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Abstract

In this note, we examine the high Péclet number limit of the stationary extended Graetz problem for which two families of real and
imaginary eigenvalues are associated, respectively, with a downstream convective relaxation and the upstream diffusive establishment.
The asymptotic behavior of both families of eigenvalues is studied, in the limit of large Péclet number and thin wall, which bring to
the fore a single parameter dependence, previously mentioned in the literature from numerical investigations [M.A. Cotton, J.D. Jackson,
in: R.W. Lewis, K. Morgan (Eds.), Numerical Methods in Thermal Problems, vol. IV, Pineridge Press, Swansea, 1985, pp. 504–515]. The
fully developed region is specifically studied thanks to the first eigenvalue dependence on the Péclet number, on the thermal conductivity
coefficients and on the diameter ratio of the cylinders. The effective transport between the fluid and the solid is investigated through the
evaluation of the fully developed Nusselt number and experimental measurements.
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1. Introduction

We hereby analyze some special limit of the extended
Graetz problem using variable separation eigenfunctions.
The mathematical and numerical solutions for this problem
has been obtained in numerous previous contribution
[5,6,11,10,9]. From the precursory contributions of
Papoutsakis et al. [5,6], a complete representation of the
solution relies on an orthogonal eigenfunction expansion
of this problem, independently from the applied boundary
conditions for the external cylinder, the input and the out-
put conditions. The core of any explicit numerical compu-
tation of the temperature field relies on the evaluation of a
subset of the infinite discrete spectrum of eigenvalues, and
eigenfunctions.

In this note we focus on some simple expression for the
asymptotic behavior of the solution, which put forward a
simple parameter already heuristically proposed in previ-

ous contribution. The effective transfer between the tube
and the co-axial solid cylinder in the fully developed region
is studied through the computation of the Nusselt number
in Section 4. A comparison with the available experimental
results is discussed in the last section.

2. General solution and eigenvalue problem

The extended Graetz problem is considered for two
complementary configurations sketched in Fig. 1 that we
will subsequently refer to as a and b. The following non-
dimensional variables are introduced to describe the
problem:

g ¼ r
ra
; f ¼ z

ra
; R ¼ rb

ra
; Pe ¼ 2Ura

DI
;

where rb is the radius of the solid co-axial cylinder. A fully
developed hydrodynamic flow inside the tube is considered.
The velocity longitudinal component u along the z-axis of
the tube has a Poiseuille parabolic profile which is propor-
tional to the mean applied pressure gradient ozP
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u ¼ 1

4
ozP r2

a � r2
� �

¼ 2U
r2

a

r2
a � r2

� �
;

U ¼ 1

S

Z
S

udS ¼ 2

r2
a

Z ra

0

ur dr;

where U is the averaged fluid velocity inside the tube hav-
ing section S and radius ra. Only axi-symmetric boundary
conditions will be considered in the following. The non-
dimensional Stationary convection–diffusion of heat is de-
scribed by

PeofH ¼
1

gð1� g2Þ ogðgogHÞ in I;

DH ¼ 0 in II;

ð1Þ

where H = T � T0 is a relative temperature built on the ref-
erence temperature T0 in the fluid tube I and the solid re-
gion II at z ? +1 for configuration 1a and at z ? �1
for configuration 1b, as already used in [5,6]. We restrict
our attention to the solution region where there is an adia-
batic isolated solid cylinder, i.e. f > 0 in configuration 1a,
and f < 0 in configuration 1b

ogH
IIðR; fÞ ¼ 0: ð2Þ

Firstly we are looking at far field decreasing boundary
conditions,

HI ! HII ! 0 jfj ! 1: ð3Þ
While the temperature and flux equilibrium between the
fluid and solid region reads

kIogH
Ið1; fÞ ¼ kIIogH

IIð1; fÞ; ð4Þ
HIð1; fÞ ¼ HIIð1; fÞ; ð5Þ

where kI, kII are the thermal conductivity in the fluid and in
the solid.

