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ABSTRACT

This paper describes the synthesis of a SISO scheduled controller for a launcher vehicle. The problem consists
in designing a control law which will be valid on the atmospheric ascent trajectory from time 25 s to time 60 s,
while ensuring robustness and performance requirements. Moreover a flexible model with two bending modes is
considered, making the problem more challenging. An algorithm based upon guardian maps has been retained in
order to find an a priori fixed architecture controller. The algorithm yields a sequence of controllers that ensures
that pole confinement constraints are fulfilled for any time between 25 s and 60 s. The user can then interpolate
those controllers to find a scheduled controller with respect to time.

1. INTRODUCTION

For several years now, H∞ synthesis has been providing efficient scheduled controllers for launcher vehicle in at-
mospheric ascent [14]; but depending on the augmented model, the controller order can be very high and has to be
reduced before implementation. In [1], the authors use a multi-objective method based on the Youla parameteriza-
tion to design linear controllers that are scheduled afterwards while guaranteeing stability a posteriori. Therefore,
our objective is to design a controller with an a priori fixed architecture and limited complexity. Moreover, as
previous experiments proved it [9], the controller also has to be scheduled with respect to ascent time in order to
take into account the dynamic variations along the trajectory.

A guardian map based algorithm has been proposed to design scheduled controllers with fixed architecture and
guaranteeing a priori robust stability [11] . The requirements are expressed in terms of pole confinement and the
algorithm finds a sequence of controllers that ensures stability for the parameter variation domain. We propose to
apply this algorithm to a launcher vehicle problem submitted to different constraints.

This paper is structured as follows. Section 2 introduces the launcher vehicle model provided by ASTRIUM-
ST and the associated objectives. Section 3 briefly presents the guardian map theory and the algorithm used to
synthetise scheduled controllers. Finally Section 4 illustrates the application of this algorithm to our launcher
vehicle problem.

2. MODEL AND OBJECTIVES

Launcher vehicle dynamics are generally described by “short-period” equations of motion during the atmospheric
flight. Indeed, in this particular flight phase, the main constraint is to minimize the angle of attack α, which
generates a lift force acting on the lateral direction of vehicle. Therefore no important maneuvers are commanded.
All motion equations are resolved along the launcher vehicle rigidly attached axes with their origin at the center
of mass.

A. LAUNCHER MODEL

Relative orientation of the vehicle in the aerodynamic context is defined by the angle of attack αwhile the launcher
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vehicle orientation is defined by the attitude θ. Both of them are related by the equation:

α = θ − γ − W

Vr
(1)

with W wind input, Vr launcher vehicle speed and under the hypothesis that path angle γ = 0◦. The launcher
model is then described by the LTV model [2, 5]:

 θ̈

θ̇
ẋF

 =

 0 a12(t)
MF (t)1 0

0 AF (t)

 θ̇
θ
xF

+

 b11(t) b12(t) b13(t)
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 (2)

y =
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]
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d12(t) 0 0
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β
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 (3)

with β the actual nozzle deflection and xF the states associated to the 2 bending modes via AF , MF , BF and CF .
The coefficients ai and bi are time-varying coefficients and depend on the launcher vehicle characteristics. The
inputs β and β̈ are generated by a 4th-order actuator:[

β

β̈

]
= G(s)βc (4)

whose dynamic is defined by two pairs of complex poles: one well-damped at 102 rad/s and one ill-damped at
127 rad/s. A gridding of 18 rigid + flexible models are used for design; we consider three cases (one nominal
case denoted nom and two worst cases with high and low frequency rigid modes, namely lf and hf) and for each
case, six flight instants equally distributed between 25 s and 60 s are chosen: t1 = 25 s, t2 = 32 s, . . . , t6 = 60 s.
Figure 1 illustrates the pole dispersion of the 18 models. Finally the time-varying coefficients are approximated
by 5th order polynomials for later synthesis purpose.
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Fig. 1: Open loop poles for the 18 models

