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Abstract

This paper studies the shape of an air bubble quasi-statically flowing in the longitudinal direction of narrow channels. Two bottom topogra-

phies are treated, i.e., linear and quadratic variations of the gap along the transverse direction. This work analyses the main characteristics of

the gas–liquid interface with respect to the wedge aspect ratio. From the convergence of asymptotic, numerical and experimental analyses,

we found simple dependences for the finger width and total curvature as a function of channel aspect ratio. These results provide simple and

general expressions for the pressure drop needed to overcome capillary forces and push the air finger inside the channel.
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1. Introduction

When uniformly pushing a wetting liquid with air (a

non-wetting fluid) inside a channel, the air–liquid interface

reaches a steady state after a transient regime. Such drainage

process has a long history starting from Bretherton’s analysis

of a long bubble motion inside a tube [1], while a simi-

lar two-phase interface motion inside a Hele–Shaw cell has

been revisited by Park and Homsy [2]. These seminal con-

tributions focused on a flow regime for which the capillary

number is extremely small. In similar flow regimes, more

complex channel shapes were studied by Wong et al. who

analysed either the static shape [3,4] or the dynamical behav-

iour of the thin films left behind during the interface motion

[5,6]. These studies have shown that geometrical character-

istics of the channels control the interface static shape [3,4]

as well as the dynamics of the thin fluid films [5]. To be more

precise, the static interface shape is a prerequisite for under-

standing dynamical behaviour [4,5].

* Corresponding author.

E-mail address: franck.plouraboue@imft.fr (F. Plouraboué).

This paper concentrates on narrow channels for which

the aspect ratio between one dimension with respect to

the two others is small. More precisely, given the maxi-

mum gap h0 of the narrow channel and its total width 2ℓ,

we have focused on large aspect-ratio channels for which

h0/ℓ ≡ ǫ ≪ 1. These channels nevertheless differ from sim-

ple Hele–Shaw cells for they present spatially variable gaps

(see Fig. 1). In the following we will call “linear channel”

a channel for which the transverse gap varies linearly along

the channel span as displayed in Fig. 1a, while we will call

“quadratic channel” every channel for which the transverse

gap is locally quadratic at the centre of the transverse direc-

tion, as displayed in Fig. 1b (we will, for example, specifi-

cally study a cosine profile in the experimental Section 3).

Non-intuitively, those simple topographical variations dras-

tically change the properties of the static bubble shape, as

will be detailed later in this introduction. In our case, the

static shape depends on the channel aspect ratio ǫ while in

the case of Hele–Shaw cell the static bubble interface shape

is a ring, whose radius only depends on the gas volume and

not on the Hele–Shaw aspect ratio (unless the bubble fills the

span of the Hele–Shaw cell).
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Fig. 1. (a) Perspective view of a sketch of the experimental linear narrow channel. The air bubble is entering from one side of the channel, while the liquid is

pumped out from the other side. (b) The same conventions for a quadratic narrow channel.

To the best of our knowledge, quasi-static two-phase

flows in this class of channel have not been studied yet,

although they present a variety of interests [7]. First, they

permit simple and precise experimental observations of the

liquid–gas interface with direct optical methods. Secondly,

the capillary pressure associated with a narrow channel can

be rather large, for it is mainly dominated by the smallest

channel dimension. This striking property of narrow chan-

nels should receive particular emphasis in the context of im-

bibition process [8] where the liquid first invades the chan-

nel’s narrow corners. In this case, the narrower the channel,

the larger the capillary pressure and the higher the imbi-

bition velocity. The third interesting feature about narrow

channels is that the static capillary shape determination turns

out to be a new singularly perturbed problem. As a matter of

fact, this paper describes how a two-dimensional study of the

liquid–air interface finger inside a narrow channel leads to a

singular perturbation problem associated with the channel’s

aspect ratio small parameter ǫ, whereas the capillary pertur-

bation problem can be considered as regular in this context.

Hence, we study the static shape interface of an air finger

very slowly moving at velocityU in a perfectly wetting oil of

dynamic viscosity µ inside a confined channel, as depicted

in Fig. 1.

In this limit, under perfectly wetting conditions, the gas–

liquid interface confined between two solid surfaces dis-

plays three distinct regions—a constant thin-film region in

the vicinity of solid surfaces (region I, Fig. 2a), a meniscus

region associated with the liquid–gas interface (region II,

Fig. 2a) and the clear original wetting fluid region (re-

gion IIIl , Fig. 2a). These three regions are associated with

different dominant forces [1]. In region I, viscosity forces

are dominant, because the curvature of the interface becomes

equal to zero. In region II, capillary forces associated with

the liquid–gas surface tension γ are dominant: the liquid–

gas interface has a quasi-static quadratic shape that is locally

controlled by perfectly wetting boundary conditions at the

solid surface. In the third region, IIIl , the fluid flow is again

dominated by viscosity, so that the liquid flow field displays

a simple local parabolic profile. The identification of these

regions and their related dominant forces has provided the

correct scalings for the characteristic dimensions, flow and

pressure [1,2]. When the viscosity ratio between the gas and

the liquid is considered negligible, these scalings are given

using a single non-dimensional small parameter: the cap-

Fig. 2. (a) Lateral view of the bubble shape in the (O,x, z) plane. The origin

of coordinates is taken at the bubble tip O . (b) Top view of the bubble shape

in the (O,x, y) plane where the bubble horizontal position is denoted y(x).

illary number Ca = µU/γ . The perturbation expansion in

this small parameter of this problem is known to be singular,

so that matched expansion techniques are needed to relate

the interface curvature in the static meniscus region II to

thin-film region I. In the case of two-phase flows in a Hele–

Shaw cell such matching shows that the thin-film thickness

δ left behind the displaced meniscus asymptotically varies

as δ = 1.337h0Ca
2/3, where h0 is the Hele–Shaw cell thick-

ness.

Park and Homsy have found corrections to this formula

from a double asymptotic expansion in the small parameter

Ca1/3 and the aspect ratio between the interface transver-

sal modulation w and the Hele–Shaw gap that we shall not

discuss here. But, we shall extensively use the relation they

have derived for the pressure drop between regions IIIg and

IIIl . Considering small transversal variations of the interface

along the longitudinal coordinate x, x = y−1(y) ≡ g(y),

Park and Homsy have focused on situations where dg/dy ∼
O(ǫ′) ≪ 1, where ǫ′ is the ratio between the Hele–Shaw

half-width h0/2 and the transversal interface variations w,

ǫ′ = h0/2w. In this case, they have been able to derive an

O(ǫ′2) correction to the pressure drop between the gas in

region IIIg and the liquid in IIIl that reads

Pg − Pl = 1P

(1)= γ

(

2

h0
(1+ 3.80Ca2/3) −

π

4

d2g

dy2

)

.