One can find a general solution to the problem (1) by
writing it as

HIðg; fÞ ¼
X

n

hn�Gðk�n; gÞe�k2
�nf=Pe;

HIIðg; fÞ ¼
X

n

hn�F R
k2
�n

Pe
g

� �
e�k2

�nf=Pe;

ð6Þ

where

F R
k2

n

Pe
g

� �
¼ J 0

k2
n

Pe
g

� �
Y 1 k2

n

R
Pe

� �
� J 1 k2

n

R
Pe

� �
Y 0

k2
n

Pe
g

� �

is the linear combinations of the Bessel harmonic eigen-
functions [1] which fulfills the radial adiabatic boundary
condition (2).

G(k,g) is the Graetz function:

Gðk; gÞ ¼ e�kg2=2U
1

2
� k

4
; 1; kg2

� �
;

where U(a,b,z) is the confluent hyper-geometric function
[1] (sometimes referred to as 1F1) which possesses two a

and b parameters and one variable z. Unlike the solution
of the Graetz problem, the solutions families (6) explicitly
depend on the Péclet number, on the radius ratio of the
fluid and solid region and on the conductivity ratio kI/kII

through condition (4).

Nomenclature

DI, DII thermal diffusivity in the fluid (I) and in the solid
(II)

FR eigenfunction in the solid cylinder
G Graetz eigenfunction
I dimensionless asymptotic parameter
J0, J1 zeroth and first Bessel functions of the first kind
kI, kII thermal conductivity coefficients
Y0, Y1 zeroth and first Bessel functions of the second kind
Nu Nusselt number
S surface of the cylinder
ra, rb internal radius of the inner and outer cylinder
Pe Péclet number
r radial coordinate
R ¼ rb

ra
aspect ratio between the inner and the outer cyl-
inder

P fluid pressure
S surface of the inner pipe
T temperature
T0 reference temperature at infinity
H = T � T0 intrinsic temperature
U averaged longitudinal velocity
u fluid longitudinal velocity
z longitudinal coordinate

Greek symbols
g ¼ r

ra
dimensionless radial coordinate

k eigenvalue of the coupled thermic problem
U(a,b,z) confluent hyper-geometric function
f ¼ z

ra
dimensionless longitudinal coordinate

Fig. 1. Schematic representation of the two symmetrical configurations
under study.



One of the most interesting features of these solutions is
that in the region where no flux is applied, one finds a lon-
gitudinal exponential decrease in temperature whose char-
acteristic length is directly related to the first eigenvalue of
the problem. The forward eigenvalue k+n is associated with
the temperature relaxation convected downstream in 1a
configuration while the ‘‘backward” eigenvalue k�n is asso-
ciated with the upstream temperature rise induced by the
solid conduction in Fig. 1b configuration.

Using the solution family (6), imposing the interface
coupling conditions (4) and (5) leads to the following eigen-
value problem on kn:

kIPe

kII

F R k2
n=Pe

� �
F 0R k2

n=Pe
� � ¼ kn

U 1
2
� kn

4
; 1; kn

� �
2U0 1

2
� kn

4
; 1; kn

� �
� U 1

2
� kn

4
; 1; kn

� � ;
ð7Þ

where 0 denotes the derivative of functions with respect to
their variables.

3. Large Péclet number and small diameter limit

In the following sections the fully developed region
where the first eigenfunction is dominant will be our main
focus. The region for which the first eigenfunction prevails
over all the other ones is given by the f values for which
k2

2 � k2
1

� �
f=Pe > 3. The amplitude of this fully developed

mode is the projection of the concentration field at f = 0
with the first eigenfunction. We will not be interested by
this amplitude in the following, focusing on the first eigen-
value and Nusselt number. We investigate the large Péclet
number limit which is equivalent with a thin solid region.

