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Kelvin–Helmholtz instability in a Hele-Shaw cell: Large effect
from the small region near the meniscus

E. J. Hincha!

DAMTP-CMS, Cambridge CB3 OWA, United Kingdom

F. Plouraboué
DAMTP-CMS, Cambridge CB3 OWA, United Kingdom and Institut de Mécanique des Fluides de Toulouse,
UMR 5502 CNRS, Toulouse, France

In an attemptto improve the poor prediction of our previous theory, we examine corrections from
the small region in a Hele-Shaw cell near the meniscus where the flow is three dimensional. At
larger Reynolds numbers, we find anOs1d change to the effective boundary condition for mass
conservation which is to be applied to the large scale flow outside the small region.

I. INTRODUCTION

The Kelvin–Helmholtz instability in a Hele-Shaw cell
has been studied experimentally by Gondret and Rabaud,1

who observed the interface between two horizontal flows of
a fast gas above a slow viscous liquid. They also performed
a simple stability analysis based on the Darcy equation for
the gap-averaged flow in a Hele-Shaw cell with an additional
term representing inertial effects, which also just used the
gap-average velocity. We reexamined this problem2 by re-
placing the gap-averaged description with an asymptotic
analysis of the Navier–Stokes equation which exploited the
thinness of the gap compared with the wavelength of the
instability. The prediction of our more detailed theory was
some 20% too small for the critical gas velocity at the onset
of instability, whereas Gondret and Rabaud’s simple theory
was relatively close to their experimental observations. We
observed many subtle differences between the theory and the
experimental conditions, but none that we could estimate ac-
counted for the large 20% discrepancy. This paper returns to
the long-wave approximation, to find corrections from the
previously neglected small region near the meniscus.

The appropriate small parameter to measure the thick-
ness of the half gaph compared with the wavelength of the
instability, 2p /k, is e=kh, which had a value around 0.13 in
the experiments. Our initial hopes were to find a correction
of 2e to remove the 20% shortfall in the previous predic-
tions. Of course the long-wave approximation often has cor-
rections Ose2d which would have been too small. To our
surprise we find anOs1d correction, a large effect from the
small region.

Our previous calculation of the large-scale flows away
from the meniscus now becomes the outer approximation in
a matched asymptotic expansion in which the inner approxi-
mation is the flow in the small region near to the meniscus.
Our previous calculation applied an intuitive boundary con-
dition of the conservation of mass flux on the outer flows

above and below the neglected meniscus region. Matching
the asymptotic expansions, we now findOs1d changes to that
intuitive boundary condition, because hidden in the meniscus
there is a large and varying mass flux along the interface.

In this paper we restrict attention to the critical gas ve-
locity at the onset of the Kelvin–Helmholtz instability. We
shall not study the associated phase velocity of the instabil-
ity, which involves awkward questions of how the contact
line moves. Fortunately, the calculation of the real and
imaginary parts of the wave velocity decouple in this linear
stability analysis.

The details of the three-dimensional flow in the small
region near the meniscus require numerical solution. To sim-
plify the numerical problem, we make a gross simplification
of the geometry by assuming 90° contact angles of the
liquid–gas interface with the side walls, so making the inter-
face nearly flat across the gap. This unjustified simplification
will mean that we cannot make detailed comparison with the
experiments, but instead can only indicate that there is a
significant effect to be taken into account.

II. GOVERNING EQUATIONS

A. Gas–liquid decoupling

We will solve the Navier–Stokes equations in each fluid

= ·u = 0,

r
Du

Dt
= − = p + m¹2u + rg,

using subscriptsg andl for the gas and the liquid, initially in
z.0 andz,0, respectively. We apply no-slip boundary con-
ditions on the vertical sidewalls

u = 0 on y = ± h.

On the disturbed interface between the gas and the liquidz
=z8sx,y,td, which will satisfy
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]z8

]t
+ u · = z8 = w,

we apply continuity of velocity and a jump in the stress due
to capillary pressure

fs ·ng = − gkn,

where k is the surface mean curvature andg the surface
tension.

The viscosity of the liquid is very much larger than that
of the gas,ml @mg, and this permits a useful decoupling of
the calculation of the flow in the gas and the liquid.2 Because
the length scales of the flow and viscous stresses are similar
in the gas and the liquid, the velocities in the gas must be
very much larger than those in the liquid, by a factorml /mg.
Hence as far as the fast gas is concerned, the liquid is virtu-
ally stationary. This means when calculating the gas flow we
may treat the surface perturbation as static and may apply
there a no-slip boundary condition

ug = 0 on z= z8.

Once the decoupled gas flow is found, we may calculate the
viscous stress it exerts on the liquid,

sl ·n = sg ·n + gkn.

This stress then drives the flow in the liquid. Solving this
decoupled flow in the liquid, we eventually find its velocity
at the interface. The component of the liquid velocity at the
surface which is in phase with the surface perturbation is
responsible for the growth of the disturbance, while the out-
of-phase component produces a propagation of the distur-
bance. In this paper we aim to find the onset conditions, i.e.,
the conditions under which the in-phase component of the
velocity of the liquid at the interface vanishes.

There are two stabilizing mechanisms of the Kelvin–
Helmholtz instability, gravity and surface tension, both act-
ing on the length scale of a wavelength. Disturbances to the
interface on the smaller length scale of the gap between the
plates could therefore produce very large capillary pressures
which cannot be sustained. Hence the disturbance of the in-
terface across the gap must have a very small amplitude,
which can therefore be achieved very rapidly. Hence the
cross-sectional shape adopts, quasi-instantaneously and by
very small displacements, a shape consistent with the given
contact angles which gives no velocity at the interface that
could distort the shape, leaving just a single net mass-flow
mode.

B. Mean flow

Before we look at the instability, we need to find the
base or mean flow when the interface is flat,z;0. The mean
flow is driven by a constant horizontal pressure gradient,
which by continuity in normal stress must be identical in the
gas and the liquid,

dp̄g

dx
=

dp̄l

dx
.

The unidirectional flowsū=fūsy,zd ,0 ,0g satisfy

0 = −
dp̄

dx
+ mS ]2ū

]y2 +
]2ū

]z2D .

Far from the interface, the mean flow becomes parabolic

ū → −
1

2m

dp̄

dx
sh2 − y2d asz→ ± `.

In the gas, we need to add to this far-field a harmonic func-
tion which enables the no-slip boundary condition to be sat-
isfied on the interfacez=0. Thus

ūg =
3

2
kUglS1 −

y2

h2D
− kUglo

n=0

48s− dn

p3s2n + 1d3cosS s2n + 1dpy

2h
De−s2n+1dpz/2h,

where the gap-averaged mean flow is

kUgl = −
h2

3mg

dpg

dx
.