The pressure needed to push the gas inside the channel in-

creases with the capillary number to the power of 2/3 due

to the viscous dissipation in the liquid films between re-

gions I and II. This O(Ca2/3) term is spatially uniform in

regions IIIg and IIIl . There is moreover an additional term

which is the above mentioned O(ǫ′2) correction that comes
from the interface curvature in the (x, y) plane, expressed

here in dimensional form. Further generalisation has been



discussed by other authors such as [9–11] who considered

a confined bubble in a Hele–Shaw type situation. When

the (x, y) plane interface slope is not small, it has been

shown that the additional term is indeed the in-plane inter-

face curvature multiplied by π/4 [9–11]. Moreover, in the

case where the interface displacements are not locally per-

pendicular to the interface one should consider the normal

velocity Un of the air–liquid interface so that a normal capil-

lary number Can = µUn/γ must be used instead of Ca in (1)

[9–11]. Reinelt also found an additional perturbative term

to the above pressure drop relation associating the viscous

capillary dissipation and the in-plane curvature [9,10]. Fi-

nally, it is also possible to generalise the results obtained by

Park and Homsy, Reinelt, and Burgess and Forster to Hele–

Shaw cell geometries with quasi-parallel walls [12]. One can

summarise this discussion by rewriting the pressure drop be-

tween regions IIIg and IIIl as

1P = γ

(

2

h(y)

(

1+ 3.80Ca
2/3
n

)

(2)−
(

π

4
− 4.07Ca

2/3
n

)

d2y

dx2
1

(1+ (dy/dx)2)3/2

)

.

It should be borne in mind that this relation holds in the limit

of vanishing capillary number, so that higher-order capil-

lary corrections O(Ca,Ca4/3) should be expected when the

interface velocity is increased. In the following we shall con-

centrate on the limit of very small capillary number Ca≪ 1,

so that we shall not consider these higher-order corrections.

In the frame of this approximation (x, y) variations of the

pressure field are not considered for they are of O(Ca) (see,

for example, [11]). Hence the pressure in the liquid and in

the gas are spatially uniform when only O(Ca2/3) correc-

tions are included. Hence the pressure drop between the gas

and the liquid is also uniform. The interface curvature adapts

its shape so as to respond to the dynamical capillary varia-

tions associated with the in-plane interface small variations.

At this point, this paper will neither discuss the establish-

ment of the asymptotic pressure drop relation (2) any fur-

ther nor will it discuss its relation with thin liquid viscous

films along the solid surfaces. It will merely describe the

liquid–air interface from its two-dimensional shape y(x)—

see Fig. 2b—in the (x, y) plane of a narrow channel, and

its relation to the channel geometrical properties. Moreover,

this paper mainly focuses on regimes in which gravity forces

have no influence. As previously mentioned, the channels

that are considered in this study present slow variations in

the gap. Even small, those variations control the static shape

that differs from those obtained in a simple Hele–Shaw cell.

Since the capillary statics problemmeans constant mean cur-

vature for the interface, the question is how the interface is

geometrically controlled by the channel shape. One should

then realise that the gap dimension along the z direction is

always much smaller than the channel dimensions in x and

y directions. Hence, small variations of the gap lead to im-

portant effects on the mean curvature, since it is inversely

proportional. Those small gap variations are indeed equili-

brated by large interface curvature variations in the (x, y)

plane (the leading-order 2/h0 term just adds a constant in-

terface pressure drop whose contribution to the static shape

is null). This is why the static shape drastically differs, in our

case, from the simple “ring bubble” of the Hele–Shaw cell.

A more subtle effect comes from rapid in-plane variations of

the interface near the channel longitudinal axis of symmetry.

In a very narrow region near the bubble tip, when the dis-

tance to the tip is closer than the local gap thickness, the x, y

plane curvature gets much larger than in other regions. This

leads to a curvature boundary layer at the bubble tip, which

then needs to be analysed.

The most original contribution of this work is then proba-

bly related to the fact that the in-plane problem has a sin-

gular asymptotic behaviour associated with this curvature

boundary layer at the bubble tip as ǫ → 0. This geometri-

cally driven singularity of the interface in-plane problem is

already governing the quasi-static limit Ca → 0 of the in-

terface shape. This is why this quasi-static problem is first

studied in Section 2. The next section investigates the com-

parison between experimental and theoretical quasi-static

shape analyses. Finally, we analyse capillary corrections to

the quasi-static problem. From (2) the in-plane problem ob-

viously admits a regular asymptotic expansion in Ca2/3 that

is investigated in the last section (Section 4.1).

2. Quasi-static analysis

Before leaving the reader to a more detailed analysis of

the problem, we would like to outline here the main phys-

ical ingredients of this geometrically driven singular static

shape. In the limit Ca → 0, (2) shows that the pressure dif-

ference between the gas and the liquid is spatially uniform.

Then, the interface curvature is uniform. The static inter-

face shape problem is thus a free-boundary value problem

associated with a constant mean curvature. The unknown

curvature is fixed by the channel shape, so that the final cur-

vature position y(∞) of the air finger leads to a curvature

κ0 = 2/h(y(∞)) which is exactly identical to the curvature

at the finger tip origin O—see Fig. 2. The curvature at the

point O is the sum 2/h0 + 1/R0 where R0 is the in-plane

radius of curvature at the origin. Depending on the channel

shape dependence with ǫ at the origin O , different typical

length-scales can be found. Let us first introduce the length-

scale associated with the final interface position y(∞). The

natural length-scale in the transverse dimension is ℓ, but

y(∞) is much smaller than ℓ because the channel is nar-

row. Hence, y(∞) is some intermediate dimension between

h0 and ℓ. Let us then introduce this intermediate length-

scale w so that w = ǫαℓ, with 0 < α < 1, so that y(∞) ∼
w ∼ ǫαℓ. This scaling thus gives the in-plane curvature

at the origin from 1/R0 ∼ 2/h(y(∞)) − 2/h0. This reads

for a linear channel (see (7) for the asymptotic derivation)

2/h(y(∞)) − 2/h0 ∼ ǫα/h0, so that R0 ∼ h0ǫ
−α . While



for a quadratic channel 2/h(y(∞)) − 2/h0 ∼ ǫ2α/h0, this

leads to R0 ∼ h0ǫ
−2α . At the same time, far from the ori-

gin, the longitudinal length-scale variations along x are also

described by w, so that x ∼ ǫαℓ ∼ h0ǫ
α−1. Far from the

origin, the interface slope is small so that the in-plane cur-

vature is given by the second derivative of the transverse

shape 1/R ∼ y(∞)/x2 ∼ ǫ1−α/h0. Equating the scalings of

R and R0 gives the value for α for different geometries, i.e.,

−α = α − 1⇒ α = 1/2 for a linear shape and −2α = α − 1

⇒ α = 1/3 for a quadratic shape.

