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The nonlinear stability of laminar sinuously bent streaks is studied for the plane Couette flow at

Re¼ 500 in a nearly minimal box and for the Blasius boundary layer at Red� ¼ 700. The initial

perturbations are nonlinearly saturated streamwise streaks of amplitude AU perturbed with sinuous

perturbations of amplitude AW. The local boundary of the basin of attraction of the linearly stable

laminar flow is computed by bisection and projected in the AU – AW plane providing a well defined

critical curve. Different streak transition scenarios are seen to correspond to different regions of the

critical curve. The modal instability of the streaks is responsible for transition for AU¼ 25%–27%

for the considered flows, where sinuous perturbations of amplitude below AW � 1%–2% are

sufficient to counteract the streak viscous dissipation and induce breakdown. The critical amplitude

of the sinuous perturbations increases when the streamwise streak amplitude is decreased. With

secondary perturbations amplitude AW � 4%, breakdown is induced on stable streamwise streaks

with AU � 13%, following the secondary transient growth scenario first examined by Schoppa and

Hussain [J. Fluid Mech. 453, 57 (2002)]. A cross-over, where the critical amplitude of the sinuous

perturbation becomes larger than the amplitude of streamwise streaks, is observed for streaks of

small amplitude AU< 5%–6%. In this case, the transition is induced by an initial transient

amplification of streamwise vortices, forced by the decaying sinuous mode. This is followed by the

growth of the streaks and final breakdown. The shape of the critical AU – AW curve is very similar

for Couette and boundary layer flows and seems to be relatively insensitive to the nature of the

edge states on the basin boundary. The shape of this critical curve indicates that the stability of

streamwise streaks should always be assessed in terms of both the streak amplitude and the

amplitude of spanwise velocity perturbations. VC 2011 American Institute of Physics.

[doi:10.1063/1.3614480]

I. INTRODUCTION

Streamwise streaks are narrow regions of excess or

defect streamwise velocity that are elongated in the stream-

wise direction. Their existence was first remarked in bound-

ary layers forced by free-stream-turbulence1–3 and it was

then realised that they play an essential role in the buffer

layer of turbulent shear flows.4 Further investigations have

revealed the presence of these structures at all scales in virtu-

ally all shear flows in the transitional and turbulent regimes.

Streamwise streaks are very efficiently generated from

streamwise vortices via the lift-up effect.5,6 The ratio of the

energy of the streaks compared to the energy of the vortices

that have generated them can reach values of the order of the

square of the Reynolds number7 even with a stable base

flow. These very large energy amplifications are related to

the strongly non-normal nature of the linearized Navier-

Stokes operator for shear flows,8,9 and the associated tran-

sient energy growths and sustained harmonic responses have

been computed for all the canonical shear flows.

Streamwise uniform streaks of large enough amplitude

are known to become unstable via an inviscid inflectional-

type mechanism.10–13 In laminar flows, the unstable modes

are streamwise non-uniform with a streamwise wavelength of

the order of the spanwise wavelength of the streaks. Usually,

the first unstable modes are sinuous and have the same span-

wise wavelength of the streaks (fundamental modes). The

instability of the streaks is important because the amplification

of the secondary mode leading to the streak breakdown allows

to regenerate streamwise vorticity and to close the loop of

self-sustained processes. It was indeed proposed that such an

endogenous self-sustained process is essential in the under-

standing of turbulent dynamics in the near-wall region,14,15

and it has been shown that a similar scenario is likely to

induce subcritical transition in laminar channel flows.11,16

The original view that a secondary modal instability of

the streaks is necessary for their breakdown has been ques-

tioned by Schoppa and Hussain.17 These authors use data

extracted from near-wall direct numerical simulations (DNS)

of turbulent channel flows and note that only less than 20%

of the near-wall streaks exceeds the critical amplitude for

secondary instability. They suggest as relevant breakdown

mechanism the transient growth of secondary perturbations

riding on top of modally stable streaks. Optimal secondary

transient growths have been computed for boundary layer

and channel flows streaks.18,19 Similar considerations arise in

the case of the transition induced by free-stream turbulence

in the flat plate boundary layer where transition to turbulence

is observed for streak amplitudes below the critical threshold

for secondary instability. Also in this case, alternative mech-

anisms have been proposed to bypass the secondary instabil-

ity of the streaks.20,21 For instance, Brandt et al.20 perform
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France.
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numerical simulations of collision of finite-length streaks

and show that this is able to initiate the breakdown below the

critical amplitudes.