Figure 1 shows that the mean flow achieves the far-field
parabolic form very rapidly, well within 1% byz.2h.

The mean flow in the liquid is driven by the pressure
gradient as well as a viscous stress applied by the above gas
flow, i.e.,

ml
]ūl

]z
= mg

]ūg

]z
on z= 0.

One can easily verify that the liquid mean flow is given by

ūlsy,zd =
mg

ml
f2ūgsy,`d − ūgsy,− zdg.

Again the mean flow achieves its far-field form very rapidly.
The flow of the liquid at the interface is exactly twice the
far-field parabola, one half being pushed along by the pres-
sure gradient and the other half being pulled along by the
tangential viscous stress from the gas.

FIG. 1. The mean velocity in the gasz.0 and in the liquidz,0 normalized
by their different gap-averaged values far from the interface,kUgl andkUll,
which differ by a factorml /mg.



C. Linearized perturbation

We now linearize the governing equations for a small
disturbanceu8 of the base flowū. This linearization requires
a small displacement of the interfacez8!h and a small slope
]z8 /]x!1. The linearized Navier–Stokes equations are

= ·u8 = 0,

rS ]u8

]t
+ ū

]u8

]x
+ u8 · = ūD = − = p8 + m¹2u8.

No-slip boundary conditions must be applied on the
sidewalls.

Linearizing the boundary condition that the gas velocity
vanishes on the disturbed interface, we have

Sz8
]ūg

]z
,0,0D + ug8 = 0 atz= 0.

All the perturbed flow in the gas is driven by the first term in
expression above, the nonvanishing mean gas flow on the
perturbed interface.

Similarly linearizing the stress boundary condition, we
have

z8s̄z · n̄ + s8 · n̄ + s̄ ·n8

= sz8mūzz,0,−z8p̄zd

+ smsuz8 + wx8d,msvz8 + wy8d,− p8 + 2mwz8d

+ sp̄zx8 − mūyzy8,p̄zy8 − mūyzx8,− mūzzx8d

evaluated atz=0 must jump by the capillary pressure
f0,0,gszxx8 +zyy8 dg. In the expression for the surface curvature,
we have assumed that the interface is nearly flat, as appro-
priate for the 90° contact angle. Now in the gas,p̄gz=−rgg,
which is negligibly small compared with the similar term in
the liquid. Moreover on the interfacez=0, ūg=0=wg8 for all y
and x, and so several terms vanish,wgx8 =wgy8 = ūgy=0. Also
from our expression for the mean flow in the liquid, we have
mlūlzz=−mgūgzz on z=0, as well asmlūlz=mgūgz. Finally, the
pressure in the mean flowp̄ is continuous atz=0. Hence the
viscous stresses exerted by the gas on the liquid onz=0 are

mlsulz8 + wlx8 d − mlūlyzy8 = 2z8mgūgzz+ mgugz8 ,

mlsvlz8 + wly8 d − mlūlyzx8 = mgvgz8 ,

z8rlg − pl8 + 2mlwlz8 = − pg8 + 2mgwgz8 + gszxx8 + zyy8 d. s1d

The liquid flow evaluated at the interfacez=0 gives by
the kinematic boundary condition the slow evolution of the
surface disturbance

]z8

]t
+ ūl

]z8

]x
= wl at z= 0.

We will now consider a perturbation of the interface with
a real wavenumberk and complex velocityc whose imagi-
nary part will give the growth rate and real part the speed of
propagation. Thus

z8sx,y,td = z0e
iksx−ctdf1 + e3z9sydg.

Here we takez0 to be the gap-averaged perturbation. The
variation of the interface across the gap,z9syd, is required to
drive a redistribution of the vertical velocity of the liquid at
the interface which enables the kinematic boundary condi-
tion above to be satisfied with the parabolicūl and z8 con-
stant sto leading orderd. We shall find that this variation of
the interface across that gap is very small,Ose3d.

III. GAS FLOW

A. Nondimensionalization

As we must concentrate our attention on the small me-
niscus region, we scale the flow directionx by the inverse
wavenumberk−1 and the cross-gap directiony and vertical
directionz by the gap half separationh. The mean flowūg is
scaled by its gap-averaged value far from the interfacekUgl.
Thex component of the velocity perturbationu8 is scaled by
kUglz0/h, which is the scale of the mean flow at a heightz
=z0. The other two components of the velocity perturbation,
v8 and w8, are scaled bykUglkz0, which is the mean flow
times the slope of the perturbed interface. Note that in com-
mon with boundary-layer problems the cross-gap and verti-
cal velocity perturbations are smaller than that in the down-
stream direction by the small factorkh. Finally the pressure
perturbation is scaled viscously bymgkUglz0/h2.

Dropping the primes on the perturbation quantities, and
remembering that the gas problem is quasistatic, the nondi-
mensionalized equations governing the gas flow are

ugx + vgy + wgz= 0,

Resūgugx + vgūgy + wgūgzd = − epgx + e2ugxx+ ¹2
2ug,

Reūgvgx = − e−1pgy + e2vgxx+ ¹2
2vg,

Reūgwgx = − e−1pgz+ e2wgxx+ ¹2
2wg, s2d

where

¹2
2 =

]2

]y2 +
]2

]z2, Re =rgkUglkh2/mg

is the reduced Reynolds number comparing advection along
the streamlines with viscous diffusion across streamlines,
and

e = kh

is the small parameter measuring the thickness of the gap
relative to the wavelength of the instability. The boundary
conditions to be satisfied are

ug = vg = wg = 0 ony = ± 1,

ug + zūgz= vg = wg = 0 onz= 0,

where the nondimensionalized quasistatic interface perturba-
tion becomes

z = eixs1 + e3z9d.



B. Inner expansion for the meniscus region

The governing equations above have the standard feature
of boundary-layer equations that the pressure must be con-
stant at leading order across the inner region, otherwise there
would be large sideways accelerations forvg and wg. This
feature follows from the different scalings of the different
velocity components. Thus we seek an expansion in smalle,

pgsx,y,z,td , eixfpg0 + epg1sy,zdg,

ugsx,y,z,td , eixug0sy,zd.

The governing equations then become, at leading order,

iug0 + vg0y + wg0z = 0, s3d

Resiūgug0 + vg0ūgy + wg0ūgzd = ¹2
2ug0,

Reiūgvg0 = − pg1y + ¹2
2vg0,

Reiūgwg0 = − pg1z + ¹2
2wg0, s4d

with boundary conditions

ug0 = vg0 = wg0 = 0 ony = ± 1,

ug0 = − ūgz, vg0 = wg0 = 0 onz= 0. s5d

There is also a matching condition to the outer flow as
z→`.

