimental results
for a range of Reynolds- numbers ’RMd fo.und the mini- for the minimum gas velocity for instability and the minimiz-
mum L.JC mean gas veIOC|ty(Qg> qnd minimizing wavenum- ing wavenumber in Fig. 10. We see that the experimental
berk in each case. We plotin .F|g.. 10(e minimum ya}lue data are well above the predictions of our first paper and that
Uc/V- as a function of Re and in Fig. 10(bXhe minimizing our new theory is a substantial move in the correct direction

kel-. We also P'F’t the corresporjdlng results for Our Previous, ¢ ofjjl falls someway short. It may be that using the proper
theory. The minimum gas velocity to produce an |nstab|I.|ty 'Ssemicircular interface in the calculation of the flow in the
seen to increase with the Reynolds number. Rart of this inner meniscus region would produce a larger effect.

stabilization is due to a reduction of the destabilizing Ber-
noulli pressure in the outer region, represented by our pres-

sure coefficienP, found in our previous paper. But there is a VIIl. MECHANISM
similar magnitude of stabilization caused by the reduced

mass fluxQg, a result of the analysis of this paper. Our new
prediction for the minimum gas velocity. reachesV. the
value of the simplest Euler—Darcy theory by.R&9.

We now give a pictorial account of the Kelvin—
Helmholtz instability in a Hele-Shaw cell, see Fig. 11. Be-
cause the viscosity of the liquid is much larger than that of
the gas, the gas moves rapidly over an effectively static lig-
uid. The liquid responds slowly to the viscous stresses ap-
plied by the gas flow. The motion of the liquid gives the

We now compare our new predictions for the onset ofpropagation and growth of a perturbation of the interface.
the instability with two sets of experimental observations, the  Making the gas satisfy the no-slip boundary condition on
original experimentsand some later experimeﬁttm which  the perturbed interface induces a perturbation to the down-
the gap width was varied. stream gas flowiyg which is negative over the crestshere

Our calculations have been made for a flat interfacehe mean flow is positiveand positive in the trough@here
across the gap with 90° contact angles with the sidewallsthe mean flow would be negative), as denoted by the double
The experiments were, however, performed with perfectlyarrows in Fig. 11(a). The convergence of this flow in the
wetting fluids with 0° contact angles and a semicircular in-meniscus region to the left of the crests drives a mass@|ux

VIl. COMPARISON WITH EXPERIMENTS



from Pr:—g—;‘Re andQ,=1. The approximately parabolic ve-
locity profile across the gap produces the numerical faﬁor
increase in the value of the standard not-in-a-Hele-Shaw-cell
Kelvin—Helmholtz theory. As the Reynolds number in-
creases, bothP; and Qg decrease. We calculated the factor
P, from the outer gas flow in our previous paper. Above
Re=10, the velocity profile in the outer gas region has a
maximum not in the center of the gap but near the walls.
There the mean velocity is slower, giving longer for a
smaller pressure gradient to accelerate the prescribed mass
flux. In this paper, we calculated the mass flgxof gas out

of the meniscus region into the gas outer region, and found
that its real part decreases with Re. This reduction comes
from the downstream velocity perturbatiag, having less
time, when the mean fI0\(\Ug> is faster at higher Re, to react
to the perturbations of alternating signs diffusing from the
interface.

While inertia is responsible for the destabilizing Ber-
noulli suction over the crests, it also gives two small correc-
tions, one stabilizing and the other destabilizing. Within the
gas meniscus region, strong advection by the mean flow
leads to the maximum of the downstream velocity perturba-
tion not being in the trough as in Fig. 11(ayt being a little
downstream of the trough, with the minimum similarly being
a little downstream of the crests. This out-of-phagg> 0 is
there out into the outer region of the gas flow, with a similardenoted by the upper double arrows in Fig(cd1The con-
divergence to the right of the crests driving a mass flux thergergence and divergence of this meniscus flow leads to the
into the meniscus region, as denoted by the vertical arrows iBut-of-phase mass fluQ, <0, denoted by the vertical ar-
Fig. 11(a). In the outer region, the gas flows from the left torows in Fig. 11(c). The Hele-Shaw flow in the gas outer
the right of the crests, as denoted by the upper curved arrowggion requires a pressure maximum on the crests and a
in Fig. 11(a). Being a Hele-Shaw flow, this flow of the gasminimum in the troughs. Exerting this pressure on the gas
requires a positive pressure to the left of the crests and drives a liquid flow which raises the troughs and pushes
negative pressure to the right. This pressure distributipn  down the crests, i.e., is a stabilizing effect. The downstream
=QgP is the main part of the viscous stress exerted by theelocity perturbation in the gas meniscus region also exerts a
gas on the liquid. The liquid responds with a Hele-Shaw flowviscous stress on the liquid, driving an out-of-phase liquid
from the left to the right of the crests, as denoted by theflow u,,;>0 denoted by the lower double arrows in Fig.
lower curved arrows in Fig. 1&). This flow of the liquid  11(c). The convergence and divergence of this liquid flow
raises the interface to the right of the crests and lowers it troduces the extra mass flsQ; <0, which pushes up the
the left, i.e., propagates the perturbation to the right. interface in the crest and pulls it down in the trough, i.e., is a