The recent analyses of the instability of linearly stable

streaks can be rationalized by recognizing the subcritical na-

ture of the streaks breakdown, e.g., revealed by the continua-

tion procedure used by Waleffe22,23 to find self-sustained

nonlinear states. If streaks of large enough amplitude, above

the critical one, will experience breakdown even in the pres-

ence of infinitesimal perturbations, linearly stable streaks

will need perturbations of finite amplitude to undergo break-

down, and indeed, finite amplitude perturbations were con-

sidered in previous investigations of streaks breakdown.17,20

In all the previous studies on secondary streak transient

growth and streak breakdown, however, a systematic quanti-

tative analysis of the critical secondary perturbation ampli-

tudes is missing and it is, therefore, difficult to appreciate the

actual relevance of the proposed subcritical scenarios. The

scope of the present study is therefore to quantify the break-

down boundary in terms of the amplitude of the streaks and

of their secondary perturbations. The secondary perturba-

tions will be assumed to be sinuous, as this is the shape of

the critical unstable mode and of the perturbations observed

in the breakdown. This is equivalent to investigate the shape

of the boundary of the basin of attraction of the laminar solu-

tion for a two-parameter family of sinuously bent streaks.

We introduce the main processes we are interested in

with the help the simple toy model of Waleffe10 in Sec. I.

For this model, we determine the local boundary of the basin

of attraction of the laminar solution in terms of amplitudes

of the streamwise streak and of its spanwise perturbation.

The relation between the local basin boundary and the lower

branch saddle solutions, the edge state of this system, is also

discussed on the toy model. The main ideas discussed in

Sec. I are then applied to the plane Couette flow at Re¼ 500

and to the Blasius boundary layer at Red� ¼ 700 in Secs. II

and III, respectively. Finally, the main implications of the

results are discussed in Sec. IV.

II. INTRODUCTORY ANALYSIS ON A TOY MODEL

We first develop our arguments on the simple four-

dimensional model system proposed by Waleffe10,24

du=dt ¼ �ðk2
u=RÞuþ ruv� rw w2 þ ru m v; (1a)

dv=dt ¼ �ðk2
v=RÞvþ rv w2; (1b)

dw=dt ¼ ½�ðk2
w=RÞ þ rw u� rm m� rv v�w; (1c)

dm=dt ¼ �ðk2
m=RÞm� ru u v; (1d)

The system is designed to mimic the nonlinear dynamics of

streamwise vortices of amplitude v, streamwise streaks of

amplitude u, sinuous perturbations to the streaks of ampli-

tude w and the change m to the mean shear induced by these

perturbations at the Reynolds number R. The same coeffi-

cients as those considered in Ref. 24 have been selected ([km,

ku, kv, kw]¼ [1.57, 2.28, 2.77, 2.67] and [ru, rv, rw]¼ [1.29,

0.22, 0.68]) with the exception of the choice rm¼ 0, as in

Ref. 15. We define the state vector as u¼ [u, v, w, m]. The

“laminar solution” u¼ 0 is linearly stable for all R, but the

linear non-normal coupling ruv in the equation for the evolu-

tion of the streaks u sustains optimal transient energy

growths25 proportional to R2 at sufficiently large R. The opti-

mal linear initial condition is essentially composed of

streamwise vortices u
ðoptÞ
V � 0; 1; 0; 0½ �

� �
and the corre-

sponding optimal output is essentially composed of stream-

wise streaks u
ðoptÞ
U � 1; 0; 0; 0½ �

� �
.

Following the approach used in a number of previous

studies,13,18,19,26,27 nonlinear primary streaky base flow can be

generated by using the linear optimal initial perturbations with

finite amplitude A1u
optð Þ

V as initial condition for the nonlinear

system (1). Typical examples of the streak transient nonlinear

growth for two selected amplitudes A1 are reported in panels

(a) and (b) (solid, red line) of Fig. 1. Near the times of maxi-

mum growth the solutions are of the form U1 � [U, 0, 0, M].