The inner-region gas flow is driven by the boundary con-
dition ug0=−ūgz on z=0. The u component of the flow is
controlled by theu-momentum equation. Thev andw com-
ponents of velocity are then required to be nonzero in order
to satisfy the mass conservation: they are forced by the trans-
verse pressure gradient frompg1. In normal one-dimensional
boundary layers there is no need for such transverse pressure
gradients, but in the inner region here the transverse veloci-
ties must vary over the short distance of the gap in order to
satisfy their boundary conditions.

C. Outer flow

The flow in the outer region is that we calculated
earlier.2 Far from the meniscus, asz→`, the mean flow
assumes itssnondimensionaldparabolic form

ūg → 3

2
s1 − y2d.

The cross-gap flowvg vanishes in the outer region, while the
vertical and downstream components become of similar di-
mensional size. This requires a rescaling of our nondimen-
sional velocities

ug = eUg.

Similarly the length scale for variations in the vertical direc-
tion is no longer the gap thickness but the wavelength, re-
quiring a rescaling

z= e−1Z.

With these rescalings, the governing equations become at
leading order

Ugx + wgZ = 0,

ReūgUgx = − pgx + Ugyy,

Reūgwgx = − pgZ + wgyy,

with correctionsOse2d.
The solution of these outer equations has the following

potential formsaccurate to all orders inend,

pgsx,Zd = QgPeix−Z,

Ugsx,y,Zd = Qge
ix−Zfsyd,

wgsx,y,Zd = Qgie
ix−Zfsyd,

whereQg is a matching constant to be determined. The ve-
locity profile fsyd satisfies

Rei
3

2
s1 − y2df = − iP + f9 in − 1 , y , 1,

with boundary conditions

f = 0 ony = ± 1,

and with normalization constantP given by

E
−1

1

f dy= 2.

This normalization gives the velocity profile unit mass flux,
corresponding to the outer flow responding exactly to the
kinematic movement of the interface without an intervening
inner region. The matching constantQg can therefore be
viewed as the effect on the mass flux produced by the inner
region.

Results for the velocity profilefsyd at various Reynolds
numbers Re were reported earlier,2 where we also gave re-
sults for the normalization constantPsRed. Due to a different
nondimensionalization of the pressure, a viscous scaling in
this paper compared with an inertial scaling before, the val-
ues of P in this paper are Re times the values reported
earlier.

D. Matching

Re-expressing the above outer solution in terms of the
inner variables and taking the limite→0, which forcesZ
→0, gives the matching conditions on the inner solution as
z→`

ug0 → 0, vg0 → 0, wg0 → Qgifsyd,

pg0 = QgP, pg1 → − QgPz+ Qg1P, s6d

whereQg1 is a smalle correction to the leading order match-
ing constantQg.

We first note that unlike standard boundary-layer prob-
lems the leading-order downstream velocityug0 decays out
of the inner region. This is necessary if the downstream com-
ponent is to become the same size as the vertical component
in the outer region.



The interplay between the inner and outer regions of the
gas flow can now be understood. The inner flow is driven by
the boundary conditionug0=−ūgz on z=0, and through the
mass conservation produces a vertical flowwg0=Qgifsyd out
of the inner region. The outer flow responds to this mass flux
Qg out of the inner region, producing a pressureQgP on the
inner region, which passes straight through the inner region
as the constantpg0 to apply a pressure on the liquid below.
This pressure will drive a flow in the liquid which in turn
will move the interface.

The important matching constantQg is the net mass flux
out of the inner region. This can be found by integrating the
mass conservation equations3d in the inner region over the
width of the gap −1,y,1 and through the depth of the
inner region to some large height 0,z,H. Thus

E
−1

1

dyE
0

H

dzsiug0 + vg0y + wg0zd = 0.

Now thevg0y term integrates across the gap between vanish-
ing boundary conditions on the sidewalls, while thewg0z

term integrates vertically from vanishing boundary condition
at z=0 to the outer formwg0→Qgifsyd, where the profile
fsyd integrates across the gap by normalization to 2. Hence

Qg = −
1

2
E

−1

1

dyE
0

`

dz ug0. s7d

In our previous paper, we ignored the small meniscus
region in the gas and assumed that the outer gas flow moved
up with the interface, i.e., we assumed the mass conservation
boundary condition gaveQg=1. We shall find thatQg=1
only at Re=0.

IV. LIQUID FLOW

A. Nondimensionalization

The formulation of the flow in the liquid follows closely
that for the gas. The nondimensionalization of the length
scales in the inner region are the same, while for the
velocities the gap-averaged mean liquid velocitykUll re-
places that for the gas,kUgl. The viscous scaling of the pres-
sure in the liquidmlkUllz0/h2 is identical to that in the gas
becausemlkUll=mgkUgl. With the slower velocities in the
liquid, the interface is now seen to propagate, at a complex
velocity c which is scaled by the gap-averaged mean liquid
velocity kUll.

The resulting nondimensionalized equations governing
the liquid flow are then the same as those for the gass2d
except all the inertial terms are set to zero, because the Rey-
nolds number for the liquid is very small,rlmg

2/rgml
2 smaller

than in the gas. The no-slip boundary conditions on the side-
walls are unchanged by the nondimensionalization. The
stress boundary conditions on the interfaces1d take the non-
dimensional form

ulz + e2wlx = 2eisx−ctdūgzz+ ugz,

vlz + wly − ūlyie
isx−ctd = vgz,

RePeisx−ctd − pl + 2ewlz = − pg + 2ewgz+ eGzyy9 eisx−ctd

plus someOse3d terms not exhibited, where

P = srlg/k + gkd/rgkUgl2

is the ratio of the stabilizing gravitational and capillary pres-
sures to the destabilizing Bernoulli suction and another
parameter

G = gk2h2/mgkUgl

which is necessarilyOsRePd.

B. Inner expansion

With a similar expansion in smalle as employed in the
gas inner meniscus region,

plsx,y,z,td , eisx−ctdfpl0 + epl1sy,zdg,

ulsx,y,z,td , eisx−ctdul0sy,zd,

the governing equations at leading order then become

iul0 + vl0y + wl0z = 0, s8d

0 = ¹2
2ul0,

0 = − pl1y + ¹2
2vl0,

0 = − pl1z + ¹2
2wl0, s9d

with boundary conditions

ul0 = vl0 = wl0 = 0 ony = ± 1, s10d

and onz=0

ul0z = 2ūgzz+ ug0z,

vl0z + wl0y − ūlyi = vg0z,

ReP − pl0 = − pg0,

− pl1 + 2wl0z = − pg1 + 2wg0z + Gzyy9 . s11d

There is also a matching condition to the outer flow as
z→−`.