Let us now turn to the length-scales associated with the

interface rapid variations near the origin. From the problem

symmetries, the shape of the interface is quadratic. When the

transverse shape y0 is much smaller than w, so that y0 ∼
ǫw ∼ h0ǫ

α , the quadratic tip shape at the origin gives the

corresponding rapidly varying longitudinal length-scale ξ ∼
y20/R0 ∼ h0ǫ

3α for the linear shape associated with R0 ∼
h0ǫ

−α which is much smaller than h0. The ratio between

these inner typical longitudinal variations to the outer ones

w is, in this case, ξ/w ∼ h0ǫ
3α/h0ǫ

α−1 ∼ ǫ2α+1, so that

given α = 1/2 leads to ξ/w ∼ ǫ2 the ratio between the inner

and the outer length-scales.

In the case of quadratic shape, ξ ∼ y20/R0 ∼ h0ǫ
4α , so

that given α = 1/3 leads to the same result, ξ/w ∼ ǫ2.

Hence, in both cases, when the transverse shape dimension

y0 is much smaller than the outer scale w, y0 ∼ ǫw, the

quadratic tip-shape at the origin leads to an even smaller as-

sociated longitudinal variations ξ ∼ ǫ2w. These variations

have large slope of the order y0/ξ ∼ ǫ−1, with small ra-

dius of curvature R0 ∼ h0ǫ
−1/2 for linear shape or R0 ∼

h0ǫ
−1/3 for quadratic shape. These geometrical features give

the main ingredients of the problems that are subsequently

solved in Sections 2.3.1 and 2.3.2.

From this analysis, one can now deduce the proper non-

dimensionalisation of the problem. The transverse direction

y is then normalised by the transverse channel width ℓ

while the vertical gap h is non-dimensionalised by its maxi-

mum h0. The longitudinal direction x and the finger width y

are non-dimensionalised by the same length-scale w, associ-

ated with the asymptotic finger width. As mentioned above,

w satisfies an intermediate scaling w = ℓǫα , with α = 1/2

for a linear channel and α = 1/3 for a quadratic one. Any

generalisation to higher-order channel shape trivially fol-

lows from the presented results. The non-dimensionalisation

of variables related to the channel geometry can be sum-

marised using the following tilde variables:

(x, y, z, ξ,w,y, h)

(3)= (wx̃, ℓỹ, h0z̃,wξ̃ , ℓǫα,wỹ, h0h̃).

It should nevertheless be borne in mind that the intermedi-

ate length-scale w is the correct length-scale to describe the

quasi-static capillary width of the finger, but not the capillary

corrections coming from non-zero capillary number. Hence,

in the following we will look for asymptotic solutions for the

air–liquid finger width as a regular expansion in the capillary

number that will be denoted with an upper index:

(4)ỹ= ỹ0 +Ca2/3 ǫ−αỹ1 + O(Ca,Ca4/3).

The first term corresponds to the quasi-static shape whose

typical length-scale is w so that it is obviously of O(1)

when non-dimensionalised by w. The second term describes

a capillary correction which scales as the channel width

ℓ, so that the non-dimensionalisation (3) makes this term

O(Ca2/3 ǫ−α).

The first quasi-static term is examined analytically in

Section 2.1. This terms is associated with a classic non-

linear static capillarity problem which admits few exact so-

lutions [13]. Hence, rather than focusing on the finger shape,

the Section 2.1 rather concentrates on finding the properties

of the asymptotic finger width y0(∞), for different channel

shapes. Yet the complete shape cannot be computed analyti-

cally, and it will be computed numerically in Section 2.2. In

Section 2.3 we shall seek an asymptotic solution associated

with the channel aspect ratio small parameter ǫ. Indeed, Sec-

tion 2.3 will only investigate the leading-order approxima-

tion of this first term, which satisfies a singularly perturbed

problem the precise formulation of which depends on the

channel shape. Let us now define the non-dimensionalised

pressure P̃ using the usual capillary pressure P̃ = h0P/2γ

associated with the maximum channel aperture h0. Equation

(2) can then be expressed in non-dimensional form

1P̃ =
2

h̃(ỹ, ǫ)

(

1+ 3.8Ca
2/3
n

)

− ǫ1−α d
2ỹ

dx̃2
1

(1+ (dỹ/dx̃)2)3/2

(

π

4
− 4.07Ca

2/3
n

)

,

(5)Can = Ca
dỹ

dx̃

1

(1+ (dỹ/dx̃)2)1/2
,

while the non-dimensional gap h̃(ỹ, ǫ) is now depending on

the small parameter ǫ which needs to be expanded for spe-

cific geometries. As explained earlier, keeping with a small

capillary number approximation the pressure is spatially uni-

form, so that the interface adapts its shape to respond to the

small interface dynamical displacements. This section con-

centrates on the zero capillary number limit of (5) for which

the non-dimensional liquid–gas interface, ỹ0, in this limit,

displays a constant unknown total curvature κ̃0,

−ǫ1−α π

4

d2ỹ0

dx2
1

(1+ (dỹ0/dx)2)3/2
+

2

h̃(ỹ0, ǫ)

(6)=
2

h̃(ỹ0(∞))
= κ̃0,

which is equal to the radius of curvature associated with the

finger width ỹ0(∞) as x tends to infinity. This formulation

of the static shape problem displays the generic property of a

singularly perturbed problems, for which a small parameter

multiplies the highest derivative. Hence, the finger-tip rapid

variations of the in-plane curvature are localised in some in-

ner boundary layer that shrinks with ǫ, while the smooth



Fig. 3. Numerical computation (continuous line) and asymptotic prediction (dotted line) of the finger width y0(∞) normalised by the channel width ℓ.

(a) Linear channel for which the asymptotic behaviour (21) is y0(∞)/ℓ =
√

ǫπ/4. (b) Sinusoidal channel for which the asymptotic behaviour (30) is

y0(∞)/ℓ = (3πǫ/16)1/3 .

finger width variations are associated with the outer inter-

mediate length-scale w.