In this limit Pe� 1 the ratio F 0R k2
n=Pe

� �
=F R k2

n=Pe
� �

’ k2
n

ð1� RÞR=Pe. Thus, one has merely to solve the simplified
eigenproblem

�U
1

2
� kn

4
; 1; kn

� �
þ 2U0

1

2
� kn

4
; 1; kn

� �

¼ kII

kI

RðR� 1Þ
Pe2

k3
nU

1

2
� kn

4
; 1; kn

� �
; ð8Þ

to find the eigenvalue kn. Direct numerical results of the
coupled problem (1) have been carried out by [2] in this
limit and have shown that the typical entry length in
Fig. 1b configuration depends on a single parameter I,

I ¼ kII

kI

RðR� 1Þ
2Pe2

; ð9Þ

only. Eigenvalue problem (8) shows precisely the same
dependence on the geometrical, physical and hydrodynam-
ical parameters of the problem.

3.1. Forward eigenvalue k+n

Forward eigenvalues are associated with the down-
stream decrease of temperature in Fig. 1a configuration.

In the limit of infinite Péclet number, eigenvalues k+n

have finite values defined by the following transcendental
equations:

U
1

2
� k1þn

4
; 1; k1þn

� �
¼ 2U0

1

2
� k1þn

4
; 1; k1þn

� �
: ð10Þ

In this limit k+n does not depend on the three parameters of
the problem R, Pe and kI/kII and exactly coincides with the
Neumann–Graetz problem eigenvalues. For large but finite
Péclet numbers and for a small aspect ratio, one can linear-
ize (8) to get the asymptotic behavior of the eigenvalues,
which only depends on I

kþn � k1þn ¼
2k1þn

3an

p
kIIRð1� RÞ

kIPe2
; ð11Þ

where an¼ 1 1
2
� k1þn

4

� �
3
2
� k1þn

4

� �
U 5

2
� k1þn

4
;3;k1þn

� �
�ð1=4ÞU

�.
1
2

�
� k1þn

4
;1;k1þnÞÞ: When the diffusivity ratio decreases to zero,

or when the solid radius cylinder decreases to 1, the trans-
port in regions I and II becomes decoupled and, of course,
one finds the asymptotic Graetz–Neumann solution. Again,
the asymptotic validity of the linearization (11) is interesting
to compare with numerical computations. The full eigen-
problem (7) has been solved with a Newton method using
the numerical evaluation of the confluent hyper-geometric
function proposed in [4]. The eigenvalues have been tracked
with a continuation method. Fig. 2a and b display the
behavior of the first eigenvalue k+1. Fig. 2a shows that when
the diameter of the outer cylinder is twice as large as that of
the inner one and when diffusivity is the same in both,
linearization (11) gives good approximation for the first
eigenvalue even for moderate values of the Péclet number.
A careful inspection of the numerical values represented in
Fig. 2a shows that the prediction (11) is already 4% accurate
for Péclet number value as low as 30. Fig. 2b compares the
proposed scalings for the eigenvalues as a function of the
cylinder aspect ratio R. It shows that even if the asymptotic
prediction is supposed to hold for 1 � R� 1, it is still
very good for large values of R when the Péclet number is
large.

3.2. Backward eigenvalue k�n

Backward eigenvalues are associated with the upstream
decrease of temperature in Fig. 1b configuration. The
eigenvalue k�1 has previously been studied with direct
numerical simulations by [2] when the outer cylinder is thin
(R � 1� 1). They have described the temperature decrease
observed in the domain f < 0 of Fig. 1b configuration.
Using these numerical simulations as an heuristic base,
Piva [7] found the simplified eigenproblem (8) by averaging
the temperature field in the solid. In this domain, fluid con-
vection in region I and solid diffusion in region II play
antagonist roles for the temperature rises from the far field
applied reference to the f = 0 heat source. The more con-
vection there is, the smaller the temperature of establish-
ment length will be, while conversely, the more diffusion