Finally the complex wave speedc is given by the kine-
matic boundary condition onz=0,

ifūlsy,0d − cg = wl0sy,0d. s12d

This must be satisfied at each position across the gap, −1
,y,1. This is made possible by the redistribution of thewl0

flow driven by the small variation of the shape across the gap
z9syd. It is the need forz9 to occur in the last equation of Eq.
s11d which dictated this perturbation to the flat interface was
Ose3d.



C. Outer flow

The outer flow in the liquid has the same rescalings as in
the gas and so is governed by the same equations as for the
outer flow of the gas except that the inertial terms are negli-
gible in the liquid. Thus the solution for the outer flow in the
liquid is sfor all orders inend

plsx,Z,td = Ql3ieisx−ctd+Z,

Ulsx,y,Z,td = Qle
isx−ctd+Z3

2
s1 − y2d,

wlsx,y,Z,td = − Qlie
isx−ctd+Z3

2
s1 − y2d,

whereQl is a matching constant corresponding to the mass
flux in the liquid outer flow.

D. Matching

Matching the above outer flow in the liquid to the inner
flow, we find that asz→−` the inner solution must have the
following behavior:

ul0 → 0, vl0 → 0, wl0 → − Qli
3

2
s1 − y2d,

pl0 → Ql3i, pl1 → Ql3iZ + Ql13i , s13d

whereQl1 is a smalle correction to the leading-order match-
ing constant.

We can now see how the liquid responds to the gas. As
explained in the matching of the gas flow, the outer gas flow
exerts a pressureQgP on the inner gas flow, which passes
straight through the gas inner region as the constant pressure
pg0=QgP. This pressure is applied to the interface. After add-
ing the stabilizing effects of gravity and surface tension in
ReP, the pressure available to drive the liquid flow ispl0

=pg0+ReP. This pressure passes straight through the liquid
inner region as the constant pressurepl0 to become the pres-
sure driving the outer flow viaQl3i =pl0. The liquid outer
region responds with a flow into the inner regionwl0

=−Qli
3
2s1−y2d. The net mass flow into the liquid inner re-

gion is thereforeQl =−isQgP+RePd /3.
In order to obtain a simple expression for the complex

wave velocityc, we now repeat the trick at the end of the
section on matching the gas flow. We integrate the mass con-

servation equations8d over the width of the gap −1,y,1
and through the depth of the liquid inner region −H,z,0.
Thus

E
−1

1

dyE
−H

0

dzsiul0 + vl0y + wl0zd = 0.

The velocity vl0y term integrates again between vanishing
boundary conditions on the sidewalls, while thewl0z term
integrates from the input from the outer to the vertical flow
on the interface,

− 2iDQl +E
−1

1

dy wl0sy,0d + 2Qli = 0,

where

DQl = −
1

2
E

−1

1

dyE
−`

0

dz ul0 s14d

is the extra mass flux contributed from the liquid inner re-
gion. We now integrate the kinematic boundary condition on
the liquid s12d across the width of the gap, using the result
that the liquid mean flow on the interface is twice its value
far from the interface,

2is2 − cd =E
−1

1

dy wl0sy,0d.

Substituting the result above from integrating the mass con-
servation and the result for the matching constantQl, we
obtain an expression for the complex wave velocity

c = 2 − DQl −
i

3
sQgP + RePd. s15d

This expression based on net mass fluxes avoids the need to
find the small perturbation to the interfacez9 that ensures the
correcty dependence ofwl0 on the interface which satisfies
the kinematic boundary conditions12d at eachy.

In our previous paper, we ignored the small meniscus
region in the liquid. Thus we assumed1

2e−1
1 ūsy,0d dy=1 in-

stead of its correct value of 2, and we also omitted the term
DQl. We shall find thatDQl =1 at Re=0, so that these two
errors cancel when there is no inertia.

FIG. 2. Schematic representation of the matching
analysis.



E. Structure of the problem

It is worth pausing here to review the structure of the
stability calculation, see Fig. 2. Due to the viscosity of the
gas being much smaller than that of the liquid, we can first
solve the fast flow of the gas over an effectively stationary
liquid. The liquid then moves slowly in response to the
stresses exerted on it by the flowing gas. The vertical veloc-
ity of the liquid at the interface gives the complex wave
speed of the perturbations.

Ensuring no-slip of the gas on the perturbed interface
drives a perturbation to the downstream gas flowug0 in the
inner meniscus region. Conserving mass requires a vertical
gas flowwg0 in the inner region. This leads to a mass fluxQg

of gas into the outer region. The response of the gas in the
outer region requires a pressure fieldpg. This pressure passes
straight through the gas inner region, is reduced across the
interface by ReP, the stabilizing effects of gravity and sur-
face tension, passes straight through the liquid inner region
to become a pressure fieldpl in the liquid outer region. There
it drives a viscous Hele-Shaw flow, which produces a vertical
velocity wl with a mass fluxQl of liquid into the inner re-
gion. In the liquid inner region, there is also a downstream
flow ul0 driven by the stressug0z from the perturbed gas flow
and the stress from the mean flow on the perturbed interface
ūzz. A divergence in this downstream flow in the liquid inner
produces the extra mass fluxDQl which must be added to the
mass fluxQl entering the inner region to give the vertical
velocity wl0sy,0d on the interface, and hence the complex
wave speedc.

V. NUMERICAL SOLUTION

The problem has now been reduced to calculating the
complex wave velocityc using Eq.s15d, in which there ap-
pears the mass flux from the gas inner regionQg given by
integrals7d, the extra mass flux from the liquid inner region
DQl given by integrals14d, and the pressure normalization
constantPsRed given by our previous study2 of the gas outer
region. To evaluate the two integrals, we need to find the gas
and liquid inner flowsug0 and ul0, by solving Eqs.s3d, s4d,
s8d, and s9d with associated boundary conditionss5d, s10d,
and s11d and matching conditionss6d and s13d. These equa-
tions require numerical solution, except when the remaining
parameter, the reduced Reynolds number Re, is small. We
shall later give the simple solution for small Reynolds num-
ber, which yields a test of the numerical method.

A. Method

The difficulty for a numerical approach is that the flows
are driven by the boundary conditions,ug0=−ūgz on z=0 for
the gas andul0z=2ūgzz+ug0z on z=0 for the liquid. Moreover,
the cross-gap and vertical components of the velocity in the
gas,vg0 andwg0, are driven by the mass conservation equa-
tion s3d. Boundary conditions and mass conservation are of-
ten treated less precisely by standard numerical methods.