2.1. Finger width ỹ0(∞)

2.1.1. Linear wedged tripod

We consider here the case where h(y) = h0(1 − |y|/ℓ),
so that

(7)h̃ = 1− |ỹ| = 1−
√

ǫ|ỹ|.
Equation (6) can easily [13] be integrated, from x̃ = 0

where ỹ0(0) = 0 and dỹ0(0)/dx̃ → ∞ to infinity where

dỹ0(∞)/dx̃ = 0, so that

(8)−
π

4
ǫ + 2 ln

(

1−
√

ǫỹ0(∞)
)

+
2
√

ǫỹ0(∞)

1−
√

ǫỹ0(∞)
= 0.

We then have an implicit solution for the finger width ỹ0(∞)

as a function of the aspect ratio h0/ℓ = ǫ. Inverting (8) it is

possible to find an explicit relation between those quantities,

(9)ỹ0(∞) = ǫ−1/2
(

1− e
(

W(−1,−e(−πǫ/8+1))+πǫ/8+1
)

)

,

whereW is the−1 branch of the Lambert’sW-function [14].

Fig. 3a displays the behaviour of the asymptotic finger width

y0(∞) versus the aspect ratio. As expected, this figure

shows that the finger asymptotic width y0(∞) shrinks as

the aspect ratio ǫ of the linear edge decreases. The concave

shape of the curve when ǫ ≪ 1 is related to the leading-

order
√

ǫ scaling that can be obtained from a Taylor ex-

pansion of (9). This indicates that y0(∞)/ℓ has a less than

linear dependence on ǫ so that the width shrinkage is self-

consistently always larger than the meniscus radius which

precisely scales as ǫ. This scaling will be specifically stud-

ied in Section 2.3.1.

2.1.2. Quadratic narrow channel

We now turn to the case where h(y) = h0 cos(
√
2y/ℓ).

Here again the integration of Eq. (6) gives an implicit de-

pendence for the asymptotic finger width on the aspect ratio:

π

4
ǫ +

√
2 ln

(
√
2ǫ1/3ỹ0(∞) + tan

(
√
2ǫ1/3ỹ0(∞)

))

(10)−
2ǫ1/3ỹ0(∞)

cos(
√
2ǫ1/3ỹ0(∞))

= 0.

This equation cannot be made analytically explicit, but it

can easily be solved numerically. Fig. 3b sketches the varia-

tions of the asymptotic width versus the aspect ratio. Here

again, the width shrinkage, when the aspect ratio varies,

is self-consistently always larger than the meniscus radius.

Moreover, as will be further investigated in Section 2.3.2,

the behaviour of the asymptotic width with the aspect ratio

is different from those obtained in the case of a linear chan-

nel.

To conclude this section it should be noted that an explicit

expression of the finger asymptotic width could be obtained

from a simple Taylor expansion of implicit relations (8) and

(10) with the small aspect ratio parameter ǫ. We do not give

them here, but they will be obtained in a similar way in Sec-

tion 2.3 in relations (21) and (30).

2.2. Numerical computation of the quasi-static air–liquid

shape ỹ0

In general, the analysis of the complete shape of the

liquid–gas interface resulting from capillary equilibrium ne-

cessitates numerical computation [13]. As a matter of fact,

Eq. (6) defines a free-boundary value problem associated

with a perfectly wetting air–liquid interface presenting an

a priori unknown constant mean curvature κ̃0. For the spe-

cial class of problems examined in this paper, the interface

shape can be obtained from the numerical integration of

the non-linear ordinary differential equation (6). This can

be easily done with a Runge–Kutta method, after dealing

with the singularity at the origin. Let us first define an

interesting variable change for which, rather than focus-

ing on the longitudinal variation of the finger transversal

width y = y0(x), we consider the transversal variation of

its length x = (ỹ0)−1(y) ≡ g(y). This variable change is

interesting from a numerical point of view, since the in-

verse of y0(x) is not singular any more in the vicinity of

the finger tip. Let us now, consider the standard variable

change between the local slope dg/dy and the tangent an-

gle θ , tan θ = dg/dy. Next, considering the usual vector-

ial representation for the shape-slope variable g = (g, θ),

it is easy to reformulate the second-order differential equa-



Fig. 4. Numerical computation of in-plane interface shape ỹ0(x) in continuous lines for two channels of aspect ratio ǫ = 10−2 . Dotted lines represent the inner

asymptotic behaviour, dashed lines the exponential decay of the outer solution. (a) Linear channel; (b) sinusoidal channel.

tion (6) as

(11)
dg

dy
=

(

tan θ,
4

π cos θ

(

2

h(y0(∞))
− 2

h(y)

))

,

with associated initial conditions g(0) = (0,0). Its non-

dimensional formulation associated with g̃ = (g̃, θ) =
(g/w, θ) reads

(12)
dg̃

dỹ
=

(

ǫ−α tan θ,
4

ǫπ cos θ

(

2

h̃(ỹ0(∞))
−

2

h̃(ỹ)

))

,

with associated initial conditions g(0) = (0,0). One should

note that we have kept dimensional variables in the formu-

lation of the problem, since the numerical solution later on

will be compared with dimensional experimental measure-

ments. The non-dimensional formulation of (11) is never-

theless straightforward. The a priori unknown asymptotic

width ỹ0(∞) can either be found from solving the implicit

equations (8), (10), or by directly implementing a shoot-

ing method out of the Runge–Kutta integration of Eq. (11).

A fourth-order constant integration step procedure rapidly

converges (with a few thousand steps) to a highly precise fin-

ger shape determination (relative error smaller than 10−7).

The resulting integration has led to Fig. 4 in the case of

the linear and sinusoidal channels introduced in the previ-

ous section. From this figure, it can be observed that af-

ter an initial stage of rapid variation, the in-plane curva-

ture reaches a smooth longitudinal decay. The size asso-

ciated with those rapid curvature variations is small, com-

pared to the finger width. It will be identified as a curvature

boundary layer in Section 4. Moreover, the slow longitudi-

nal decay has been previously identified as being exponen-

tial in [15], using another, more general, numerical method

[16]. We again find (for both geometries) an exponential

decay that will be further investigated analytically in Sec-

tion 2.3.