in the solid, the larger the distance for the temperature to
be established. Thus establishing length tends to zero as
the Péclet number goes to infinity while conversely the
eigenvalue k�1 tends to infinity. The divergence of this
backward eigenvalue with the Péclet number is illustrated
in Fig. 3a. The full eigenvalue problem (7) is solved here
and represented in Fig. 3a. In Section 5 it is compared to
the numerical solution of the approximated problem (8)
and to experimental measurements. On the other hand,
the approximated eigenproblem (8) can be used to find
an asymptotic expression for the eigenvalue k�n with the
Péclet number

U0ð1=2� k�n=4; 1; k�nÞ
Uð1=2� k�n=4; 1; k�nÞ

¼ 1

2
þ kIIRðR� 1Þ

kI2

k3
�n

Pe2

� �
: ð12Þ

Nevertheless it is not easy to get the asymptotic behavior of
the confluent hyper-geometric function when both its first
parameter and its variable tend to infinity. Erdélyi and
Swanson [3] have thoroughly discussed the numerous
asymptotic behavior of function U(a,b,k) in this limit, for
fixed values of the ratio a/4k. In the presently interesting
limit where 4a/k ? 1, their results show that the logarith-
mic derivative of the confluent geometric function does
not diverge algebraically when a ?1 and k ?1. The

numerical calculation confirms this result leading to loga-
rithmic dependence on k�1. As illustrated in Fig. 3b the
asymptotic behavior of the first upstream eigenvalue k�1

display a logarithmic dependence with the single parameter
I, which collapse into a single master curve when changing
the aspect ratio parameter R. This leads to the following
expression of the backward eigenvalue dependence on the
Péclet number:

k�1 ¼ I�1=3ð0:026 ln I þ 0:915Þ: ð13Þ

The linear behavior with the logarithm of parameter I re-
quires two constants that have been obtained from fitting
the numerical computation sketched in Fig. 3b.

4. Fully developed transfer

The Nusselt number is defined by the non-dimensional
flux between region I and II:

NuðfÞ ¼ 1

HbðfÞ �HwðfÞ
oH
on

; ð14Þ

where Hw = H(1,f) is the wall temperature and Hb is given
by

Fig. 2. (a) First eigenvalues k+1 versus Pe, for R = 2, kI

kII ¼ 1. The inset represents a log–log representation of the difference kþ1 � k1þ1 with k1þ1 ¼ 5:067505
versus the Péclet number; the asymptotic (11) is represented with dotted lines. (b) Same conventions as in figure (a) versus the aspect ratio R for Pe = 200.
Dotted line illustrates the asymptotic (11).

Fig. 3. (a) Imaginary part of the first backward eigenvalue k�1 versus Pe, for R = 1.1 with circle symbols and R = 1.05 for square symbols with kI

kII ¼ 1. (b)
Same conventions for k�1iI

1/3 versus parameter I in semi-logarithmic representation.



Hb ¼
1

SIU

Z
SI

uHI dSI; U ¼ 1

SI

Z
SI

udSI;

where SI is the region I disk surface, and Hb is the flow
weighted averaged temperature or ‘‘mixing cup” tempera-
ture. Another definition is sometimes found in the litera-
ture omitting the Hw(f) term of the denominator. We
have kept this definition here to be able to compare with
some experimental data in the backward configuration.
Looking for a simplified far field expression for the Nusselt
number one finds that its fully developed asymptotic
behavior reaches a constant value which depends only on
the first eigenfunction and eigenvalue. This can be done
from averaging with a ‘‘mixing cup” weight the convec-
tion–diffusion equation (1) in the liquid. This leads to a
relation between Hb and the transverse temperature varia-
tion at the inner wall:

1

4
PeofHb ¼ ogHð1; fÞ: ð15Þ

Using this relation and solution (6), one can then find the
fully developed approximation of these fields in the limit
where jfj � 1,