A finite difference method is employed. Having made
the gross simplification of 90° contact angles, an equispaced
Cartesian grid can be employed with

y = iD for i = − ny to ny, z= jD for j = − nz to nz,

whereD=1/nyand typicallynz=3ny. The variables are held
on a staggered grid in order to produce a compact pressure
molecule without spurious pressure modes, i.e.,

ūg,ūl at iD, jD,

vg0,vl0 at iD,S j +
1

2
DD,

wg0,wl0 at Si +
1

2
DD, jD,

ug0,ul0,pg1,pl1 at Si +
1

2
DD,S j +

1

2
DD.

The normal components of velocity to any boundary are
therefore held on the boundary, as is the mean flow, while the
tangential velocity perturbations are held half a grid-block
away from the boundary. The momentum equations are sat-
isfied for each component of velocity at the staggered point
where that component is stored, using second-order central
differencing of derivatives and second-order interpolation of
variables held on different staggers. Boundary conditions are
applied with second-order accuracy by extrapolation onto the
boundary with up to three interior points as required, along
with interpolation of other variables. Far-field conditions of
no change in value between the boundary and one grid-block
inside are applied to each component of velocity.

Mass conservation is achieved exactly, not just to
second-order accuracy, by a pressure-projection method. In
retrospect, a pressure-update method would have been better.
The mass conservation equations are satisfied at each pres-
sure node and then the velocity componentsv0 and w0 up-
dated. In order to satisfy exactly the mass conservation at the
next-to-boundary points while not disturbing the normal ve-
locity component on the boundary, it was found necessary to
precompensate the boundary velocity for the postprojection
addition, the latter being of course the pressure boundary
conditionsobtained to second order by suitable extrapolation
onto the boundaryd.

The steady solution of the system of equations was
found by a time-like relaxation. First the mean flowsū were
relaxed to equilibrium with 15ny2 iterations. Then the veloc-
ity perturbationsu0,v0, andw0 were simultaneously relaxed
to equilibrium with again 15ny2 iterations, and for each it-
eration the pressurep1 was relaxed with 4ny iterations of
successive overrelaxation using an overrelaxation parameter
between 1.6 and 1.8. This approach is therefore anny5

method, which severely reduces the opportunities of dou-
bling the spatial resolution many times.

B. Checks

A number of tests were applied to the code. First, various
quantities were seen to have a second-order behavior when
the spatial resolution was changed throughny=10, 15, 20,
and 30. Second, the distance to infinity was varied through
nz=ny,2ny,3ny, and 5ny, with 3ny being found to be very



adequate. Third, the mean flow in the liquid was checked to
obey the reflection lawūlsy,zd=2ūgsy,`d− ūgsy,−zd. This is
a good test for whether the stress boundary conditions are
being applied to second-order accuracy. Fourth, the mass
conservation was checked to be satisfied exactly.

A more demanding fifth test of the code is the behavior
at small Reynolds number Re. At Re=0, the inner equations
in the gas and the liquid have a solution

ug0 = − ūgz, vg0 = 0, wg0 = iūg,

ul0 = − ūlz, vl0 = 0, wl0 = iūl .

This solution represents the streamlines of the flow being
displaced exactly with the interface perturbation. Further it
gives zero streamwise acceleration, although there is a verti-
cal acceleration. This means that whilewg0 and sovg0 have
OsRed corrections, the downstream flowsug0 and ul0 have
only OsRe2d corrections. The numerical solutions are found
to have such a behavior.

The solution for Re=0 also provides a test of the com-
putational accuracy, because it gives exact answers for the
mass-flux integralsQg=1 andDQl =1. In the table below, we
give the results forQg and DQl for four different spatial
resolutions. The results are not very good, particularly for the
liquid which is more prone to errors being driven by a stress
boundary conditions. Fortunately, aD2-extrapolation of adja-
cent pairs improves the accuracy to an acceptable level of
around 1%. A refined extrapolation assuming the error has an
OsD2d and anOsD3d component, applied to adjacent triples,
gives satisfactory accuracy of nearly four significant figures.

ny Ql D2 D2+D3 DQl D2 D2+D3

10 0.9462 0.8844
15 0.9741 0.9964 0.9408 0.9859
20 0.9848 0.9986 0.9997 0.9641 0.9941 0.9986
30 0.9930 0.9996 1.0001 0.9828 0.9978 0.9998

The more refined extrapolation was applied to all the results
given below for these two mass-flux integrals. At larger Rey-
nolds numbers, higher than 60, it was found necessary to use
a finer grid withny=40 in order to obtain good results. Note
that, as a consequence of theOsny5d CPU cost, the 1.4%
accuracy obtained from extrapolation fromny=10 andny
=15 would require without extrapolationny.30 taking over
36 times the CPU forny=15, while the 1.4310−3 accuracy
obtained from extrapolation fromny=10, ny=15, andny
=20 would require without extrapolationny.101 taking
over 3330 times the CPU forny=20.

Finally a sixth test of the code was available by exam-
ining the ratio of the pressure gradient far from the interface
−pg1z to mass fluxQg, which should be equal to the pressure
normalization constantP that we found in our previous
study.2 This last test checks the behavior of the code at non-
zero Reynolds numbers.

VI. RESULTS

Figure 1 gives numerical results for the mean flow in the
gas and in the liquid, each normalized by their gap-averaged
values far from the interface. It is seen that the mean flow
attains a far-field parabolic profile rapidly, with 1% by
uzu.2h.

A. Downstream velocity u0

The downstream perturbation velocityu0 has real and
imaginary parts. Figure 3 gives the real part at Re=15. The
gas flow is driven by the boundary conditionsug0=−ūgz on
z=0, i.e., the gas flow must vanish on the perturbed interface.
On the crests, whereūg.0, one must therefore haveug0

,0, with the reverse in the troughs. Hence the real part of
ug0, which is the value on the crests, must be negative. This
can be seen in Fig. 3.

The liquid perturbation flowul0, on the other hand, is
driven by the boundary condition of the continuity of the
stress on the perturbed boundary,ul0z+ ūlzz=ug0z+ ūgzz. In the
gas, there is little change in the stress exerted by the gas on
the perturbed interface,ug0z+ ūgzz<0; it is OsRe2d at small
Re. Now the mean velocity gradient in the liquid can be seen
in Fig. 2 to increase upwards to the interface. Hence we
expect a negative perturbation to the liquid viscous stress,
ul0z,0. This results in the negative velocities in the liquid
seen in Fig. 3. Although Re=15 is not small, the general
form of the real part of the downstream perturbation velocity
u0 is not dissimilar to the Re=0 result,u0=−ūz.

The imaginary part of the downstream velocity perturba-
tion u0 is given in Fig. 4 at Re=15. Without inertia, the

FIG. 3. The real part of the downstream velocity perturbation in the gasz
.0 and in the liquidz,0 for Re=15. The nondimensionalizations of the
gas and liquid velocities differ by the factorml /mg.