The paragraph above describes the flow when it is visdestabilizing effect. Both these effects are small numerically.
cously dominated. Inertia must be added to give a growth of
the perturbation. Now in the gas outer region, the perturba-
tion to the horizontal flowJy is in the direction of the mean
flow over the crests and against it over the troughs, i.e., tak-
ing the mean and perturbation velocities together, the flowX. CONCLUSION
speeds up over the crests and slows down over the troughs.

To accelerate the flow over the crests an inertial reduction of We have found that the small meniscus region within a
the pressure is required there, with a corresponding increagmp width of the interface has a larg®1) effect on the
over the troughs, as indicated in Fig. 11(b). This distributionKelvin-Helmholtz instability in a Hele-Shaw cell. Normally
of pressurdQ4P), in the gas is applied to the liquid below, one would expect to ignore this small region, just calculating
and there drives the Hele-Shaw response indicated by th&hat are our outer flows either side of the interface and to
curved arrows in Fig. 11(b). The crests then tend to rise anthem then applying dynamic and kinematic boundary condi-
the troughs descend, for a growth of the perturbation of theions across the interface. From Park and Hoﬁm have
interface. This destabilizing Bernoulli suction of the crestsknown for some time that the curved interface enhances the
upwards has to overcome the stabilizing effects of gravitycapillary pressure in the dynamic boundary condition by the
and surface tension, which sets a minimum gas velddjty factor #/4 for a perfectly wetting liquid. The unexpected
for an instability. result of this paper is that the kinematic boundary condition

At low Reynolds numbers Re, the destabilizing Ber-must also be modified in some studies. One cannot apply a
noulli pressure takes a&dimensional)value %épg<ug>2k§0 mass conservation condition to the outer flows

FIG. 11. Physical explanation of the instabilita) The basic flow viscous
flow. (b) Bernoulli suction causes growttt) Two small inertial corrections.



al 9l _ flat interface across the gap with 90° contact angles. An ac-

gt + Ug( =W, curate calculation with the correct semicircular interface for
a perfectly wetting liquid would be very demanding, but

where the overbar denotes an average taken across the widgfpuld certainly yield furthe©(1) changes in the predictions.

of the gap. The above equation would S@y=1, which we  There are other simplifications of the experiments made by

have found to be true only at small Reynolds numbers Re.the theory which we detailed in our previous papBerhaps
The reason the small region has a large effect is that thgroplems of the moving contact line remain the source of the

downstream velocity is very much larger in the meniscugargest uncertainty.

regions compare with that in the outer regions. The outer | this paper, we have concentrated on the minimum gas

regions have horizontal and vertical length scales both equ%locity for an instability. Experiments have examined a

to the wavelength. Mass conservation then gives the horizons,mper of other features, such as the phase velocity and

tal and vertical velocities must be the same size in the OUteépatial growth rates® Subcritical nonlinear behavior has
regions. The vertical velocity has the same size in the out&jeen reported Our opinion is that a careful analysis of these
as in the inner meniscus region. The horizontal velocity inyenaviors cannot be contemplated before the onset condition

the meniscus region is then necessarily larger than verticalyy, first he successfully predicted, and that may require mas-
velocity by the ratio of the wavelength to the vertical eXtenttering the effects of the moving contact line

of the meniscus region, the width of the gap. Thus the hori-

zontal yelocny Is an Ord?r of magnitude _Iar.ger in the menis-1p Gondret and M. Rabaud, “Shear instability of two-fluid parallel flow in
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