Analysis of the eigenvalues of the linearized operator

show that U1 is (locally in time) unstable when

U > Uc ¼ k2
w= Rrwð Þ with the unstable mode uW¼ [0,0,1,0].

Uc, therefore, represents the critical amplitude of streaks,

above which secondary instabilities can grow leading to

streak breakdown and transition. As the primary base flow is

actually decaying for t¼ tmax, values of U well above Uc are

often required to trigger the streak breakdown11 with very

low initial amplitudes of the secondary mode uW, especially

at low or moderate R. When U<Uc, the primary streaks are

linearly stable but recognizing that the streak instability is

subcritical, one should be able to observe breakdown for

suitable perturbations of sufficiently large amplitude. To

investigate this issue, we therefore add a secondary perturba-

tion A2uW, a sinuous mode, to the streaky primary baseflows

U1 at the time of their maximum amplitude (the small trian-

gles in Fig. 1) and track their long-time evolution. When the

secondary perturbation is too small, the solution relaxes to

the laminar solution, while for sufficiently large secondary

perturbation amplitudes, the solution is attracted to a finite

equilibrium point, corresponding to an upper branch solution

uUB in the terminology of Waleffe.10,24 The critical second-

ary perturbation amplitude is found by bisection.11,16

As seen in Fig. 1, if the bisection is sufficiently refined,

the solutions remain for a finite time on the boundary of the

basin of attraction of the laminar solution and are attracted to

the lower branch saddle solution uLB before eventually

escape to the upper branch solution or to the laminar solu-

tion. Here, uLB represents the “edge state” of the system.28–30

The saddle point uLB is approached in different ways,

depending on the initial primary streak amplitude. For a pri-

mary base flow with primary streak amplitude well above

Uc, the “classical” scenario is observed where the growth of

the secondary unstable perturbations (w) is sustained even

during the initial decay of the primary streaks, before

approaching the lower branch solution and finally escaping it

(panels a and c in Fig. 1). When the primary streaks are sta-

ble (U1<Uc), a secondary perturbation with larger ampli-

tude is needed to undergo transition. In this case, the lower

branch is approached after an initial decrease of w, the
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secondary perturbation amplitude, while a secondary growth

of the streak amplitude u is occurring at the same time (pan-

els b and d in Fig. 1).

The secondary perturbation thresholds have been com-

puted for a full range of primary streak amplitudes and are

reported in Fig. 2. This figure conveys the essential message

of the paper. Because of the subcritical nature of the sinuous

instability of the streaks, the streak breakdown can be

achieved for low-amplitude streaks if the amplitude of the

secondary perturbations is sufficiently large. To determine

the fate of the streamwise streaks, one should therefore con-

sider not only the amplitude of the streaks but also the ampli-

tude of their secondary perturbations, unless the streak

amplitudes are definitely supercritical U � Ucð Þ. The set of

threshold amplitudes (the triangles in Fig. 2) represents a

projection on the u – w plane of the boundary of the basin of

attraction of the laminar flow in which the lower branch solu-

tion uLB is contained. From the point of view of nonlinear

hydrodynamic stability, it is the whole shape of the basin

boundary that is important and not only the lower branch so-

lution. We believe that for real shear flow at large Reynolds

number, the shape of the basin boundary is more robust than

the exact nature of the edge state (steady, periodic, or chaotic

solution).

Interestingly, transition can be obtained even in the

almost complete absence of initial streaks and of initial vorti-

ces, in accordance with previous findings.31 The underlying

mechanism can be easily understood in the case of the model

system. Consider an initial condition essentially composed

of spanwise perturbation w (this corresponds to the far left

points in Fig. 2). Upon multiplication by w and defining the

new variable v¼w2, Eq. (1c) is transformed into

dv=dt � �2 k2
w=R

� �
v (we neglect u and v at small times in

this case). Therefore, initially, the energy of the sinuous

mode v¼w2 decays, at least as long as the amplitude of the

streaks u is small. However, during its decay, the sinuous

mode triggers the growth of vortices v through the non-nor-

mal coupling in Eq. (1b): dv=dt ¼ � k2
v=R

� �
vþ rvv. By this

mechanism, the vortices quickly attain relatively large

amplitudes inducing the growth of the streaks, by standard

lift-up, as clearly seen in Fig. 3(a). The phenomenology

remains essentially the same in the DNS of transition in Cou-

ette and boundary layer flows (see Sec. III). This mechanism,

that is essentially active for initial conditions on the left of

the saddle point in Fig. 2, cannot be considered as a second-

ary transient growth on the streaks since w decreases during

the process and because there are virtually no primary

streaks that would sustain such a secondary growth.