2.3. Asymptotic approximation for ỹ0

2.3.1. Linear wedged tripod

In the case of the linear channel previously studied, the

non-dimensional linear shape has been written in (7). Ex-

panding h̃ for positive values of ỹ in (7), it is found that

−
2

h̃(ỹ0, ǫ)
+

2

h̃(ỹ0(∞))
= 2ǫα

(

ỹ0(∞) − ỹ0
)

×
(

1+ ǫα
(

ỹ0(∞) + ỹ0
))

+ O(ǫ3α),

which, from (5) and (4), fixes here 1− α = α, i.e., α = 1/2,

and the intermediate non-dimensionalised length-scale w̃ to

scale as w̃ =
√

ǫ, as already mentioned in the beginning of

this section. Let us now look for a regular asymptotic ex-

pansion with the small parameter ǫ for the quasi-static outer

finger shape, that will be denoted by the capital letter Ỹ0:

(13)Ỹ0 = Ỹ00 +
√

ǫỸ01 + · · · .

Similarly, all the following subscript numbers will refer to

such regular asymptotic expansion with the small parameter

ǫ. Expansion (13) leads to the following leading-order prob-

lem:

(14)−
π

4

d2Ỹ00
dx̃2

1

(1+ (dỸ00/dx̃)2)3/2
+ 2

(

Ỹ00 − Ỹ00(∞)
)

= 0.

First, we would like to find the finger asymptotic width

Ỹ00(∞), using the same method as in Section 2.1.1, integrat-

ing (14) after multiplying by dỸ00/dx̃ from x̃ = 0 to infinity:

(15)
π

4

1
√

1+ (dỸ00/dx̃)2
= −Ỹ00

(

Ỹ00 − 2Ỹ00(∞)
)

.

Boundary conditions (Ỹ00(0),dỸ
0
0(0)/dx̃) have to be found

by matching the inner solution with the outer one. The

outer problem complete solution can moreover be solved

formally using the variable change previously introduced in

Section 2.2. This, in turn, leads to the simpler problem (16)

to solve,

(16)
π

4
cos θ0

dθ0

dỸ00
+ 2

(

Ỹ00 − Ỹ00(∞)
)

= 0

where θ0 is related to the inverse of the shape function

G̃0 = (Ỹ00)
−1 by tan θ0 = dG̃0/dỸ

0
0. A first integral form of

the solution of (16) is

(17)θ0
(

Ỹ00
)

− θ0(0) = − arcsin

(

4

π
Ỹ00

(

Ỹ00 − 2Ỹ00(∞)
)

)

.

The boundary condition to be applied to the outer slope at

x̃ = 0 has to be found from matching the inner solution. As

mentioned in the introduction of this section, the related in-

ner problem involves a new inner variable ξ̃ = x̃/ǫ2, which

is associated with rapid variations of the curvature. We can



then look for a regular expansion of the inner solution in this

new variable:

(18)ỹ0 = ỹ00(ξ̃ ) + ǫỹ01(ξ̃ ) + · · · .

Substituting this expansion for ỹ in (5) one finds that the

leading order ỹ00 has to be constant, with the associated

boundary condition ỹ00(0) = 0. Then, this constant is zero,

and the first non-zero term of the inner problem is ỹ01, which

fulfils

(19)−
π

4

d2ỹ1

dξ̃2

1

(dỹ1/dξ̃ )3
= 2Ỹ00(∞).

The solution of (19) associated with boundary condition

y01(0) = 0 is

(20)ỹ01(ξ̃ ) =
π

4

√

ξ̃

Ỹ00(∞)
.

Then, matching the outer with inner solutions leads, to lead-

ing order, to boundary conditions G̃0(0) = 0 and dG̃0(0)/

dỸ00 = 0 = θ0(0). From (15), those boundary conditions ap-

plied to the outer solution lead to the asymptotic leading-

order finger width Ỹ00(∞) =
√

π/4. This result can be com-

pared with the computation of Section 2.1. Fig. 3a displays

the ratio of the finger asymptotic width to the channel width

versus the aspect ratio, as well as the comparison with its

leading-order asymptotic behaviour for the dimensionalised

finger width,

(21)
y00(∞)

ℓ
= Ỹ00(∞)

√
ǫ =

√

π

4
ǫ,

showing a very nice agreement as ǫ → 0. Hence the inner

solution reads, to O(ǫ2),

(22)ỹ0 = ǫ

√

ξ̃
π

4
=

√

x̃
π

4
,

while the inverse shape of the outer solution G̃0 can be

deduced analytically from integrating (17). The integra-

tion leads to a rather cumbersome expression, the far field√
π/4− Ỹ00 ≪ 1 behaviour of which being

(23)G̃0

(

Ỹ00
)

∼
π

4

√
2

2
arctanh

(

√

2

−(Ỹ00)
2 + 2Ỹ00 + 1

)

.

This behaviour leads to a simple exponential decays for the

outer finger shape as x̃ ≫ 1:

(24)

√

π

4
− Ỹ00(x̃) ∼ exp

(

−
√
2x̃

)

.

Results (22) and (24) are compared with the numerical solu-

tion of (5) in the case of a linear channel in Fig. 4a, showing

an excellent matching with the numerical results of Sec-

tion 2.2. The approximated inner behaviour obtained in (22),

and the approximated outer region which displays an expo-

nential decay y0(x)/w =
√

π/4 − 0.335exp(−
√
2x/w) +

O(ǫ) for x ≫ w as described in (24), are compared with the

full numerical solution. Very similar results have been ob-

tained for the far field exponential behaviour in non-confined

polygonal channels by [4] and [15]. This exponential decay

could be straightforwardly obtained from linearising (14) in

the limit of a small low interface slope.

2.3.2. General quadratic shape

Let us now turn to the case of a general quadratic shape

for which the channel depth has a maximum at h(0) = h0.

Expanding the shape in the vicinity of the maximum in di-

mensionalised variables leads to

(25)h = h0 −
1

2
hyyy

2 +
1

3
hyyyy

3 + · · · .

In the previously introduced non-dimensional quantities this

expansion reads

(26)h̃ = 1− ǫ2αỹ2 + ǫ3αβỹ3 + · · · ,

where again ǫ = h0/ℓ =
√

h0hyy/2 and β = 2hyyy/3h
2
yy .

In the following, we will nevertheless concentrate on the

leading-order quadratic term, and neglect the contribution of

higher-order terms in the description of the profile geometry.