B. DESIGN SPECIFICATIONS

Although the main constraint is to minimize the angle of attack α, only the output θ is available for feedback.
Moreover the SISO controller structure should be as simple as possible. The objectives are then:
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• Closed-loop rigid mode: minimum damping ratio ζ > 0.5 for nom case and ζ > 0.15 for hf and lf cases

• 3 dB gain margin for nom and hf cases and 1 dB gain margin for lf case

• The magnitude of α should stay below 3 degrees in response to a worst-case wind input signal W

• Delay margin > 27 ms (one control period)

• The bending modes should not be destabilized by the feedback controller

3. GUARDIAN MAPS

Basically, guardian maps are scalar valued maps defined on the set of n × n real matrices (or nth-order polyno-
mials) that take non-zero values on the set of Ω-stable matrices (or polynomials) and vanish on its boundary. The
description below will focus on families of matrices with the understanding that it applies to polynomials as well.

A. DEFINITION

We are here interested in stability sets of the form:

S(Ω) = {A ∈ Rn×n : σ(A) ⊂ Ω} (5)

were Ω is an open subset of the complex plane of interest, and σ(A) denotes the set consisting of the eigenvalues
of A. Such sets S(Ω) will be referred to as generalized stability sets, and thus represent the set of all matrices
which are stable relative to Ω, i.e. which have all their eigenvalues in Ω.

Definition Let ν map Rn×n into C. We say that ν guards S(Ω) if for all A ∈ S(Ω), the following equivalence
holds:

ν(A) = 0⇔ A ∈ S(Ω) (6)

Here S denotes closure of the set S. The map is said to be polynomic if it is a polynomial function of the
entries of its argument.

Example 1. Some guardian maps are given for classical regions (Fig. 2).

• Hurwitz Stability: for Ω = C̊−, a guardian map is

νH(A) = det(A� I) det(A) (7)

where � denotes the bialternate product[13].

• Stability margin: the open α-shifted half-plane region has a corresponding guardian map

νm(A) = det (A� I − αI � I) det (A− αI) (8)

• The conic sector with inner angle 2θ has a corresponding guardian map given by

νd(A) = det
(
A2 � I + (1− 2ζ2)A�A

)
det (A) (9)

where ζ , cos θ denotes the limiting damping ratio.

• Schur stability: for the circle of radius ω > 0, a corresponding guardian map is

νp(A) = det
(
A�A− ω2I � I

)
det
(
A2 − ω2I

)
(10)
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Fig. 2: Regions for Example 1

A systematic way of constructing guardian maps for various Ω regions can be found in Saydy et al. [12].

B. STABILIZING GAIN CHARACTERIZATION

Let {A(r) : r ∈ U ⊂ Rk} be a continuous family of n × n matrices which depend on the (usually) uncertain
parameter vector r := (r1, . . . , rk) where each entry lies in a given range for which only the bounds are known,
say r ∈ U ⊂ Rk.

Theorem 1. Let S(Ω) be guarded by the map νΩ. The family {A(r) : r ∈ U} is stable relative to Ω if and only if

(i) it is nominally stable, i.e. A(r0) ∈ S(Ω) for some r0 ∈ U ; and,

(ii) ∀r ∈ U , νΩ(A(r0))νΩ(A(r)) > 0. i.e. νΩ(A(r)) does not vanish in U .

Corollary 1. Let S(Ω) be guarded by the map ν and consider the family {A(r) : r ∈ U}. Then C defined by:

C = {r ∈ Rk : νΩ(A(r)) = 0} (11)

divides the parameter space Rk into components Ci that are either stable or unstable relative to Ω. To see which
situation prevails for a given component Ci, one only has to test A(r) for any one point in Ci.