III. SECONDARY SUBCRITICAL THRESHOLDS IN
PLANE COUETTE FLOW

The concepts discussed on the toy model in Sec. II are

now tested on the plane Couette flow of a viscous fluid of ki-

nematic viscosity � and constant density q between two

FIG. 1. (Color online) Temporal history

of the streaks amplitude u(t) (panels a
and b) and trajectory in the u – w plane

(panels c and d) of selected solutions of

Eq. (1) at R¼ 300, respectively, corre-

sponding to large (panels a and c) and

small (panels b and d) initial streak

amplitudes. Solid line (red): primary

streaks in the absence of secondary per-

turbations. Dashed line (blue) primary

streaks plus marginally stable secondary

perturbations. Dotted line (green) pri-

mary streaks plus marginally unstable

secondary perturbations. The triangles

correspond to the time at which the sec-

ondary perturbation is added on top of

the nonlinearly saturated streaks. The

filled circle corresponds to the lower

branch saddle solution.

FIG. 2. Secondary sinuous mode threshold amplitudes w¼wc necessary to

induce breakdown on a primary base flow with streak amplitude u¼U1 for

the model system Eq. (1) at R¼ 300. For the considered R, the critical ampli-

tude for the (local in time) streak instability is 100 * Uc¼ 3.5. The filled

circle symbol corresponds to the lower branch saddle solution found at the

same R.
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parallel plates located at y¼6h, where we denote by x, y,

and z, the streamwise, wall-normal, and spanwise coordi-

nates, respectively. The plates move in opposite directions

with velocity (6Uw, 0, 0). The flow is assumed periodic in

the streamwise and spanwise directions with respective

wavelengths Lx and Lz. In the following, we will consider the

specific values Lx¼ 2.5p, Lz¼p, and Re¼ 500. These values

are similar to the ones used in Ref. 14 (Re¼ 400, Lx¼ 1.75p,

Lz¼ 1.2p) and Ref. 11 (Re¼ 500, Lx¼ 2p, Lz =p).

The Couette solution (U0(y), 0, 0) with UC(y)¼Uwy=h
is linearly stable for all Reynolds numbers Re¼Uwh=� but

sustains large linear transient energy growths G tð Þ �
maxu0 6¼0 k u tð Þk2= k u0k2 for the considered parameters. At

the linear stage, the different in-plane Fourier modes of

streamwise and spanwise wavenumbers a and b, respec-

tively, can be considered separately. The maximum growth

Gmax : maxtG(t) is attained, at t¼ tmax, with the optimal

initial perturbations u
optð Þ

V consisting of streamwise vortices

that lead to maximum energy streamwise streaks u
optð Þ

U at

tmax. Standard methods9 are used to compute the optimal

perturbations for the Couette flow using a Chebyshev-collo-

cation discretization of the Orr-Sommerfeld-Squire equa-

tions on a grid of Ny¼ 65 collocation points in the wall-

normal direction.

A family of finite amplitude streaky flows is then built

by direct numerical simulation of the nonlinear Navier-

Stokes equations with initial condition UC þ A1u
ðoptÞ
V , where

the linear optimal vortices are given initial finite amplitude

A1. The DNS are performed using the Simson code;32,33 it

integrates the Navier–Stokes equations, discretized using a

Fourier–Chebyshev–Fourier representation in space and a

third-order Runge–Kutta method for the nonlinear terms and

a second-order Crank–Nicolson method for the linear terms

in time. A grid of 32� 65� 32 collocation points has been

used for the computations discussed below. We consider

streamwise uniform (a¼ 0) initial perturbations that induce

unsteady solutions u1(y, z, t, A1) also streamwise uniform.

These solutions consist in streamwise streaks that reach a fi-

nite-amplitude maximum energy at times t slightly smaller

times than tmax. Here, we denote by U1(y, z, A1), the streaky

velocity field u1 extracted at the time where it reaches its

peak perturbation energy.