As previously examined, this leads to the vertical curvature

expansion

−
2

h̃
+

2

h̃(ỹ(∞))
= 2ǫ2α

(

ỹ(∞)2 − ỹ2
)

+ ǫ4α
(

ỹ(∞)4 + ỹ4
)

+ · · · ,

which, in turn, from (5) leads to 1− α = 2α, i.e., α = 1/3,

and the intermediate length-scale w̃ associated with the non-

dimensionalised finger width to scale as w̃ = ǫ1/3. Follow-

ing the same steps as in the previous section, we seek for a

regular asymptotic expansion of the outer solution as a func-

tion of ǫ1/3, the leading order of which fulfils

(27)

−
π

4

d2Ỹ00
dx̃2

1

(1+ (dỸ00/dx̃)2)3/2
+ 2

((

Ỹ00
)2 − Ỹ00(∞)2

)

= 0.

The boundary conditions applied to this outer problem are

also given from matching the inner problem with the outer

one. Seeking for the same regular expansion as (18) for the

inner problem, the leading order ỹ1 now fulfils

(28)−
π

4

d2ỹ01

dξ̃2

1

(dỹ01/dξ̃ )3
= 2Ỹ00(∞)2,

the solution of which, associated with boundary condition

ỹ01(0) = 0, is

(29)ỹ01(ξ) =
π

4

√

ξ̃

Ỹ00(∞)2
.

Matching the inner and outer solutions leads to the same

boundary conditions for the outer as in previous section,

G̃0(0) = 0 and dG̃0(0)/dỸ
0
0 = 0 = 0 = θ0(0). Integrating



(27) from x̃ = 0 to infinity then leads to the outer asymp-

totic shape width Ỹ00(∞) = (3π/16)1/3, so that

(30)
y00(∞)

ℓ
= Ỹ00(∞)ǫ1/3 =

(

3π

16
ǫ

)1/3

.

This result nicely fits the numerical computation of Sec-

tion 2.2 for the sinusoidal channel depicted in Fig. 3b. There-

fore, the inner leading-order finger shape finally reads, in the

case of a quadratic channel profile,

(31)ỹ=
(

π

4

)1/3(4

3

)2/3

ǫ

√

ξ̃ =
(

π

4

)1/3(4

3

)2/3√
x̃.

Following the same lines as in the previous section, the ex-

plicit computation of the leading-order inverse G̃0 = (Ỹ00)
−1

can be obtained analytically, from which the asymptotic be-

haviour as (3π/16)1/3 − ỹ ≪ 1, or similarly x̃ ≫ 1, leads to

the same exponential decay for the finger shape:

Ỹ00(∞) − Ỹ00(x̃) =
(

3π

16

)1/3

− Ỹ00(x̃)

(32)∼ exp
(

−
√
2x̃

)

.

Both results (31) and (32) are compared to the interface

shape numerical computation in Fig. 4b. The approximated

inner behaviour obtained in (31) and the outer exponen-

tial decay y0(x)/w = (3π/16)1/3 − 0.335exp(−
√
2x/w) +

O(ǫ) for x ≫ w described in (32) are represented.

3. Experiments

Some channels have been built in two steps. First, poly-

meric material has been carved with an automatic microma-

chining device. The channel depth function h(y) has been

very finely discretized, so as to permit an optimal use of

the machining precision, which is equal to 10 µm in every

(x, y, z) direction. The channel’s maximum depth h0 has

been chosen equal to h0 = 1 mm for every channel. The

maximum depth h0 is of the same order of magnitude as

the capillary length ℓc =
√

γ /ρg obtained from balancing

surface tension γ with gravity acceleration g acting on the

fluid volume density ρ. As a matter of fact, the surface

tension between the silicon oil and air has been measured

equal to γ = 21.7 mNm−1 with a Langmuir–Wilhelmy bal-

ance. Since the oil density is ρ = 968 kgm−3, the capillary

length is equal to ℓc = 1.5 mm. Nevertheless, the influence

of gravity forces should remain small since the Bond num-

ber associated with the experiments is close to 0.4 [13].

Moreover, each channel has been aligned along the horizon-

tal plane. This alignment has been checked from inspecting

the symmetry of the liquid–air interface along the transverse

coordinate y, as well as by checking the translational in-

variance along the longitudinal coordinate x. The channels

width is 2ℓ = 50 mm and their total length 15 cm. Hence

the aspect ratio of the channels has been chosen equal to

ǫ = h0/ℓ = 0.04. In a second step, a Plexiglas plate of 1 cm

thick is fixed on top of the carved polymeric material. Leak-

age is prevented thanks to a silicon paste disposed on lateral

grooves machined along the carved channel. The top plate

has been fixed with equally spaced and controlled clamp-

ing screws. Then, one side of the channel is open to ambient

pressure, while the other side is connected to a screw-driven

pump through a Plexiglas injector. The channel sits horizon-

tally on a tray in which the fluid is collected. Experiments

were carried out by slowly pumping out a perfectly wet-

ting silicon oil. The ratio of viscous to capillary forces is

given by the capillary number Ca = µv/γ , where the ve-

locity is estimated from the ratio of the pumped flux q to

the channel surface S =
∫ ℓ

−ℓ
h(y)dy, v = qS. Two different

oils have been used during the experiments. This allowed

us to change the capillary number either by getting the fluid

velocity to vary or by choosing different dynamic fluid vis-

cosities µ. The oil dynamic viscosities have been measured

with a cone viscometer equal to µ = 0.068 and 0.22 Pa s at

20 ◦C. A constant temperature of 22± 1 ◦C has been main-

tained during all the experiments. The experiments were

recorded with a CCD camera using a large-angle optics (the

focal distance could vary from 18 to 35 mm) above the chan-

nel. The images were taken at 2 frames/s with a resolution

of 0.1 mm. Very low capillary numbers have been explored

from 3 × 10−3 to 10−5 giving no significant differences in

the top view shape of the air finger inside the channels. Con-

trary to the thin liquid film left behind the top horizontal

plate discussed in the Introduction, the in-plane character-

istics of the liquid–air interface are weakly sensitive to the

capillary number. A careful analysis of the finger horizontal

plane relative width y0(∞)/ℓ measured from these experi-

ments displays a very small influence of the capillary num-

ber in the explored range. Neither does the finger tip present

any change at small capillary number.

This gives support to a quasi-static capillary equilibrium

shape that we have analysed in the two previous sections.

Let us first consider the comparison between the observed

finger relative width y0(∞)/ℓ and the theoretical predic-

tions. Hopefully, both numerical and theoretical analyses of

the previous section give consistent identical result for the

linear and sinusoidal channels that we have designed for our

experiments. In the case of the linear channel, theoretical

prediction for the finger relative width is y0(∞)/ℓ = 0.158,

while experimental measurements associated with the low-

est capillary number give y0(∞)/ℓ = 0.173± 0.002. There

is thus a nice agreement up to 8%. Moreover, when stop-

ping the pump, so as to observe the static interface shape,

no detectable difference with the presented profile has been

obtained in both cases when waiting for several hours.

