
Parallelization of an object-oriented FEM dynamics code: influence

of the strategies on the Speedup

Olivier Pantalé*

LGP CMAO, Ecole Nationale d’Ingenieurs, 47 Ave d’Azereix, BP 1629, Tarbes Cedex 65016, France

Abstract

This paper presents an implementation in CCC of an explicit parallel finite element code dedicated to the simulation of impacts. We first

present a brief overview of the kinematics and the explicit integration scheme with details concerning some particular points. Then we

present the OpenMP parallelization toolkit used in order to parallelize our FEM code, and we focus on how the parallelization of the DynELA

FEM code has been conducted for a shared memory system using OpenMP. Some examples are then presented to demonstrate the efficiency

and accuracy of the proposed implementations concerning the Speedup of the code. Finally, an impact simulation application is presented

and results are compared with the ones obtained by the commercial Abaqus explicit FEM code.

Keywords: Non-linear finite-element; Large deformations; Plasticity; Impact; CCC; Object-oriented programming; OpenMP; Parallel computing

1. Introduction

Crash and impact numerical simulations are nowbecoming

widely used engineering tools in the scientific community.

Accurate analysis of large deformation inelastic problems

occurring in impact simulations is extremely important due to

the high amount of plastic flow. Number of computational

algorithms have been developed, and their complexity is

continuously increasing. Some commercial codes like Aba-

qus-Explicit [1] can be used in such afield.With the increasing

size and complexity of the numerical structural models to

solve, the analysis tends to be a very large time and

computational resources consuming. Therefore, the growth

of the computational cost has out-placed the computational

power of a single processor in recent years. As a consequence,

supercomputing involving multiprocessors has become inter-

esting to use. Supercomputers have also been replaced by

some cheaper microprocessor-based architectures using

shared-memory processing (SMP) or distributed-memory

processing (DMP). In SMPs, all processors access the same

shared memory as shown in Fig. 1, while in DMPs each

processor has its own private memory.

The parallelization techniques in FEM codes can be

classified into two categories. The first-one concerns DMPs

where Message Passing Interface (MPI) is well established

as high-performance parallel programming model. Many

applications can be found in the literature dealing with

parallel dynamics FEM codes using the MPI [2,3]. MPI is a

scalable parallel programming paradigm because the user

has to rewrite a serial application all at once into a domain

decomposed program. Parallelization of codes within SMPs

computers is mainly carried out using special compiler

directives. Each manufacturer provided their own set of

machine specific compiler directives leading to well known

problems concerning portability of such codes from one

architecture to another. The OpenMP [4] standard was

designed to provide a standard interface in Fortran and

C/CCC programs for such a parallelization. Hoeflinger

et al. [5] explored the cause of poor scalability with

OpenMP and pointed out the importance of optimizing

cache and memory utilization in numerical applications.

The use of OpenMP gives a limited control over the threads

compared to the more fundamental Pthreads standard [6].

However, OpenMP is more easy to learn and use than

Pthreads leading to a lower development time. Portability

and efficiency of OpenMP over Pthreads is also better.

* Tel.: C33 5 6244 2700; fax:C33 5 6244 2708.

E-mail address: Olivier.Pantale@enit.fr.

URL: http://www.enit.fr/recherche/lgp/cmao.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12042941?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The most common approach in transient dynamics

simulations is to use a Domain Decomposition Method

(DDM) [2,3,7]. In this approach, the structure is decom-

posed into a set of sub domains. The final solution of the

problem usually requires local computations over each

subdomain (this leads to the parallel problem) and

computation of the global interfacial problem using various

techniques. Our approach in this paper is quite different

since we focused on local parallelization techniques to be

applied on some CPU time consuming subroutines inside

the explicit integration main loop of the program. In this

approach, only the internal force vector and the stable time-

step computations are parallelized using some OpenMP

parallelization techniques, leading to a more efficient code

without the need of DDM.

In this paper, some aspects regarding the parallel

implementation of the Object-Oriented explicit FEM

dynamics code DynELA [8,9] using OpenMP are presented.

In a first part of this paper, an overview of the FEM code is

presented with some details concerning the explicit

integration scheme, the stable time-step and the internal

force vector computations. In a second part we present some

of the parallelization techniques used to Speedup the code

for a SMPs architecture. A benchmark test is used in this

part to compare the performance of the proposed paralle-

lization methods. Finally, the efficiency and accuracy of the

retained implementations are investigated using a numerical

example relative to impact simulation.

2. Overview of the FEM code

2.1. Basic kinematics

In this work, the conservative and constitutive laws are

formulated using an updated Lagrangian formulation in

large deformations. In a Lagrangian description, let ~X be the

reference coordinates of a material point in the reference

configuration UX3R
3 at time tZ0, and ~x be the current

coordinates of the same material point in the current

configuration Ux3R
3 at time t. The motion of the body is

then defined by ~xZfð~X ; tÞ: Let FZv~x=v~X be the

deformation gradient with respect to the reference

configuration UX. According to the polar decomposition

theorem, FZRUZVR, U and V are the right and left

stretch tensors, respectively, and R is the rotation tensor.

The spatial discretization based on FEM of the equation of

motion leads to the governing equilibrium equation [10]

M€~xCF
int

�!