The velocity fields U1(y, z, A1) form a family of nonlin-

ear streamwise uniform streaks whose amplitude is a mono-

tonic function of A1. Secondary sinuous perturbations uW are

assumed of the form used by Schoppa and Hussain:17

uW ¼ C 0; 0; gðyÞ sinðaxÞf g: (2)

with g(y)¼ (1 – y2) and C a normalizing constant ensuring

that k uW k¼ 1.

Also here, when the amplitude of the secondary pertur-

bation is low, the solution relaxes to the laminar Couette so-

lution, while for sufficiently large amplitudes, it leads to the

streak breakdown. The critical secondary amplitude is found

by a bisection algorithm whose outcome is reported in Fig. 4

for two sample cases with large and small primary streak am-

plitude. The phenomenology observed is analogous to that

described by the toy model in Sec. II. For the largest ampli-

tude of the primary streak (panels a and c of Fig. 4), which is

linearly unstable, the threshold amplitude of the secondary

perturbation is small, while it is significantly larger for pri-

mary streaks that are linearly stable (panels b and d of

Fig. 4). For all cases considered, the marginal solutions

approach a saddle solution (the Nagata lower branch solu-

tion30,34,35) as shown by the constant rms level of the pertur-

bation. Eventually, the flow transitions to turbulence or

relaxes to the laminar Couette solution.

The full set of secondary threshold amplitudes obtained

via DNS-based bisection is reported in Fig. 5(a); the behav-

ior is again similar to the picture provided by the toy model.

In the discussion above, we have used the rms values of

each velocity component, defined as u2
rms ¼

Ð
X ðu� UCÞ2

dX=U2
ref and w2

rms ¼
Ð
X w2dX=U2

ref but the results remain

almost unchanged when other measures of the streak and of

the secondary perturbation amplitudes are considered. In par-

ticular in Fig. 5(b), the critical curve is reported in terms of

the amplitudes AU – AW defined as

AU ¼ ðmax
y;z

DU �min
y;z

DUÞ=2 Uref ; (3a)

AW ¼ ðmax
x;y;z

W �min
x;y;z

WÞ=2 Uref ; (3b)

where we choose as reference velocity the difference of the

velocity of the two walls: Uref¼ 2Uw. AU is the primary

streak amplitude as defined for streamwise uniform streaks13

in terms of the maximum and minimum of the distortion of

the streamwise velocity DU(y,z)¼U(y,z) – UC(y). AW is

defined in a similar way to measure the amplitude of sinuous

secondary perturbations. In terms of these amplitudes, the

streamwise-uniform streaks become linearly unstable when

of AU¼ 25%. For primary streak amplitudes above this lin-

ear critical value, breakdown is obtained with secondary per-

turbations of amplitude AW � 1%. Such a value is

determined as a compromise between the viscous dissipation

of the streaks (whose amplitude is not frozen in our simula-

tions), and the time it takes for the instability modes to reach

energy levels able to trigger new and more detrimental non-

linear interactions. Only AW � 4% is necessary to induce

breakdown when the primary streak amplitude is decreased

to AU � 13%. When further decreasing the amplitude of the

FIG. 3. (Color online) Transient growth of vortices from an initial sinuous

perturbations added to weak streaks. Solution obtained for the model system

Eq. (1) corresponding to the critical point at lowest u (first point on the left)

in Fig. 2. During its initial decay, the sinuous mode (solid thick line, black)

induces a transient growth of the vortices (solid line, red) that, in their turn,

induce the growth of the streaks (dashed line, blue).
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primary streaks below AU � 6%, the amplitude AW of the

secondary perturbations needed for the streaks breakdown

becomes larger than the amplitude of the primary streaks.

The points on the far left in the plots in Fig. 5 indicate

that transition can be induced by an initial secondary sinuous

perturbation almost without initial primary streaks or vorti-

ces. The transition mechanisms active at very low initial

amplitudes of the streaks is not based on a secondary tran-

sient growth since the weak primary streaks would not sus-

tain that growth. In this case, a distinct two-stage mechanism

is observed, as shown in Fig. 6: the initially decaying sinuous

mode (associated with the rms spanwise velocity) forces the

growth of streamwise vortices (associated with streamwise

vorticity) that then induce the growth and breakdown of

streaks (associated with streamwise velocity perturbation

and wall-normal vorticity). This mechanism that has been al-

ready discussed on the toy model10,24 (see Fig. 3) can be eas-

ily understood considering the streamwise component of the

vorticity transport equation:

Dxx

Dt
¼ @u

@x
xx þ

@u

@y
xy þ

@u

@x
xz þ

1

Re
r2xx; (4)

where D=Dt denotes the material derivative. Considering,

for simplicity, an initial condition in the complete absence of

streaks u¼U1(y), v¼ 0, w¼w2(x, y) and assuming that the

action of viscosity is negligible for short times, then the

equation reduces to

Dxx

Dt
¼ @u

@y
xy: (5)

The tilting of the initial wall-normal vorticity xy¼�@w2=@x
by the wall normal shear @U1=@y is responsible for the initial

amplification of streamwise vorticity documented in figure 6.

From this figure, it is also seen how the initial pulse of xx

almost exactly corresponds to the initial pulse of the wall-nor-

mal velocity as can be understood either in terms of the stand-

ard Biot-Savart law or by taking the wall-normal component

of the curl of the vorticity definition r2v ¼ @xz=@x
�@xx=@z, where the streamwise vortices clearly appear as a

source term for the wall-normal velocity. Therefore, the

streamwise-periodic vorticity induced by the tilting of the ini-

tial wall-normal vorticity disturbance generates on a short

time scale streaks of finite length, alternating in a periodic

FIG. 5. Threshold amplitudes (triangles) for the sinuous streaks breakdown

in Couette flow at Re¼ 500 in terms of (a) rms primary streak and secondary

perturbations amplitude urms, wrms and (b) of the amplitudes AU-AW defined

in Eq. (3). The filled circle symbol corresponds to the lower branch saddle

solution at the same Reynolds number.

FIG. 4. (Color online) Streak break-

down in Couette flow at Re¼ 500. Two

cases are considered with, respectively,

large (panels a and c) and small (panels

b and d) initial primary streak amplitude.

(a,b): Temporal history of the rms
streamwise velocity perturbation urms.

(c,d): Evolution of the solutions in the

urms – wrms plane. Solid line (red): pri-

mary streaks in the absence of secondary

perturbations. Dashed line (blue) pri-

mary streaks plus marginally stable sec-

ondary perturbations. Dotted line (green)

primary streaks plus marginally unstable

secondary perturbations. The triangles

correspond to the time at which the sec-

ondary perturbation is added on top of

the nonlinearly saturated streaks. The

filled circle corresponds to the lower

branch saddle solution.
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fashion in the streamwise direction. Indeed, the initial span-

wise-velocity perturbation is periodic in the streamwise direc-

tion and induces, therefore, streamwise-dependent streamwise

vortices. The streaks induced by these vortices also have a fi-

nite length and their breakdown to turbulence is associated

with the interaction between a downstream low-speed region

and an upstream high-speed region that generates strongly

inflectional wall-normal profiles.20

A final comment is worth about the small offset that can

be seen in Fig. 5(b) between the lower branch saddle solution

and critical curve. This is due to the fact that the somehow

arbitrary initial conditions we use [the saturated straight

streak U1 plus the secondary perturbation A2uW defined in

Eq. (2)] is always different from the lower branch solution.

Our critical initial condition, therefore, will be on the basin

boundary but always at some finite distance from the lower

branch solution. This is why the projection of the lower

branch solution is not exactly on the critical curve found

using our specific initial conditions.