This time-scale is much larger than the typical capillaro-

viscous relaxation of the in-plane finger shape y which is

close to few seconds in our experiments, as discussed in

Appendix A. Hence, Fig. 5 displays the relaxed quasi-static

shape of the in-plane finger. This point should neverthe-

less be taken with care, because thin films located close

to the solid surfaces above and bellow the air finger have



Fig. 5. Comparison between numerical computation (continuous line) and experimental measurements (circles) of in-plane interface shape y(x). Each coordi-

nate is expressed in millimetres. (a) Linear channels (filled circles) are associated with Ca= 10−4 . (b) Sinusoidal channels (open circles) are associated with

Ca= 3× 10−5.

very long capillaroviscous relaxation times as explained in

Appendix A. Their impact on the in-plane finger shape y

is nevertheless negligible, as also shown in Appendix A.

The experimental uncertainty coming from the optical pix-

elisation is nevertheless smaller than the observed differ-

ence between theoretical and experimental results. The ob-

served mismatch should rather be associated with some dif-

ferences between the ideal linear channel and its experi-

mental model. A similar conclusion can be drawn in the

case of the sinusoidal channel for which theory predicts

y0(∞)/ℓ = 0.277, while experimental measurements give

y0(∞)/ℓ = 0.28± 0.002, leading to less than 1% deviation.

The shape of the finger tip is also interesting to com-

pare with the predictions of static equilibrium obtained from

numerical computation. Fig. 5 displays this comparison. In

the case of the linear channel, since the asymptotic width

falls off by 8%, the prediction for the interface shape can

not be much better. On the contrary, the comparison of the

sinusoidal case shows an excellent agreement between ex-

perimental measurements and numerical results. No free

parameter has been used to display both comparisons, the

geometrical parameters used for the numerical computation

being exactly mapped to the experimental dimensions of the

narrow channels.

4. Capillary corrections

4.1. First capillary corrections ỹ1

From the regular expansion of the pressure (5) it is then

possible to find the O(Ca2/3) capillary correction to (4). As

will be seen in the following, the capillary correction to the

interface shape fulfils an ordinary differential problemwhich

is determined by the static shape ỹ0. In Section 2.2 we have

numerically computed the quasi-static shape ỹ0. This result

could be used here to compute numerically the leading-order

capillary correction ỹ1.

Besides, we are more interested in the influence of the

capillary correction on the finger width, so we shall restrict

our analysis to an estimate of ỹ1(∞)which can be computed

independently from the precise knowledge of ỹ0.

4.1.1. Linear wedged tripod

In the case of linear transverse variations of h̃, the first

perturbation O(Ca2/3) correction to Eq. (5) reads

−
π

4

d2ỹ1

dx̃2
1

(1+ (dỹ0/dx̃)2)3/2
+ 2

(

ỹ1 − ỹ1(∞)
)

(33)= 3.8

(

dỹ0

dx̃

1

(1+ (dỹ0/dx̃)2)1/2

)2/3

.

This linear second-order ordinary equation for ỹ1 is forced

by ỹ0. ỹ1(∞) can nevertheless be computed since we know

from previous analysis that one of the boundary condition

to be applied at x = 0 is 1/(dỹ0(0)/dx̃) = 0 so that, from

(33), we deduce that ỹ1(0) − ỹ1(∞) = 3.8/2. Moreover,

we know that the other boundary condition at the origin is

ỹ(0) = 0 so that from (4), ỹ0(0) = ỹ1(0) = 0. Hence we

find that ỹ1(∞) = −1.9.

4.1.2. General quadratic shape

The very same analysis could be applied to the quadratic

shape. Hence these are the results for the first capillary cor-

rection problem:

−
π

4

d2ỹ1

dx̃2
1

(1+ (dỹ0/dx̃)2)3/2
+ 4

(

ỹ0ỹ1 − ỹ0(∞)ỹ1(∞)
)

(34)= 3.8

(

dỹ0

dx̃

1

(1+ (dỹ0/dx̃)2)1/2

)2/3

.

Using the same argument as in the previous section, we

find that the far field asymptotic correction to the finger

width is ỹ1(∞) = −3.8/4ỹ0(∞) = −(3.8/4)(16/3π)1/3 +
O(ǫ1/3) ≃ −1.13.

4.2. Discussion

Let us first summarise the results obtained in the preced-

ing analysis about the finger asymptotic width in the case of

a linear transverse shape h̃(ỹ) = 1−
√

ǫ|ỹ|,

y(∞)

ℓ
=

√

πǫ

4
− 1.9Ca2/3

(35)+ O
(

ǫ,Ca,Ca4/3,
√

ǫCa2/3
)

,



while in the case of a quadratic shape h̃(ỹ) = 1− ǫ2/3ỹ2, the

results established in the previous section give

(36)
y(∞)

ℓ
=

(

3π

16
ǫ

)1/3

− 1.13Ca2/3

+ O
(

ǫ2/3,Ca,Ca4/3, ǫ1/3Ca2/3
)

.

Hence, in both cases, the influence of the capillary effects

reduces the finger width. We self-consistently qualitatively

observed that increasing Ca leads to narrower finger in the

experiments. From these results it is easy to estimate a capil-

lary number limit for the validity of the quasi-static analysis

presented in Section 2. Comparing the O(Ca2/3) capillary

correction to the finger width correction in relations (35) and

(36) one can find the capillary number above which the in-

terface finger width will be sensitive to the capillary number

variations. In the case of a linear narrow channel one finds

this capillary number value to be Ca = (
√

ǫπ/4/1.9)3/2 ≃
0.32ǫ3/4, while in the case of a quadratic channel Ca =
(3π/16ǫ)1/2/(1.13)3/2 ≃ 0.63

√
ǫ. In both cases, the experi-

mental aspect ratio ǫ has been chosen equal to 0.04, so that

the associated capillary number value is Ca = 2.810−2 for

the linear channel and Ca = 1.210−1 for the quadratic one.

These values are worth comparing to the experimental val-

ues reported in the caption of Fig. 5.

In both cases the capillary numbers were much smaller

than these values, and therefore the quasi-static hypothesis

should be verified.