ð~x; _~xÞKF
ext

��!

ð~x; _~xÞZ 0 (1)

where _~x is the vector of the nodal velocities and €~x the vector

of the nodal accelerations. M is the mass matrix, Fext
��!

is the

vector of the external forces and F
int

�!

the vector of the

internal forces. This equation is completed by the following

initial conditions at time tZ0:

~x0 Z ~xðt0Þ; _~x0 Z
_~xðt0Þ (2)

Ifwe use the same form4 for the shape and test function (as

usually done for a serendipity element), one may obtain the

following expressions for the elementary matrices in Eq. (1):

MZ

ð

Ux

r4
T
4 dUx; F

int
�!

Z

ð

Ux

V4
T
s dUx;

F
ext

��!

Z

ð

Ux

r4
T~b dUx C

ð

Gx

4
T~t dGx

(3)

whereV is the gradient operator, superscript T is the transpose

operator, Gx is the surface of the domain Ux where traction

forces are imposed, r is the mass density, s the Cauchy stress

tensor, ~b is the body force vector and ~t is the surface traction

force vector.

2.2. Time integration

Solution of the problem expressed by Eq. (1) requires

integration through time. In our case, this one is achieved

numerically in accordance with an explicit integration

scheme. This is the most advocated scheme for integrating

in the case of impact problems, i.e. high speed dynamics. For

an explicit algorithm, the elements of the solution at time tnC1

depend only on the solution of the problem at time tnwithout

the need of any iteration in each step. Stability imposes the

time-step sizeDt to be lower than a limit as discussed further.

In this work, we are using the generalized-a explicit scheme

proposed byChung andHulbert [11]who have extended their

implicit scheme to an explicit one. The main interest of this

scheme resides in its numerical dissipation. The time

integration is driven by the following relations:

€~xnC1 Z
MK1ðFext

��!

n KF
int

�!

nÞKaM
€~xn

1KaM

(4)

_~xnC1 Z
_~xn CDt½ð1KgÞ€~xn Cg€~xnC1� (5)

~xnC1 Z ~xn CDt _~xn CDt
2 1

2
Kb

� ��

€~xn Cb€~xnC1

�

(6)

P2

P3

Pn

Shared memory

P1

processorlocal cache memory

Fig. 1. Shared-memory processing (SMP) architecture.

Numerical dissipation is defined in the above system from

the spectral radius rb2[0.0:1.0] conditioning the numerical

damping of the high frequency. Setting rbZ1.0 leads to a

conservative algorithm while rb!1.0 introduces numerical

dissipation in the scheme. The three parameters aM, b and g

are linked to the value of the spectral radius rb by the

following relations:

aM Z
2rb K1

1Crb
; bZ

5K3rb

ð2KrbÞð1CrbÞ2
; gZ

3

2
KaM

(7)

The time-step Dt is limited, it depends on the maximal

modal frequency umax and on the spectral radius rb by the

following relation

DtZgsDtcrit Zgs

Us

umax

(8)

where gs is a safety factor that accounts for the destabilizing

effects of the non-linearities of the problem andUs is defined

by:

Us Z

ffi

12ðrb K2Þð1CrbÞ3
r4b Kr3b Cr2b K15rb K10

s

(9)

The generalized-a explicit integration flowchart is given

inBox 1. In this flowchart, the three steps 5b, 5e and 5f are the

most CPU intensive ones. We focus now on some theoretical

aspects of those three steps before presenting some

parallelizing methods to apply.

2.2.1. Internal forces computation

It is generally assumed that, according to the decompo-

sition of the Cauchy stress tensor s into a deviatoric term

sZdev[s] and an hydrostatic term p, the hypo-elastic

stress/strain relation can be written as follow

s
V
ZC : D; _pZK tr½D� (10)

where sV is an objective derivative of s, K is the bulk

modulus of the material, C is the fourth-order constitutive

tensor and D (the rate of deformation) is the symmetric part

of the spatial velocity gradient LZ _FFK1. The symbol ‘:’

denotes the contraction of a pair of repeated indices which

appear in the same order, so A:BZAijBij. As the DynELA

FEM code is dedicated to large strains simulations, we must

ensure the objectivity of the terms in Eq. (10). A procedure

that now has become widely used consists in writing the

constitutive equation in a co-rotational frame defined by a

rotation tensor w with _wZuw and w(tZ0)ZI. Defining

any quantity () in the rotating referential as co-rotational

one denoted by ()c, one may obtain:

r
c
Z r; s

c
Zw

T
sw; C

c
Zw

T½wT
Cw�w (11)

For details concerning this change of frame, see Ref.

[12]. The choice of uZW where W is the skew-symmetric

part of the spatial velocity gradient tensor L leads to the well

known Jaumann rate. Eq. (10) in this co-rotational frame

leads to the following form:

_s
c
ZC

c
: D

c
; _pZK tr½Dc� (12)

In order to integrate these equations through time, we

adopt the use of elastic-predictor/plastic-corrector (radial-

return mapping) strategy, see for example Refs. [10,12,13].