FIG. 4. The imaginary part of the downstream velocity perturbation in the
gasz.0 and in the liquidz,0 at Re=15.



imaginary part would vanish: at Re=15, it is small, about
10% of the real part. With a spatial variation such aseix, the
imaginary part is the value atx=−p /2, i.e., a quarter wave-
length before the crest, where the interface has its maximum
positive slope. In the gas, the imaginary part must vanish on
the boundaryz=0. The positive value at the quarter wave-
length before the crests is due to the inertia of the mean flow
carrying forward the positive value in the trough before. The
imaginary part of the downstream velocity in the liquid is not
due to inertia in the liquid, because the liquid Reynolds num-
ber is zero. Instead this component of the liquid velocity is
driven by the viscous stress exerted by the imaginary part of
the gas flow, which is positive.

B. Vertical velocity w0

Figure 5 shows the imaginary part of the vertical veloc-
ity in the gas at Re=15. The velocity vanishes at the inter-
face and rapidly achieves the curious double-peaked form of
the outer flow. This form was explained in our previous
paper2 as due to the faster advection by the mean flow on the
centerline giving less time for the gap-independent pressure
gradient to accelerate the flow. The imaginary part describes
the flow at the quarter wavelength before the crests. A posi-
tive value of the vertical velocity corresponds to a mass-flux
there out of the inner region into the outer region above. This
efflux results from the convergence of the downstream ve-
locity, which is forward in the trough behind and backwards
at the crest in front. In addition to the imaginary part, there is
a smaller real part from a convergence of the imaginary part
of the downstream velocity. As the downstream velocity is
forward on the up slope of the interface before the crest and
backwards on the down slope after the crest, the real part of
the vertical velocity has a small positive mass flux. The de-
tailed profile is rather complex.

C. Mass-fluxes Qg and DQl

From the velocity profiles described above, we can now
evaluate the mass-flux integralss7d for Qg ands14d for DQl.
The extrapolation described in Sec. V B was applied to the
values of these integrals obtained from three different spatial
resolutions, assuming the error hadOsD2d and OsD3d parts.
These integrals have real and imaginary parts which depend
on the Reynolds number Re.

Figure 6 gives the real and imaginary parts of the gas
matching constantQg as a function of the Reynolds number.
The negative real part and positive imaginary part ofug0 give
the mass-flux integrals7d for Qg a positive real part and
negative imaginary part. At Re=0, we have the valueQg

=1. After a small peak, the real part ofQg decreases, falling
below 0.8 by Re=40, while the imaginary part becomes
negative, approaching −0.2 by Re=40. This behavior is due
to advection by the mean flow. The real part ofug0 diffuses
into z.0 from its value fixed by the boundary condition at
z=0. As the fluid moves faster with stronger mean flows, it
has less time to respond to this diffusion, and so the magni-
tude of Qg decreases with Re. The advection also produces
an out-of-phase imaginary part. There is a hint that the de-
crease in magnitude may be following an Re−1/3 trend, ap-
propriate for boundary layers in shear flows.

Figure 7 gives the real and imaginary parts of the liquid
extra mass fluxDQl as a function of the Reynolds number
Re. As the signs of the real and imaginary part of the down-
stream liquid velocityul0 are the same as forug0 in the gas,
the mass-flux integrals14d gives the same signs for the real
and imaginary parts ofDQl as forQg. At Re=0, we have the
value DQl =1. The liquid extra mass fluxDQl has a similar

FIG. 5. The imaginary part of the vertical velocity perturbation in the gas at
Re=15.

FIG. 6. The mass flux in the gasQg as a function of Reynolds number Re.
The continuous curves gives the real part, while the broken curve is the
imaginary part.

FIG. 7. The extra mass flux in the liquidDQl as a function of Reynolds
number Re. The continuous curves gives the real part while the broken
curve is the imaginary part.



dependence on the Reynolds number as the gas mass fluxQg,
with the real part decaying half as much while the imaginary
part decays twice as much.

D. Marginal stability

The complex wave velocityc in s15d has a real part
which is the speed of propagation of the disturbance and an
imaginary part which gives the growth rate. We are inter-
ested in the conditions and, in particular, the mean speed of
the gaskUgl, which gives no growth. The imaginary part of
the wave speed vanishes when

rgkUgl2

rlg/k + gk
=

1

P
= FsRed=

Re

− QgrPr + QgiPi − 3DQli
,

s16d

where the final subscripts denote the real and imaginary
parts. From our evaluation of the mass fluxesQg andDQl in
Sec. VI C and from our evaluation of the pressure normal-
ization constantP in our previous paper2 sthere a factor Re
smallerd, we can now evaluateFsReddefined to be the right-
hand side ofs16d. The result is plotted in Fig. 8. For small
Reynolds numbers, we found previously2 snow converted to
the viscous scaling of pressuredthatPr ,3i − 54

35Re, while our
numerical test for the meniscus region in Sec. V B gaveQg

and DQl =1+OsRe2d as Re→0. HenceF, 35
54. As Re in-

creases,F increases, passing through the value 1 by Re
=30. Also plotted in Fig. 8 is the corresponding result of our
first paper,2 in which we effectively tookQg andDQl =1 and
so hadF=1/−PrsRed. That previous theory passed through
−Pr =1 at Re=185. The valueF=1 is important in that it is
the value taken by the original simple theory,1 which gave a
better prediction of their experiments than our “improved”
theory2 incorporating the correct velocity profile across the
gap in the outer region.

Equations16d gives the condition of no growth. We now
wish to minimize the mean gas velocitykUgl which satisfies
this condition, minimizing over the wavenumberk. There is
a slight complication that our calculation of the flow in the
inner and outer regions was nondimensionalized usingk.

Fortunately with our viscous scaling of the pressure, the
wavenumberk only enters our resultF in the combination of
the reduced Reynolds number Re=rgkUglkh2/mg. It is con-
venient to introduce a capillary length scalel* and the gas
velocityV* whose Bernoulli’s pressure has the capillary pres-
sure of this length, along with a reduced Reynolds number
Re* based on these two quantities

l* =Î g

rlg
, V* =Î 2g

rgl*
, Re* =

rgV*h
2

mgl*
. s17d

With these definitions, Eq.s16d can be rearranged to

S kUgl
V*

D2

=
1 + skl*d2

2kl*
FsRed s18d

with

Re = Re*
kUgl
V*

kl* .