IV. SECONDARY SUBCRITICAL THRESHOLDS IN
BOUNDARY LAYER FLOW

The second flow we consider in our analysis is the zero-

pressure-gradient boundary layer with freestream velocity

(Ue, 0, 0) that is taken as reference velocity Uref¼Ue. The

optimal steady, spanwise periodic perturbations computed in

Ref. 36 are used as inflow condition close to the leading

edge with amplitude A1 and their downstream evolution u(x,

y, z, A1) is followed by both direct numerical simula-

tions13,26,27 and nonlinear parabolized stability equations.37

The streaky profiles U1(y, z, A1)¼U0(y)þ u1(y, z, A1) are

extracted at the downstream position xmax, where the streaks

reach maximum energy. The local parallel-flow assumption

is used to investigate the stability of the boundary layer pro-

file to initial conditions composed of primary streaks and

secondary sinuous perturbations uW given by Eq. (2) with

wall-normal distribution

gðyÞ ¼ y=ðpr2ÞÞ�1=2exp½�ððy� y0Þ2=ðr2Þ�

with r¼ 1.7 and y0¼ 1.8. Even if the streaks are allowed to

diffuse, a body force is used during the whole simulation in

order to prevent the diffusion of the Blasius profile.32,33

The fate of the initial conditions is determined by direct

numerical simulations assuming the streak profile constant in

the streamwise direction and the flow periodic in the stream-

wise and spanwise directions with respective wavelengths

Lx¼ 9d* (corresponding to ad*¼ 0.7) and Lz¼ 5.737d* (cor-

responding to bd*¼ 1.1) and Red� ¼ 700. The values of the

streamwise wavelength and of the Reynolds number are cho-

sen to reproduce those previously observed in numerical

simulations and experiments of transition in boundary layers

exposed to free-stream turbulence.38 Threshold amplitudes

are found by bisection, exactly like in the case of Couette

flow. The main difference with the Couette case is that even

for very long times, no convergence to a simple edge state

FIG. 6. (Color online) Transient growth of vortices from an initial sinuous

perturbations superposed to weak streaks: solution for the Couette flow DNS

corresponding to the critical point at lowest urms (first point on the left) in

Fig. 5. Short-term temporal evolution of the rms streamwise and wall-nor-

mal vorticity (panel a) and streamwise, wall-normal and spanwise velocities

(panel b).

FIG. 7. (Color online) Streak breakdown in Blasius flow at Red� ¼ 700. Temporal history of the rms streamwise velocity perturbation urms for two cases with,

respectively, large (panel a, corresponding to the third point from the right in Fig. 9) and small (panel b, corresponding to the first point from the left in Fig. 9)

initial primary streak amplitude. Solid line (red): primary streaks in the absence of secondary perturbations. Dashed line (blue) primary streaks plus marginally

stable secondary perturbations. Dotted line (green) primary streaks plus marginally unstable secondary perturbations.
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such a saddle or limit cycle solution is observed, as can be

seen in Fig. 7. No conclusions about the nature of the edge

state in the Blasius case can, therefore, be drawn here

because extending the computations to even larger times

would clearly violate the parallel flow assumption. This,

however, is not really a problem because the critical ampli-

tudes converge on a fast time scale, where the parallel flow

assumption holds; in addition, here we focus on the shape of

the basin boundary more than on the nature of the edge states

lying in it. The determination of the edge state in the fully

non-parallel case has been recently considered elsewhere.39

The marginal initial conditions pertaining to two cases

with, respectively, low and large initial streak amplitude are

shown in Fig. 8. The velocity vector field is displayed in the

wall-parallel plane at y=d*¼ 2. Note that the spanwise veloc-

ity is amplified by a factor 2: indeed relatively low bending

is necessary to trigger the laminar-turbulent transition.

The results of the bisection procedure, reported in Fig.

9, reproduce the trends and considerations of the Couette

flow, as well as those of the toy model. The critical AU – AW

boundary is also quantitatively similar to the one found for

the Couette case, despite the important differences between

the two flows.

V. SUMMARY AND CONCLUSIONS

In this study, we have explicitly computed by direct nu-

merical simulation the nonlinear stability of the Couette and

boundary-layer laminar solutions with respect to initial con-

ditions consisting of a primary streamwise-uniform streak

and secondary sinuous spanwise perturbation.

The critical curve, found by bisection using direct nu-

merical simulations, has been computed in terms of the am-

plitude of the streamwise streak and of the amplitude of the

sinuous perturbation. This critical curve is a two-dimensional

projection of the shape of the boundary of the basin of attrac-

tion of the laminar state for the considered subcritical

bifurcations.

The different streak transition scenarios that have been

considered in previous investigations correspond to different

parts of the threshold curve. Transition due to modal instabil-

ity10–13 of the streaks is found for large streak amplitudes

(AU¼ 25%–27%), where small amplitudes of the secondary

perturbation (AW< 1%–2%) are sufficient to overcome the

streak decay and trigger the breakdown. Transition based on

streaks transient growth17–19 is found for smaller values of

AU, where larger amplitudes of secondary perturbations are

required for transition. For the plane Couette flow case, the

solutions approach the lower branch saddle solution30,34,35 in

the transition process, which represents an edge state. These

lower branch solutions, however, represent a single point on

the boundary of the basin of attraction of the laminar solu-

tion. From the nonlinear stability perspective, the whole crit-

ical curve is of interest to assess the stability of the laminar

flow.