An elastic predictor for the stress tensor is calculated

according to the Hooke’s law by the following equation

p
tr
nC1 Z pn CK tr½De�; s

tr
nC1 Z sn C2G dev½De� (13)

whereG is the Lamé coefficient and DeZ(1/2)ln[FTF] is the

co-rotational natural strain increment tensor between

increment n and increment nC1. At this point of the

computation, we introduce the von Mises criterion defined

by the following relation:

f Z �sKs
v
Z

ffi

3

2
strnC1 : s

tr
nC1

r

Ks
v; (14)

where sv is the current yield stress of the material. If f%0,

then the predicted solution is physically admissible and the

whole increment is assumed to be elastic ðsnC1ZstrnC1Þ.

Flowchart for generalized-a explicit integration

(1) Internal matrices computation: N, B, J, det[J].

(2) Computation of the global mass matrix M.

(3) Computation of the vectors Fint
�!

and F
ext

��!

.

(4) Computation of the stable time-step of the structure.

(5) Main loop until simulation complete.

(a) Computation of the predicted quantities:

_~~xnC1 Z
_~xn C ð1KgÞDtnC1

€~xn

~~xnC1 Z ~xn CDtnC1
_~xn C

1

2
Kb

� �

Dt
2 €~xn

(b) Computation of the vectors Fint
�!

and F
ext

��!

.

(c) Explicit solve:

€~xnC1Z
MK1ðFext

n

��!

KF
int
n

�!

ÞKaM
€~xn

1KaM

~xnC1Z
_~~xnC1CDtnC1g

€~xnC1

~xnC1Z
~~xnC1CDt

2
nC1b

€~xnC1

(d) If simulation complete, go to 6.

(e) Internal matrices computation: B, J, det[J].

(f) Computation of the stable time-step of the

structure.

(g) Go to 5a.

(6) Output.

Box 1

If not, the consistency must be restored using the radial

return-mapping algorithm reported in Box 2.

2.2.2. Internal matrices computation

The internal matrices computation is done element by

element. This computation is totally independent from one

element to any other one. This computation consists in the

computation of the elementary matrices N for the shape

functions, BZvN=v~x for the derivatives of the shape

functions and J the Jacobian. This computation is done for

every quadrature point of each element.

2.2.3. Stable time-step computation

Explicit schemes are conditionally stable. The time-step

size must be lower than the critical value depending on the

maximum pulsation umax of the body as shown in Eq. (8). In

our application, the value of umax is evaluated by the power

iterationmethod proposed byBenson [14]. The corresponding

algorithm is given in Box 3. Once the evaluation of umax is

done, Eq. (8) gives the stable time-step value for the structure.

3. Object-oriented design

3.1. Overview of object-oriented programming

Numerical softwares are usually based on the use of a

procedural programming language such as Fortran. Over the

last few years, the use of object-oriented programming

(OOP) techniques has increased and CCC language [15]

has become popular for writing FEM codes. Briefly

speaking, the use of OOP leads to highly modularized

codes through the use of defined classes, i.e. associations of

data and methods. The benefits of OOP to implementations

of FEM programs has already been explored by several

authors [8,16–18].

3.2. Finite element classes

As it can be found in other papers dealing with the

implementation of FEM [16–18] we developed some

specific classes for this application. The FEM represented

by the class Structure is mainly composed of the classes

Node, Element, Material and Interface as shown

in Fig. 2. In this application, all quantities are stored into the

corresponding object as a consequence of OOP encapsula-

tion. This specificity leads to a difference between a

classical FEM programming, where quantities are stored

in global vectors declared common, and our approach. This

will be very important for the parallelization of the code as

we will see later.

† The class Node contains nodal data such as nodal

number or coordinates. Two instances of the Nodal-

Field class are linked to each node, the first one

contains nodal quantities at time t, the second one at time

tCDt. At the end of an increment, we swap the two

references to transfer quantities from one step to the next

one. Boundary conditions through the BoundaryCon-

dition class may affect the behavior of each node in

particular sub-treatments such as contact conditions.

Those conditions are dynamically linked to the nodes,

Radial return algorithm for an isotropic hardening

flow law

(1) Compute the hardening coefficient hnð�3vpn Þ and the

yield stress svnð�3vpn Þ.
(2) Compute the value of the scalar parameter G(1) given

by:

G
ð1Þ

Z

ffi
snC1 : snC1

p
K

ffiffiffi

2
3

q

svn

2G 1C hn
3G

ÿ �

(3) Consistency condition loop from kZ1.

(a) Compute svnC1ð�3vpn C
ffiffiffiffiffiffiffi

2=3
p

GðkÞÞ and

hnC1ð�3vpn C
ffiffiffiffiffiffiffi

2=3
p

GðkÞÞ.
(b) Compute fZ2G

ffiffiffiffiffiffiffi

2=3
p

GðkÞ
K �sCsvnC1 and

dfZ2G
ffiffiffiffiffiffiffi

3=2
p

C

ffiffiffiffiffiffiffi

2=3
p

h.

(c) If f =svnC1! tolerance go to 4.

(d) Update G(kC1)
ZG(k)

Kf/df.

(e) k)kC1 and go to 3a.