We now plot in Fig. 9 the right-hand side of Eq.s18d as
a function ofkl* for Re* =40. We also plot the corresponding
results of our previous theory which used 1/−PrsRed in place
of the FsRed of this paper, along with the results of the
simple Euler–Darcy theory which setsF=1. The simple
Euler–Darcy theory has a minimum mean gas velocity of
kUgl=V* at kl* =1. Our previous theory gave a minimum
velocity of 0.899V* at kl* =0.875 when Re* =40, while our
new theory has a minimum of 1.011V* at kl* =0.725. The
simple Euler–Darcy theory takes the destabilizing Bernoulli
pressure to bergkUgl2 independent of the Reynolds number.
Our previous theory of the velocity profile across the gap in
the outer region found a higher pressure. An increase in the
pressure requires a lower mean gas velocity to overcome the
stabilizing effects of gravity and surface tension. Our new
theory reduces the destabilizing pressure by reducing the flux
out of the inner meniscus region into the outer region. As
well as the increase in the minimum mean gas velocity, the
wavenumber which minimizes the velocity decreases pro-
gressively from the Euler–Darcy valuekl* =1 to our previous

FIG. 8. The combinationFsRed=Re/ s−QgrPr +QgiPi −3DQlid representing
the reduction of the critical Kelvin–Helmholtz velocity. The broken curve is
the corresponding result of our first papersRef. 2d, in which we effectively
took Qg=1 andDQl =1.

FIG. 9. The critical gas velocityUg scaled byV* as a function of the
wavenumberk scaled by 1/l* for Re* =40. The continuous curve is the result
for Eq. s18d. The dashed curve is the corresponding result for our previous
theory sRef. 2d for the outer ignoring the existence of the inner meniscus
region. The dotted curve is for the simple Euler–Darcy theorysRef. 1d.



theory, to our new theory. These reductions in the wavenum-
ber reflect the reduction ofF with Re and sok.

Figure 9 is for Re* =40. We have plotted similar figures
for a range of Reynolds numbers Re* and found the mini-
mum Uc mean gas velocitykUgl and minimizing wavenum-
berkc in each case. We plot in Fig. 10sadthe minimum value
Uc/V* as a function of Re*, and in Fig. 10sbdthe minimizing
kcl* . We also plot the corresponding results for our previous
theory. The minimum gas velocity to produce an instability is
seen to increase with the Reynolds number Re*. Part of this
stabilization is due to a reduction of the destabilizing Ber-
noulli pressure in the outer region, represented by our pres-
sure coefficientPr found in our previous paper. But there is a
similar magnitude of stabilization caused by the reduced
mass fluxQg, a result of the analysis of this paper. Our new
prediction for the minimum gas velocityUc reachesV* the
value of the simplest Euler–Darcy theory by Re* =39.

VII. COMPARISON WITH EXPERIMENTS

We now compare our new predictions for the onset of
the instability with two sets of experimental observations, the
original experiments1 and some later experiments3 in which
the gap width was varied.

Our calculations have been made for a flat interface
across the gap with 90° contact angles with the sidewalls.
The experiments were, however, performed with perfectly
wetting fluids with 0° contact angles and a semicircular in-

terface across the gap. This form of the interface changes
two details, first the flow in the meniscus region and second
the stabilizing capillary pressure. We have not yet been able
to extend our numerical calculation of the flow in the menis-
cus region to the curved geometry of the semicircular inter-
face, and so our comparison with experiments must be less
than satisfactory. The stabilizing capillary pressure, on the
other hand, can be corrected by application of the Park and
Homsy4 p /4 factor, which we will now include.

The original experiments1 used nitrogen gas of density
rg=1.28 kg m−3 and viscositymg=17.5310−6 Pa s with a
silicon oil of densityrl =965 kg m−3 and interfacial tension
g=20.6310−3 N m−1. The half-gap thickness wash=0.175
310−3 m and the gravityg=9.81 m s−2. Replacingg by the
Park and Homsy corrected valuegsp /4d in the capillary
length and velocity in Eq.s17d, we have for these
experiments

l* = 1.313 10−3 m, V* = 4.40 m s−1, R* = 7.54.

At the latter Reynolds number, we now predict the minimum
gas velocity for an instabilityUc=0.814V* occurring at a
wavenumberkcl* =0.956. This is hardly any different to our
previous predictionsUc/V* =0.815 at kcl* =0.956. The
experiments foundUc/V* =1.05 at kcl* =0.75. Our new
theory therefore fails to make any progress in reducing the
disagreement between theory and observations for the first
experiments.

In a second series of experiments,3 the same nitrogen
and a slightly different silicon oil of densityrl =952 kg m−3

and interfacial tensiong=20310−3 N m−1 were used. These
give the capillary length and velocity of Eq.s17d

l* = 1.303 10−3 m, V* = 4.35 m s−1.

Several gap widths were used 2h=0.175, 0.25, 0.35, 0.48,
0.60, and 0.83 mm. We have plotted the experimental results
for the minimum gas velocity for instability and the minimiz-
ing wavenumber in Fig. 10. We see that the experimental
data are well above the predictions of our first paper and that
our new theory is a substantial move in the correct direction
but still falls someway short. It may be that using the proper
semicircular interface in the calculation of the flow in the
inner meniscus region would produce a larger effect.

VIII. MECHANISM

We now give a pictorial account of the Kelvin–
Helmholtz instability in a Hele-Shaw cell, see Fig. 11. Be-
cause the viscosity of the liquid is much larger than that of
the gas, the gas moves rapidly over an effectively static liq-
uid. The liquid responds slowly to the viscous stresses ap-
plied by the gas flow. The motion of the liquid gives the
propagation and growth of a perturbation of the interface.

Making the gas satisfy the no-slip boundary condition on
the perturbed interface induces a perturbation to the down-
stream gas flowu0g which is negative over the crestsswhere
the mean flow is positivedand positive in the troughsswhere
the mean flow would be negatived, as denoted by the double
arrows in Fig. 11sad. The convergence of this flow in the
meniscus region to the left of the crests drives a mass fluxQl

FIG. 10. sad The minimum mean gas velocityUc for an instability as a
function of the Reynolds number Re* and sbd the minimizing wavenumber
kc. The continuous curve is our new theory, while the dashed curve is the
corresponding results of our previous theory. The points are experimental
resultssRef. 3d.



there out into the outer region of the gas flow, with a similar
divergence to the right of the crests driving a mass flux there
into the meniscus region, as denoted by the vertical arrows in
Fig. 11sad. In the outer region, the gas flows from the left to
the right of the crests, as denoted by the upper curved arrows
in Fig. 11sad. Being a Hele-Shaw flow, this flow of the gas
requires a positive pressure to the left of the crests and a
negative pressure to the right. This pressure distributionpg

=QgP is the main part of the viscous stress exerted by the
gas on the liquid. The liquid responds with a Hele-Shaw flow
from the left to the right of the crests, as denoted by the
lower curved arrows in Fig. 11sad. This flow of the liquid
raises the interface to the right of the crests and lowers it to
the left, i.e., propagates the perturbation to the right.