5. Conclusion

The results presented in this paper show that small cap-

illary number drainage of a wetting liquid by a gas inside

a channel can be described by a quasi-static capillary equi-

librium. In this limit, one may successfully compare the ob-

served experimental liquid–gas interface shape with numeri-

cal computation and theoretical analysis related to a constant

curvature interface. Taking advantage of the large aspect ra-

tio of the channel geometries under study, an asymptotic

analysis provides general expression for the main charac-

teristics of the interface as is summarised in (35) and (36).

These results should moreover be easy to generalise for any

transverse shape channels, following the same steps as those

presented in Section 4. The interface being of constant cur-

vature in the quasi-static limit, the position of the finger

width therefore provides the exact value of the correspond-

ing curvature. It is thus easy to deduce from (2) that the pres-

sure difference to be applied to push the air finger inside the

channel is equal to 1P = 2γ (1 +
√

ǫπ/4 + 3.8Ca2/3)/h0
in the case of the linear channel and to 1P = 2γ (1 +
(ǫ3π/16)2/3 + 3.8Ca2/3)/h0 for a quadratic channel.

Another interesting result is that, for channels having a

large aspect ratio, the interface tip exhibits rapid variations of

in-plane curvature which are related to a curvature boundary

layer. The boundary layer tip shape y scales with the longi-

tudinal distance x as y∼
√

x, independently of the channel

geometry. Moreover, far from this boundary layer, the in-

terface curvature reaches a smooth longitudinal variation re-

gion, associated with an exponential decay, as already found

in [4] and [15]. We furthermore found that this exponen-

tial decay is associated with a typical length w/
√
2, where

w/ℓ =
√

ǫ in the case of linear channel and w/ℓ = ǫ1/3

for a quadratic shaped channel. A complementary capillary

asymptotic analysis has provided analytical bounds for the

capillary number associated with the presented quasi-static

results. It has been found that the capillary effects can be ne-

glected when Ca ≃ 0.32ǫ3/4 in the case of a linear channel,

and as Ca≃ 0.63
√

ǫ in the case of a quadratic one.

The presented results are easy to adapt to more general

wettability conditions where the contact angle φ is differ-

ent from 0. As a matter of fact, the general case where

0 < φ < π/2 could be obtained from substituting the aper-

ture gap h0 by h0/ cosφ, since the vertical radius of curva-

ture of the interface is modified from h/2 to h/(2cosφ).
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Appendix A

In this appendix we discuss the transient behaviour to the

quasi-static state associated with both the thin films, that are

located close to the solid surfaces above and bellow the air

finger, and the interface mean position y(x, t). The analy-

sis that is given here is a first simplified discussion about the

complete transient problem that we will not consider in de-

tail. Our objective here is mainly to extract the correct orders

of magnitude for the transient viscous relaxation to occur.

First, let us recall the classical thin-film dynamic equation

(see, for example, [5]). As previously discussed, the quasi-

static pressure drop between the gas and the liquid is the cap-

illary pressure. Considering that the viscosity ratio between

the gas and the liquid is very small, the associated pressure

drop in the gas is negligible compared with the one in the liq-

uid. Consequently, we will take, as usual, the gas pressure as

a zero reference pressure. The capillary pressure thus leads

to a simple decouple expression for the quasi-static liquid

pressure. Let us first consider the thin-film region, the film

thickness of which will be denoted h(x, y, t). From the sim-

plified expression of the mean curvature in slowly varying

thin films, the liquid pressure in the film reads p = γ1h.



The lubrication equations for the momentum x and y com-

ponents can then easily be solved and lead to simple shear

flow, that can be integrated to give an horizontal fluid flux

q in the film along the (x, y) plane. This fluid flux q is

proportional to the pressure gradient and the cube of the

film thickness h, as usual in those Darcy-like problems, i.e.,

q= (h3/12µ)∇p. The conservation of flux then leads to the

classical thin-film dynamical equation:

(A.1)∂th +
γ

12µ
∇ · (h3∇1h) = 0.

One would then like to seek for the scaling of the cap-

illaroviscous relaxation time of the films that will be de-

noted τf . We consider x and y variations of the film to

be of the order w and the film thickness h is given by the

Bretherton result h ∼ h0Ca
2/3. Using (A.1) and the previous

scalingw/h0 ∼ ǫα−1 leads to τf ∼ (h0µ/12γ )ǫ4(α−1)/Ca2.

A typical estimation using the experimental values given

in Section 3, with γ = 21.7 mNm−1, µ = 0.22 Pa s, h0 =
10−3 m, Ca = 10−4 and ǫ = 0.04 leads to values as large

as τf ∼ 5× 108 s for the linear channel where α = 1/2 and

τf ∼ 5 × 109 s for the quadratic channel where α = 1/3.

Hence, the relaxation time for the film temporal reorganisa-

tion far exceeds several weeks, so that this relaxation could

not be achieved in the experiments. Nevertheless, the thin-

films contribution to the quasi-static bubble shape y(x) can

be estimated from computing the liquid volume in the films,

as compared to the liquid volume needed to displace the

bubble shape y(x) position of a distance equal to the menis-

cus size h0/2. For a bubble of length L and width 2w, the

liquid film volume is h0Ca
2/3 2wL. The volume necessary

to displace the bubble at one meniscus distance is close to

π/2(h0/2)
2L for a perfect wetting condition. Hence the vol-

ume ratio is (π/16)h0/Ca
2/3w = (π/16)Ca2/3 ǫα−1 which

gives respectively 2 × 10−3 and 3 × 10−3 for linear and

quadratic channels. Hence, the contribution of the films to

the bubble shape quasi-static position y(x) is negligible.

Finally, let us discuss the relaxation time of the interface

position shape y(x, t) far from the inner curvature boundary

layer. The governing equation for the shape y(x, t) can be

found in [8] and [17] and reads

(A.2)
36µ

γ ǫ
∂ty

2 = ∂2xy
3.

Using the dimensional quantities given in (3), so that x ∼ w

and y ∼ w, one can easily obtain the transient capillaro-

viscous relaxation time τs for the in-plane shape y(x, t),

τs ∼ (36µ/γ )h0ǫ
α−2. A typical estimation using the exper-

imental values given in Section 3, with γ = 21.7 mNm−1,

µ = 0.22 Pa s, h0 = 10−3 m, Ca= 10−4 and ǫ = 0.04, leads

to values τs ∼ 4 s and τs ∼ 3 s for linear and quadratic

channels. Hence, the transient time for the relaxation to the

quasi-static shape of the interface position shape y(x, t) is

of the order of few seconds.
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