(4) Update the equivalent plastic strain

�3
vp
nC1Z �3

vp
n C

ffiffiffiffiffiffiffi

3=2
p

GðkÞ.
(5) Update the deviatoric stress tensor

snC1ZsnK2GGðkÞðsn=
ffiffiffiffiffiffiffiffiffiffiffiffi
sn : sn

p Þ.

Computation of the maximal model frequency

(1) Initializations nZ0; x0Z{1,., 0,., K1}T.

(2) Computation of the elementary elastic stiffness

matrices Ke.

(3) Loop over n iterative.

(a) Loop over all elements to evaluate x̂nZKxn on

the element level.

(i) Gather xen from global vector xn.

(ii) x̂enZKexen.

(iii) Scatter of x̂en into global vector x̂n.

(b) Computation of the Rayleigh Quotient

RZxTn x̂n=x
T
nMxn.

(c) x̂nC1ZMK1x̂n.

(d) fmaxZmaxðx̂nC1Þ.
(e) xnC1Z x̂nC1=fmax.

(f) If jfmaxKRj=ðfmaxCRÞ% tolerance go to 4.

(g) Return to 3a.

(4) Return the maximal model frequency umaxZ
ffiffiffiffiffiffiffiffi

fmax

p
.

Box 2 Box 3

therefore, they can change during the computation. This

is important for example for contacting nodes.

† The class Element is a virtual class containing the

definition of each element of the structure. Many

specialized derived classes have been defined depending

on the real nature of the element.

† The class Interface contains definitions concerning

the contact interfaces, the contact law through the

ContactLaw class and the contact definition through

the Side class.

† The Material class is used for the definition of the

materials used in various models.

† The class Solver serves as a base class for derived

solvers.

† Many other utility classes exist for time-history plot,

node and element groups management, data files read/

write [19].

4. Parallelization of the code

A Compaq ProLiant 8000 under Linux Redhat 8.0 is used

for developing and evaluating the performances of the

parallel code. This one is equipped with eight Intel Xeon

PIII 550/2Mb processors and 5 GB of system memory.

Compilation of the code is done using the Intel CCC 7.1

compiler without any optimization flag in order to compare

various implementations without compiler influence. This

kind of computer is usually dedicated to web server

applications.

The parallelization of our FEM application is based on

the use of OpenMP [4]. It is used to specify parallelization

on shared memory machines with the use of compiler

directives, library routines and environment variables.

Communication is implicit as we use a shared memory

architecture. Parallelization of the finite element software

involves a restructuring of the code for an efficient run on

multiprocessor systems by distributing the work among the

processors. This task is simplified because the DynELA

code is an Object-Oriented one. The type of parallelism used

in OpenMP is sometimes called ‘fork-join’ parallelism

because we launch multiple parallel threads (fork) in

parallel regions of the code and join them into a single

thread (the master one) for serial processing in non-parallel

regions as described in Fig. 3. A thread is an instance of the

program running on behalf of some user or process.

Parallelization with OpenMP can be done automatically

(through compiler flags) or manually (through explicit

compiler directives in the code). We tested both methods,

and as many other authors [20], found that the automatic

parallelization of the code leads to very bad Speedup results.

Manual parallelizing of the code is achieved by inserting

Fig. 2. Simplified UML diagram of the Object oriented framework.

specific #pragma directives in C/CCC codes. For

example:

void buildSystem(List hElementsi
elements) {

#pragma omp parallel for

for (int iZ0; i helements.size(); iCC

) {

elements(i).computeMatrices();

}

}

In this example, the #pragma omp parallel for

directive instruct the compiler that the following loop must

be forked, and the work must be distributed among multiple

processors. All of the threads perform the same computation

unless a specific directive is introduced within the parallel

region. For parallel processing to work correctly, the

iterations must not be dependent on each other and of course,

the computeMatrices method must be thread-safe. In

computer programming, thread-safe describes a program

portion or routine that can be called from multiple

programming threads without unwanted interaction between

the threads. Thread safety is of particular importance in

OpenMP programming. By using thread-safe routines, the

risk that one threadwill interfere andmodify data elements of

another thread is eliminated by circumventing potential data

race situations with coordinated access to shared data.

The user defines parallel region blocks using the

#pragma omp parallel directive. The parallel code

section is executed by all threads including the master

thread. Some data environment directives (shared,

private.) are used to control the sharing of program

variables that are defined outside the scope of the parallel

region. Default value is shared. A private variable has

a separate copy per thread with an undefined value when

entering or exiting a parallel region.

The synchronization directives include barrier or

critical. A barrier directive causes a thread to wait

until all other threads in the parallel region have reached the

barrier. An implicit barrier exists at the end of a parallel

region block. A critical directive is used to restrict

access to the enclosed code to only one thread at a time. This

is very important point when threads are modifying shared

variables.

Of course, this is only a brief overview of the OpenMP

directives and we refer to Ref. [4] for further complements

about this standard.

4.1. Load balancing

As we presented earlier, we adopt the use of an elastic

predictor/plastic corrector strategy in this work. In dynamic

computations, CPU time/element may vary from one

element to another during the computation of the plastic

corrector because plastic flow occurs in restricted regions of

the structure. Therefore, as presented in Section 2.2.1, if the

elastic predictor is physically admissible, the CPU consum-

ing return-mapping algorithm presented in Box 2 is not

executed for the corresponding integration point. Only the

evaluation of the criterion (14) allows to know the treatment

to apply. This also continuously evolves as the plastic front

moves across the structure.