Hw ’ h1e�k1=2e�k2
1f=PeU

1

2
� k1

4
; 1; k1

� �
; ð16Þ

Hb ’ �4
h1

k1

e�k1=2e�k2
1f=Pe 2U0

1

2
� k1

4
; 1; k1

� ��

�U
1

2
� k1

4
; 1; k1

� ��
: ð17Þ

From these expressions, one is then able to find an explicit
formulation of the fully developed Nusselt number from
using definition (14)

Nu ¼ k1

U 1
2�

k1
4 ;1;k1

� �
�2U 1

2�
k1
4 ;1;k1

� �
þ4U0 1

2�
k1
4 ;1;k1

� �þ 2
k1

: ð18Þ

Although explicit, this expression can be even further sim-
plified in the context of the large Péclet numbers and small
solid diameter previously considered in Eq. (8) for which it
simply reads

Nu ’ 4k4
1I ; ð19Þ

where, again, the limit I ¼ kII

kI
RðR�1Þ

2Pe2 � 1 is considered.
Now, using the asymptotic expression obtained in (11)

leads to the explicit formula, in terms of the physical, geo-
metrical, and hydrodynamical parameters of the problem,
for the forward eigenvalue

Nuþ ¼ 2k1þ1
4 1� 8

k1þ1
3a1

p
kII

kI

RðR� 1Þ
Pe2

 !
kII

kI

RðR� 1Þ
Pe2

:

ð20Þ

It is interesting to note that, to the leading order neglecting
O(1/Pe2) effects, the forward transfer is not increasing with
the Péclet number. On the contrary it decreases quadrati-
cally with this parameter. This result is not intuitive since

increasing the flow enhances the temperature longitudinal
gradient. The typical axial decreasing length of the temper-
ature field ‘+ scales as ‘þ � Pe=k2

þ1. When the fluid is in-
creased this length asymptotically increases linearly with
the Péclet number. A side effect of this increase is neverthe-
less that, conversely, normal gradients shrink when the sta-
tionary temperature field is stretched by convection, so that
the transverse gradient scales as 1/‘+.

Most of the temperature variations are concentrated at
the tube center, and decrease rapidly to reach a quasi-con-
stant value near the tube inner wall. In this limit, the tem-
perature difference between the liquid and the wall is thus
grossly proportional to ‘+. Moreover, since the radial tem-
perature gradient scales as 1/‘+, the Nusselt number which
is the product between the inverse of temperature difference
and the temperature gradient should then scale as
Nuþ � 1=‘2

þ, so that Nu+ � 1/Pe2. These physical argu-
ments thus allows to recover the leading order scaling
(20). Both asymptotic are compared with the numerical
solution of (19) in Fig. 4. One can observed the conver-
gence to the quadratic leading order dependence with the
Péclet number found in (20) in Fig. 4a for different values
of the aspect ratio R. This figure again shows that the range
of value of R for which the asymptotic regime applies can
be quite broad reaching values as large as 5, for moderate
value of the Péclet number of the order of 100. Fig. 4b
compares the leading and first order asymptotic behaviors
given above, while all different sets collapse into a single
master curve when plotted as a function of parameter I,
in the limit of small values of this parameter.

In the case of the backward Nusselt number, an asymp-
totic expression can also be obtained from (13) and (19), in
the limit of small values of parameter I, so that one finds

Nu� ¼ I�1=34ð0:026 ln I þ 0:915Þ4: ð21Þ

This asymptotic behavior leads to larger and larger Nusselt
numbers when increasing the Péclet number, as opposed to
the forward case. This trend is confirmed from the compu-
tation of the Nusselt number from (19) depicted in Fig. 5a,
from which it can be observed that the Nusselt number
reaches values an order of magnitude larger than in the for-
ward case, even for moderate values of the Péclet number.
The transfer from the solid to the fluid is thus much more
important in the backward direction, even if the length-
scale ‘� associated with the typical axial decreasing length
of the temperature field is much more smaller. From the
definition of parameter I given in (9), it is easy to see that
the leading order scaling in Péclet, is Nu� � Pe2/3 up to log-
arithmic corrections. This leading order behavior can be
grossly understood from the same physical argument previ-
ously developed for the forward Nusselt number, indicat-
ing that in the backward case it should scale as
Nu� � 1=‘2