The paragraph above describes the flow when it is vis-
cously dominated. Inertia must be added to give a growth of
the perturbation. Now in the gas outer region, the perturba-
tion to the horizontal flowUg is in the direction of the mean
flow over the crests and against it over the troughs, i.e., tak-
ing the mean and perturbation velocities together, the flow
speeds up over the crests and slows down over the troughs.
To accelerate the flow over the crests an inertial reduction of
the pressure is required there, with a corresponding increase
over the troughs, as indicated in Fig. 11sbd. This distribution
of pressuresQgPdr in the gas is applied to the liquid below,
and there drives the Hele-Shaw response indicated by the
curved arrows in Fig. 11sbd. The crests then tend to rise and
the troughs descend, for a growth of the perturbation of the
interface. This destabilizing Bernoulli suction of the crests
upwards has to overcome the stabilizing effects of gravity
and surface tension, which sets a minimum gas velocityUc

for an instability.
At low Reynolds numbers Re, the destabilizing Ber-

noulli pressure takes asdimensionald value 54
35rgkUgl2kz0

from Pr =−54
35Re andQg=1. The approximately parabolic ve-

locity profile across the gap produces the numerical factor54
35

increase in the value of the standard not-in-a-Hele-Shaw-cell
Kelvin–Helmholtz theory. As the Reynolds number in-
creases, both −Pr andQg decrease. We calculated the factor
Pr from the outer gas flow in our previous paper. Above
Re=10, the velocity profile in the outer gas region has a
maximum not in the center of the gap but near the walls.
There the mean velocity is slower, giving longer for a
smaller pressure gradient to accelerate the prescribed mass
flux. In this paper, we calculated the mass fluxQg of gas out
of the meniscus region into the gas outer region, and found
that its real part decreases with Re. This reduction comes
from the downstream velocity perturbationu0g having less
time, when the mean flowkUgl is faster at higher Re, to react
to the perturbations of alternating signs diffusing from the
interface.

While inertia is responsible for the destabilizing Ber-
noulli suction over the crests, it also gives two small correc-
tions, one stabilizing and the other destabilizing. Within the
gas meniscus region, strong advection by the mean flow
leads to the maximum of the downstream velocity perturba-
tion not being in the trough as in Fig. 11sadbut being a little
downstream of the trough, with the minimum similarly being
a little downstream of the crests. This out-of-phaseugoi.0 is
denoted by the upper double arrows in Fig. 11scd. The con-
vergence and divergence of this meniscus flow leads to the
out-of-phase mass fluxQgi,0, denoted by the vertical ar-
rows in Fig. 11scd. The Hele-Shaw flow in the gas outer
region requires a pressure maximum on the crests and a
minimum in the troughs. Exerting this pressure on the gas
drives a liquid flow which raises the troughs and pushes
down the crests, i.e., is a stabilizing effect. The downstream
velocity perturbation in the gas meniscus region also exerts a
viscous stress on the liquid, driving an out-of-phase liquid
flow uloi .0 denoted by the lower double arrows in Fig.
11scd. The convergence and divergence of this liquid flow
produces the extra mass fluxDQli ,0, which pushes up the
interface in the crest and pulls it down in the trough, i.e., is a
destabilizing effect. Both these effects are small numerically.

IX. CONCLUSION

We have found that the small meniscus region within a
gap width of the interface has a largeOs1d effect on the
Kelvin–Helmholtz instability in a Hele-Shaw cell. Normally
one would expect to ignore this small region, just calculating
what are our outer flows either side of the interface and to
them then applying dynamic and kinematic boundary condi-
tions across the interface. From Park and Homsy,4 we have
known for some time that the curved interface enhances the
capillary pressure in the dynamic boundary condition by the
factor p /4 for a perfectly wetting liquid. The unexpected
result of this paper is that the kinematic boundary condition
must also be modified in some studies. One cannot apply a
mass conservation condition to the outer flows

FIG. 11. Physical explanation of the instability.sad The basic flow viscous
flow. sbd Bernoulli suction causes growth.scd Two small inertial corrections.
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where the overbar denotes an average taken across the width
of the gap. The above equation would sayQg=1, which we
have found to be true only at small Reynolds numbers Re.

The reason the small region has a large effect is that the
downstream velocity is very much larger in the meniscus
regions compare with that in the outer regions. The outer
regions have horizontal and vertical length scales both equal
to the wavelength. Mass conservation then gives the horizon-
tal and vertical velocities must be the same size in the outer
regions. The vertical velocity has the same size in the outer
as in the inner meniscus region. The horizontal velocity in
the meniscus region is then necessarily larger than vertical
velocity by the ratio of the wavelength to the vertical extent
of the meniscus region, the width of the gap. Thus the hori-
zontal velocity is an order of magnitude larger in the menis-
cus region compared with the outer. Variations over a wave-
length of this large velocity in the small region produces the
Os1d mass fluxQg seen by the outer. Inertia reduces the
value ofQg when Re.0.

Despite the radical change from our previous paper in
the predictions for the minimum gas velocity for an instabil-
ity, we have not yet successfully predicted the values ob-
served in experiments. The numerical calculations in this pa-
per have, for considerable convenience, been made with a

flat interface across the gap with 90° contact angles. An ac-
curate calculation with the correct semicircular interface for
a perfectly wetting liquid would be very demanding, but
would certainly yield furtherOs1d changes in the predictions.
There are other simplifications of the experiments made by
the theory which we detailed in our previous paper.2 Perhaps
problems of the moving contact line remain the source of the
largest uncertainty.

In this paper, we have concentrated on the minimum gas
velocity for an instability. Experiments have examined a
number of other features, such as the phase velocity and
spatial growth rates.1,3 Subcritical nonlinear behavior has
been reported.5 Our opinion is that a careful analysis of these
behaviors cannot be contemplated before the onset condition
can first be successfully predicted, and that may require mas-
tering the effects of the moving contact line.

1P. Gondret and M. Rabaud, “Shear instability of two-fluid parallel flow in
a Hele-Shaw cell,” Phys. Fluids9, 3267s1997d.

2P. Plouraboué and E. J. Hinch, “Kelvin–Helmholtz instability in a Hele-
Shaw cell,” Phys. Fluids14, 922s2002d.

3L. Meignin, P. Ern, P. Gondret, and M. Rabaud, “Gap size effects for the
Kelvin–Helmholtz instability in a Hele-Shaw cell,” Phys. Rev. E64,
026308s2001d.

4C.-W. Park and G. M. Homsy, “Two-phase displacement in Hele-Shaw
cells: Theory,” J. Fluid Mech.139, 291s1984d.

5L. Meignin, P. Gondret, C. Ruyer-Quil, and M. Rabaud, “Subcritical
Kelvin–Helmholtz instability in a Hele-Shaw cell,” Phys. Rev. Lett.90,
234502s2003d.