As a consequence, the prediction of the CPU time needed

for the computation of the internal force vector F
int

�!

is

impossible to do here. Concurrent threads may request quite

different CPU time to complete, leading to wastes of time,

because we must wait for the latest thread to complete

before reaching the serial region (see Fig. 3 where thread 2

is the faster one and thread 3 the slower one). To avoid such

a situation, we must use a dynamic load balance in order to

equilibrate the allocated processors work. The class Jobs

(see Fig. 4) is dedicated to this. The class Job contains the

list of elements to be computed by one thread. The main

differences from the load balancing procedure developed

Fig. 3. Fork-join parallelism.

Fig. 4. Jobs class description.

here with other ones usually used in Domain Decomposition

Methods (DDM) coming from the literature [21] are

summarized here after:

† we use an explicit solver, therefore, the load balancing

over-cost must be very small (iterations of the main loop

in Box 1 are quite fast within an explicit integration

scheme),

† in our approach, the spatial distribution of elements/

thread can be any one. There is no need to solve any

interfacial problem as in a DDM approach.

For each iteration in the main loop of Box 1, at the end of

the requested computation in each of the parallel threads, we

measure the waiting time for each thread. We build an

indexed list containing the ranking for each thread ranging

from the faster one to the slower one. If the waiting time of

the faster thread is over a given parameter specified by the

user, some elements are transferred from the slower thread

to the others in order to equilibrate the allocated processors

work.

4.2. Benchmark test used for Speedup measures

4.2.1. Impact of a copper rod

We need a benchmark test in order to compare the

efficiency of the various proposed parallelization methods

presented further. The impact of a copper rod on a rigid wall

is a standard benchmark problem for dynamics computers

codes. A comparison of numerical results obtained with the

DynELA code and other numerical results has already been

presented in Ref. [8]. In this paper we will focus on the

Speedup obtained after the parallelization of the code using

this benchmark test. The initial dimensions of the rod are r0Z

3.2 mmand l0Z32.4 mm. The impact is assumed frictionless

and the impact velocity is set to ViZ227 m/s. The final

configuration is obtained after 80 ms. The constitutive law is

elasto-plastic with a linear isotropic hardening, material

properties, given in Ref. [22], corresponding to an OHFC

copper are reported in Table 1. Only half of the axisymmetric

geometry of the rod has been meshed in the model. Two

different meshes are used with 1000 (10!100) and 6250

(25!250) elements, respectively. This quite large number of

elements has been chosen to increase the computation time.

Table 2 reports a comparison for the final length lf, the

footprint radius rf and the maximum equivalent plastic strain

�3
p
max obtained with our finite element code and other

numerical results such as the one obtained by Liu et al. [22]

or the same simulation problem with the Abaqus Explicit

program (using the same 10!100mesh as presented before).

The differences between the solutions are reasonable and this

benchmark test is retained.

4.2.2. Time measures

In an explicit FEM code CPU times are quite difficult to

measure. We developed a specific class called CPUrecord

for this purpose. CPU measures are usually done using the

standard time function in C but the problem here is that

this one has only a time resolution of DtZ10 ms. In this

application, we use the Pentium benchmarking instruction

Read Time Stamp Counter (RDTSC) that returns the

number of clock cycles since the CPU was powered up or

reset. On the used computer, this instruction gives a time

resolution of about DtZ1=ð550!106Þx1:8 ns.

4.3. Internal forces computation parallelization

In this part, we focus on the parallelization of the internal

force vector computation presented in Section 2.2.1. This

computation is the most CPU intensive part of the FEM

code. To illustrate the use of the OpenMP parallelization

techniques we present in this section different ways to

parallelize the corresponding block with the influence on the

Speedup. This case is a typical application of OpenMP on

major loops leading to a coarse grain parallelization. This

one gives better results than the classical fine grain

parallelization usually done with OpenMP. In fact, fine

grain parallelization suffers from the drawback of frequent

thread creations, destructions and associated synchroniza-

tions. In the following example, the method computeIn-

ternalForce is applied on each element of the mesh and

returns the internal force vector resulting from the

integration over the element of Eq. (12). The gatherFrom

operation will assemble the resulting element internal force

vector into the global internal force vector of the structure.

A typical CCC fragment of the code is given as follow:

Vector Fint;

for (int elmZ0; elm helements.size();

elmCC) {

Vector FintElm;

elements (elm).computeInternalForces

(FintElm);

Fint.gatherFrom (FintElm,

elements(elm));

}

Table 1

Material properties of the OHFC copper rod for the Taylor test

Young modulus (GPa) E 117.0

Poisson ratio n 0.35

Density (kg/m3) r 8930

Initial flow stress (MPa) s0v 400.0

Linear hardening (MPa) H 100.0

Table 2

Comparison of numerical results for the Taylor test

FEM code rf lf �3
p
max

DynELA (25!250 elements) 7.11 21.33 3.30

DynELA (10!100 elements) 7.08 21.35 3.27

Abaqus explicit (100!100 elements) 7.08 21.48 3.23

Liu (5!50 elements) 7.15 21.42 –

We present here after four different techniques from the

simplest one to the most complicated one and compare their

efficiency using the 1000 elements mesh.