�. Since ‘� � Pe=k2
�1 � Pe�1=3, we then find that

the transfer should scale as Nu� � Pe2=3. The logarithmic
correction that have been previously obtained should be
viewed as a particularity of the cylindrical geometry that



has been chosen here, and should not appear in the similar
planar problem. It is also interesting to note that the valid-
ity range of the asymptotic behavior (21) is much more
restrain than in the forward case as illustrated in Fig. 5b.
For moderate values of the Péclet number such as 100,
the value of R for which it applies are not larger than
1.1. One can observed for instance that the behavior of
the Nusselt number associated with R = 2 on Fig. 5b does
not collapse on the same master curve associated with the
asymptotic limit. In the limit of extremely small values of
parameter I it should nevertheless merge with the other
curves.

5. Comparison with experiments

It is interesting to compare theory and experiments
using the single parameter I to collapse different geometri-
cal, physical or hydrodynamical situations when the solid
cylinder wall is small. To our knowledge, only experimental
measurements in Fig. 1b configuration are available in the
literature. Using a copper tube the radius of which is one-
tenth of the inner cylinder, and using water as a working
fluid [8] carried out a large number of experiments for

Péclet numbers ranging from 1180 to 5000. The heat con-
ductivity of copper being much larger than that of water,
the conductivity ratio was in their case equal to kII/
kI = 549 ± 19. Two major parameters are interesting to
compare with the experimental measurements. First, let
us consider the longitudinal entry length ‘� (called m in
[8]) characterizing the exponential decrease in temperature.
This parameter is determined from the log-linear best slope
fit of the temperature variations measured with thermocou-
ples placed along the longitudinal direction of the external
face of the solid cylinder. The 25 data measurements of [8]
are represented in Fig. 6a and compared with theoretical
predictions. A prediction in the case of the thin solid wall
limit is derived from solving Eq. (8). It is interesting to note
that this prediction is in very good agreement with experi-
mental measures, as already found in [7]. This approxi-
mated theory compares very closely to the exact solution
of Eq. (7) in the case of radius ratio R = 10�2. A difference
between this approximated theory and the exact one is nev-
ertheless observed in the case of R = 10�1 which corre-
sponds to experimental conditions. Thus, even if the
theoretical predictions are very satisfyingly close to exper-
iments, a discrepancy of about 10% is observed, which

Fig. 4. Fully developed forward Nusselt number for different parameters. Bullet symbols are associated with R = 1.1, square symbols for R = 2 and black
triangular symbols with R = 5. (a) Versus the Péclet number. (b) Versus the parameter I defined in (9). The leading order asymptotic behavior (20) is
shown with dotted lines, while the next order is represented with long dashed lines.

Fig. 5. Fully developed backward Nusselt number for different parameters. Black bullet symbols are associated with R = 1.05, while white ones are for
R = 1.1 and square symbols for R = 2. (a) Versus the Péclet number. (b) Versus the parameter I defined in (9).



could be within the experimental error bars. Another inter-
esting parameter to compare with the experiments is the
Nusselt number represented in Fig. 6b. The Nusselt num-
ber cannot be directly measured in the experiments; it is
rather extrapolated from temperature measurements. Here
again, theory and experiments can compare in a satisfac-
tory way, within a 10% difference.

6. Conclusion

We found simple asymptotic expression for the first
upward and backward eigenvalues of the extended Graetz
problem. Those results should be useful for testing numer-
ical estimation or experimental results in the limit of large
Péclet number.
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