For streamwise streaks amplitudes below AU � 6%,

spanwise perturbations of amplitude larger than that of the

streak are required for breakdown. In this case, secondary

transient growth is inactive because the weak primary streaks

would not sustain that growth. A new two-stage mechanism

has been found to be operating in this range: the initially

decaying sinuous mode forces the growth of vortices that

then induce the growth of streaks. This interpretation has

FIG. 8. Velocity field in the wall-parallel plane (u-w components) at y¼ 2d*

corresponding to the critical initial conditions in the boundary layer corre-

sponding to: (a) large primary streak amplitude (panel a in Fig. 7) and (b)

lowest primary streak amplitude (panel b in Fig. 7). Note that the magnitude

of the spanwise velocity component is multiplied by a factor 2.

FIG. 9. Threshold amplitudes (triangles) for the sinuous streaks breakdown

in the boundary layer flow at Red� ¼ 700 in terms of (a) rms primary streak

and secondary perturbations amplitude urms, wrms and (b) of the amplitudes

AU - AW defined in Eq. (3).
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been devised on Waleffe’s reduced model10,24 and confirmed

by the analysis of the DNS for both Couette and boundary-

layer flow.

The computation of the transition threshold curve for

the streak breakdown in terms of the amplitude of the streaks

and of the sinuous perturbations is probably also relevant for

the design of control protocols aimed at, e.g., suppressing

transition by reducing the amplitude of the streaks or at

delaying transition using streaks.26,40 Due to the artificial

type of perturbations we have considered (spatially periodic

with a specific initial shape), some caution is recommended

in the direct application of the computed critical curves to

real world experiments. Also, localized perturbations, typical

of natural transition, have not been considered here. How-

ever, with all these words of caution, we believe that the

main conclusions of the present study still apply, at least

qualitatively:for the control to be robust, the level of span-

wise perturbations should also be kept particularly low.

An important question is to know in which part of the AU

– AW critical curve, natural transition, like transition induced

by free-stream turbulence, is likely to be observed. If the

external perturbations, or the nonlinear terms in the Navier-

Stokes equations, can be modeled as a stochastic forcing term

or as a noisy initial condition, then it is known that the ampli-

fication of streamwise uniform perturbations (the streaks) is

larger than the amplification of spanwise perturbations with fi-

nite streamwise wavelength and that the difference in amplifi-

cation increases with the Reynolds number. When the

Reynolds number is large, therefore, one would expect to

observe the “classical” modal scenario, where the streaks are

largely amplified and become locally modally unstable. Sus-

tained amplification of low-amplitude transverse perturbations

would then initiate the breakdown. However, bypass transi-

tion is usually observed at Reynolds numbers that are not

asymptotically large, where the amplification of the streaks is

not likely to be more than one order of magnitude larger than

the amplification of transverse perturbations. In such a situa-

tion, it is perfectly likely, and it is indeed observed, that transi-

tion can occur even when the streamwise streaks are locally

stable. To fully understand the transition scenario, experimen-

tal and numerical data could be processed not only with the

aim of computing the streamwise streaks amplitude but also

the amplitude of secondary perturbations, and the results

checked versus the critical curve we have computed. This also

applies to the interpretation of the self-sustained processes in

turbulent shear flows. In that case, is it also likely that the

effective Reynolds number, based on some sort of eddy vis-

cosity, is relatively low and therefore that low amplitude

unsteady streaks are observed. This is indeed the case that has

motivated previous investigations.17 One could, therefore,

conjecture that bursting events correspond to forcing of the

streaks by other structures, with spanwise perturbations above

the critical threshold.

In the present investigation, we have considered only

sinuous perturbations because they are the ones that first

become unstable when the primary streak amplitude is

increased. However, for streaks different from the one con-

sidered here, which are issued from optimal initial vortices,

it could be that the first unstable modes are varicose. In that

case, of course the results of the present study do not apply,

and appropriate critical curves should be recomputed using

the same rationale.
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