(1) In this first method, we use a parallel for directive

for the main loop and share the Fint vector among the

threads. A critical directive is placed just before the

gatherFrom operation because Fint is a shared

variable. See Fig. 5 for the corresponding source code

fragment.

(2) In this method, we use a parallel region directive. In this

parallel region, all threads access a shared list of

elements to treat until empty. The Fint vector is

declared as private. Both main operations are treated

without the need of any critical directive. At the

end of the process, all processors are used together to

assemble the locals copies of the Fint vector into a

global one.

(3) This method is similar to the previous one except that

each thread has a predetermined equal number of

elements to treat. Therefore, we avoid the use of a

shared list (as in method 2), each processor operates on

a block of elements. A new class Jobs is used to

manage the dispatching of the elements over the

processors. This one will be described further.

(4) This method is similar to the previous one except that

we introduce the dynamic load balance operator

presented in Section 4.1. See Fig. 6 for the correspond-

ing source code fragment.

Table 3 reports some test results. The Speedup factor sp is

the ratio of the single-processor CPU time (Ts) over the CPU

time (Tm) obtained with the multi-processor version of the

code. The efficiency ef is the Speedup ratio over the number

of processors used (n):

sp Z
Ts

Tm
; ef Z

sp

n
(15)

Variation in the number of CPU to use is done by

specifying this value from the environment variable

OMP_NUM_THREADS. Table 3 shows that this ratio can

be over 100%, this case is usually called Super-linear

Speedup. This result comes from the fact that, as a

consequence of the dispatching of the work, each processor

needs less memory to store the local problem, and cache

memory can be used in a more efficient way. In a computer,

processor tends to fetch data into cache before it reads it

(usually a block of data, not a single element). Next time

data are needed, there is a very fast access if it is still in the

cache otherwise it will be slow. If the amount of data treated

by the processor is not too big, the chance that the needed

next data resides in the cache is high, otherwise cache-

missing occurs. If we run the same computation test with

6250 elements instead of 1000, we obtain an efficiency

value of 90% for eight processors, and always below 100%

for 2–8 processors. Cache-missing seems to occur in this

case.

Fig. 7 shows a plot of the Speedup versus number of

processors. We can see that using method 1 leads to a very

bad parallel code especially when the number of processors

is greater than 5, while significant improvement comes with

methods 3 and 4. In fact, in method 1, the presence of a

critical directive in the gatherFrom operation leads to a

very low Speedup because only one thread can do this quite

CPU intensive operation at a time. In the second method, we

also need a critical directive to pick an element from the

global shared list of elements to treat and it costs CPU time

for that. Methods 3 and 4 are the most optimized ones. The

dynamic load balance method is the fastest one whereas it

needs some extra code to compute and operate this balance.

Vector Fint; // internal force Vector

// parallel loop base on OpenMP pragma directive

#pragma omp parallel for
for (int elm = 0; elm < elements.size (); elm++)
{
Vector FintElm; // local internal force Vector

// compute local internal force vector

elements(elm).computeInternalForces (FintElm);

// gather operation on global internal force vector

#pragma omp critical
Fint.gatherFrom (FintElm, elements(elm));

} // end of parallel for loop

Fig. 5. Source code for the method (1) variant.

jobs.init(elements); // list of jobs to do (instance of class Jobs)
int threads = jobs.getMaxThreads(); // number of threads
Vector Fint = 0.0; // internal force Vector
Vector FintLocal[threads]; // local internal force vectors

// parallel computation of local internal force vectors

#pragma omp parallel
{
Element* element;
Job* job = jobs.getJob(); // get the job for the thread
int thread = jobs.getThreadNum(); // get the thread Id

// loop while exists elements to treat

while (element = job->next())
{
Vector FintElm; // element force vector

// compute local internal force vector

element->computeInternalForces (FintElm);

// gather operation on local internal force vector

FintLocal[thread].gatherFrom (FintElm, element);
}

job->waitOthers(); // compute waiting time for the thread
} // end of parallel region

// parallel gather operation

#pragma omp parallel for
for (int row = 0; row < Fint.rows(); row++)
{
// assemble local vectors into global internal force vector

for (thread = 0; thread < threads; thread++)
Fint(row) += FintLocal[thread](row);

} // end of parallel for loop

// equilibrate the sub-domains

jobs.equilibrate();

Fig. 6. Source code for the method (4) variant.

Of course this extra time is taken into account in the results

presented. In fact, the CPU time needed for the compu-

teInternalForce operation may differ from one

element to an other because of differences in material law

or elastic/plastic loading in different parts of the structure,

so some threads have to wait, without doing effective

computation, until the slower thread completes. Dynamic

load balance improves the efficiency by reducing this

waiting time.

4.4. Time-step computation parallelization

Concerning the parallelization of the time-step compu-

tation we measured the CPU times using the Taylor

benchmark test with 6250 elements. An analysis of the

CPU times shows that the two sub-steps (2) and (3a) in

Box 3 represents 66.4% and 31.4% of the total

computational time in the Box. Different strategies have

been applied to both parts in order to efficiently

parallelize those two steps.

† The one concerning step (2) in Box 3 is quite trivial as

the computation of the elastic stiffness matrices K
e

have no dependence from one element to another one.

We apply here a procedure similar to method (3) in the

internal forces vector computation.

† Step (3a) in Box 3 is more complicated to efficiently

parallelize as in sub-step (3a(iii)) we can notice a

writing instruction in the shared vector x̂n. We already

know that the use of a critical directive for this

operation costs a lot of CPU time. Solution adopted in

this case is to introduce a private vector x̂ðiÞn where

superscript (i) represents the thread number and further

to collect all vectors x̂ðiÞn into a single vector x̂n using an

efficient parallel collecting algorithm.

Fig. 8 shows the Speedup versus number of processors for

this implementation. Steps (2) and (3a) present a Super-linear

Speedup in the benchmark test used. The so called

collecting vectors step contains sub-steps (3b–3e)

and the added step used to collect all local thread vectors x̂ðiÞn
into a single vector x̂n. In this step, as the number of

processors increases, and therefore the number of local

thread vectors to collect, the CPU time decreases slightly so

the over-cost induced from the collecting operation is

compensated by the gain produced by the parallelization of

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p
 v

a
lu

e

Number of CPU used in the simulation

method 1
method 2
method 3
method 4

Fig. 7. Speedup of the F
int

�!

computation for various implementations.

Table 3

Speedup of the F
int

�!

computation for various implementations

Method 1 CPU 4 CPU 8 CPU

Time Time Speedup Efficiency (%) Time Speedup Efficiency (%)

1 167.30 72.25 2.88 72.2 72.25 2.31 28.9

2 163.97 45.98 3.56 89.1 25.39 6.45 80.7

3 164.52 42.18 3.90 97.5 20.86 7.88 98.5

4 164.25 38.55 4.26 106.5 19.66 8.35 104.4

Fig. 9. Dynamic traction: initial mesh and equivalent plastic strain contour-plot.

Fig. 8. Speedup results for the time-step computation procedure.

the sub-steps (3b–3e). The Speedup is around 1.5 for this

operation, but we have to notice that this one only represents

2% of the total computational time for the time-step

computation procedure. Initializations step presents a

Speedup below 1, but in this case, it only represents 0.2%

of the computational time. In the presented example, this

figure shows a very good total Speedup close to the ideal

Speedup.

5. Application to an impact simulation

A typical application of the proposed software is

presented below showing some results concerning a

dynamic traction simulation. This problem simulates

the impact of a cylindrical projectile into a closed

cylindrical tube. The aim of this test is to identify the

constitutive flow law parameters from a set of experiments

[23]. We only focus here on the numerical aspect of this test.

Only half of the axisymmetric geometry of the structure has

been meshed in the model. Initial mesh is reported on the

left side in Fig. 9. Numerical model contains 1420 four-

nodes quadrilateral elements. Materials of the projectile and

the target are different and correspond to a 42CrMo4 steel

and an aluminum 2017T3, respectively. Material properties

corresponding to an isotropic elasto-plastic constitutive law

of the form svZACB�3n given in Ref. [23] are reported in

Table 4. The projectile weight is mZ44.l gr and the impact

speed is VcZ80 m/s. The final configuration is obtained

after 110 ms. Right side in Fig. 9 shows the equivalent

plastic strain �3p contour-plot at the end of the computation.

The model has been exported from DynELA to Abaqus

explicit v. 6.4 using the export feature of the DynELA

post-processor [19], the meshes are identical in both cases.

A comparison of the numerical results is reported in Table 5

and shows a very good level of agreement.

Concerning the parallelization of the code, Fig. 10

shows the general Speedup obtained in this case. The time-

step computation procedure presents a good Speedup near

the ideal one, while the internal force vector computation

shows a falling off after six processors. A fine analysis has

shown that this problem seems to be linked to the parallel

gather operation at the end of the code in Fig. 6, but we

must keep in mind that some extra code has been added in

order to measure local CPU time of this subroutine.

Therefore, the presence of some extra synchronization

directives for CPU measures may interfere with those

measures. With the parallelization of only the time-step

computation and the internal force vector computation

procedures, the total Speedup is 5.61 for eight processors.

Table 5

Comparison of numerical results for the dynamic traction test

FEM code �3
p
max Final length

(mm)

Inner diam-

eter (mm)

Thickness

(mm)

DynELA 0.260 50.84 10.07 0.857

Abaqus 0.259 50.84 10.08 0.856

Fig. 10. Speedup for the dynamic traction test.

Table 4

Material properties of the projectile and the target for the dynamic traction

test

Nature Projectile Target

Young modulus (GPa) E 193.6 74.2

Poisson ratio n 0.3 0.33

Density (kg/m3) r 7800 2784

Initial flow stress (MPa) A 873 360

Hardening (MPa) B 748 316

Coefficient n 0.23 0.28

Figs. 11 and 12 shows the variation of the number of

elements in each thread, for the internal force vector

computation, during the run when using four processors.

From this later, we can see that the number of elements for

each thread vary in the range [329:411] while the average

value for 1420 elements is 355.

6. Conclusions

An object-oriented simulator was developed for the

analysis of large inelastic deformations and impact

processes. The parallel version of this code uses OpenMP

directives as SMPs programming tool. The OpenMP version

can also be compiled using non-parallel compiler (the

pragma directives will be ignored by the compiler). This

enforces the portability of the code on different platforms.

During this work, it has been found that the use of the OOP

facilitates the parallelization of the code.

With the increasing prominence of SMPs computers,

the importance of the availability of efficient and

portable parallel codes grows. Several benchmark tests

have demonstrated the accuracy and efficiency of the

developed software. Concerning the parallel perform-

ances, the examples presented show a good Speedup

with this code.

Fig. 11. Spatial distribution of the elements during the computation.

This software is still under development and new

features are added continuously. For this moment, the

main development concerns more efficient constitutive laws

(including visco-plasticity and damage effects) and contact

laws. Concerning the parallelization of the code, our efforts

are now concentrated on the use of mixed mode MPI/O-

penMP parallelization techniques. This will allow us to

build a new version of the DynELA code dedicated to

clusters of workstations or PC. For this purpose, sub-domain

computations must be introduced in the code.

References

[1] Hibbit, Karlsson & Sorensen, inc. www address: http://www.hks.com.

[2] Anderheggen E, Renau-Munoz JF. A parallel explicit solver for

simulating impact penetration of a three-dimensional body into a solid

substrate. Adv Eng Softw 2000;31:901–11.

[3] Brown K, Attaway S, Plimpton S, Hendrickson B. Parallel strategies

for crash and impact simulations. Comput Meth Appl Mech Eng 2000;

184:375–90.

[4] Chandra R, Dagum L, Kohr D, Maydan D, McDonald J, Menon R.

Parallel programming in OpenMP. New York: Academic Press; 2001.

[5] Hoeflinger J, Alavilli P, Jackson T, Kuhn B. Producing scalable

performance with openmp: experimental with two cfd applications.

Parallel Comput 2001;27:391–413.

[6] Jia R, Sundén B. Parallelization of a multi-blocked cfd code via three

strategies for fluid flow and heat transfer analysis. Comput Fluids

2004;33:57–80.

[7] Rama Mohan Rao A, Appa Rao TVSR, Dattaguru B. A new parallel

overlapped domain decomposition method for nonlinear dynamic

finite element analysis. Comput Struct 2003;81:2441–54.

[8] Pantalé O. An object-oriented programming of an explicit dynamics

code: application to impact simulation. Adv Eng Softw 2002;33(5):

297–306.

[9] Pantalé O, Caperaa S, Rakotomalala R. Development of an object

oriented finite element program: application to metal forming and

impact simulations. J Comput Appl Math 2004;168(1/2):341–51.

[10] Belytschko T, Liu WK, Moran B. Nonlinear finite element for

continua and structures. New York: Wiley; 2000.

[11] Hulbert GM, Chung J. Explicit time integration for structural

dynamics with optimal numerical dissipation. Comput Meth Appl

Mech Eng 1996;137:175–88.

[12] Ponthot JP. Unified stress update algorithms for the numerical

simulation of large deformation elasto-plastic and visco-plastic

processes. Int J Plast 2002;18:91–126.

[13] Simo JC, Hughes TJR. Computational inelasticity. Berlin: Springer;

1998.

[14] Benson DJ. Stable time step estimation for multi-material Eulerian

hydrocodes. Comput Meth Appl Mech Eng 1998;167:191–205.

[15] Stroustrup B. The CCC programming language. 2nd ed. Reading,

MA: Addison Wesley; 1991.

[16] Miller GR. An object oriented approach to structural analysis and

design. Comput Struct 1991;40(1):75–82.

[17] Mackie RI. Object oriented programming of the finite element

method. Int J Num Meth Eng 1992;35:425–36.

[18] Zabaras N, Srikanth A. Using objects to model finite deformation

plasticity. Eng Comput 1999;15:37–60.

[19] PantaléO.ManuelutilisateurducodedecalculDynELAv.1.0.0.Labora-

toire LGP ENI Tarbes, Av d’Azereix 65016, Tarbes, France; 2003.

[20] Turner EL, Hu H. A parallel cfd rotor code using openmp. Adv Eng

Softw 2001;32:665–71.

[21] Rus P, Stok B, Mole N. Parallel computing with load balancing on

heterogeneous distributed systems. Adv Eng Softw 2004;34:185–201.

[22] Liu WK, Chang H, Chen JS, Belytschko T. Arbitrary Lagrangian–

Eulerian Petrov–Galerkin finite elements for nonlinear continua.

Comput Meth Appl Mech Eng 1988;68:259–310.

[23] Pantalé O, Nistor I, Caperaa S. Identification et modélisation du

comportement des matériaux metalliques sous sollicitations dynami-

ques. In: Military Technical Academy, editor. 30th internationally

attended scientific conference of the military technical academy,

Bucharest; 2003. ISBN 973-640-012-3.

Fig. 12. Distribution of the elements during the computation.