2r

1r

1 stableC

2 unstableC

3 unstableC

Fig. 3: Corollary component illustration
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Example 2. Suppose that the closed-loop poles of a given system are specified by the polynomial:

p(s) = s3 + k1s
2 + k2s+ 1 (12)

where k1, k2 denote some controller gains. If the damping region ζ > 0.7 is the one considered (Fig. 4), then one
obtains (e.g. by applying Eq. (9) to the companion matrix corresponding to p):

νΩ(p) = 2k3
2 − k2

1k
2
2 − 4k1k2 + 2k3

1 + 1 (13)
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Fig. 5: Set C3 of all gains ensuring Ω−stability

Setting this quantity to 0 yields the 3 components in the parameter space (k1, k2) of Fig. 5. It can be verified
that the set of all gains (k1, k2) which place all the closed-loop poles within the damping zone above is the
component C3. Any other choice of the gains outside of C3 yields closed-loop poles outside the damping conic
region. We arrive to this conclusion simply by testing Ω-stability of p(s) for any three pairs (k1, k2) in C1, C2 and
C3 respectively.

C. ROBUST STABILITY

We consider here the stability of one parameter families of real matrices relative to a domain Ω for which S(Ω) is
endowed with a polynomic guardian map νΩ. In the following, we consider single-parameter polynomial matrices
of the form:

A(r) = A0 + rA1 + . . .+ rkAk (14)

with Ai given constant matrices and such that A(r0) is Ω-stable. The corresponding guardian map νΩ(A(r)) is a
polynomial in r. We seek to find the largest open stability interval w.r.t. Ω around r0. Let

r−=̇ sup {r < r0 : νΩ(A(r)) = 0} (or −∞ if none exists)
r+=̇ inf {r > r0 : νΩ(A(r)) = 0} (or +∞ if none exists)

be the maximal perturbation bounds for nonsingularity of matrices around r = r0.

Lemma 1. Let A(r) = A0 + rA1 + . . . + rkAk be a polynomial matrix in the uncertain parameter r real with
given constant matrices Ai such that A(r0) is stable w.r.t. Ω and let S(Ω) be guarded by a map νΩ. Then A(r) is
stable relative to Ω for all r ∈ (r−, r+). Furthermore, this interval is the largest one containing r0.

D. SINGLE-PARAMETER GAIN-SCHEDULING ALGORITHM

In typical gain-scheduling techniques, LTI controllers have to be designed on different linearized models; con-
troller interpolation is done a posteriori, or switching laws are implemented between the various controllers. In
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the interpolation approach case, even if the controllers designed on each operating point fulfill the requirements
locally, there is no guarantee that between the synthesis points stability is retained, especially if the designer did
not take enough synthesis points[7, 4]. Moreover, depending on controller complexity, interpolation problems
may arise. For example, in the case of H∞ control or µ-synthesis, an initial order reduction phase is often re-
quired on each LTI controller in order to ensure that all the controllers have the same order and structure [6]. In the
switching approach case, the designed controllers must cover the entire domain and again the number of synthesis
points is crucial. So the three major issues are : the number of synthesis points, the controller structure and the
stability and performance satisfaction on the entire domain[3, 8] . Our method proposes to address these issues.

Let an initial fixed-structure controller K0 be designed on a peculiar trim condition. This controller naturally
presents some robust performance margins w.r.t. trim variables, i.e. it is still performant for other trim conditions
around the initial one. Let then a limit trim condition for which K0 can no longer ensure performance. By
adjusting K0 gains (according to a method based on guardian maps), one should obtain a new controller K1

having its own robust performance margins. By taking another worst-case condition where K1 fails, another
controller K2 is designed and so on till covering the entire operating domain.

The proposed algorithm is applied in the case of a system with one single parameter r (e.g. t the flight instant in
our case). Let Ω be the region of eigenvalue confinement of interest and νΩ be a corresponding guardian map. Let
A(r,K) denote the closed-loop state space matrix with K = [Ki] the gain vector. With a slight abuse in notation,
we denote νΩ(r,K) := νΩ(A(r,K)). IfA(r,K) depends polynomially on the parameters and the boundary of Ω
is also defined polynomially, then νΩ(r,K) is a multivariable polynomial as well. We seek to find K (scheduled
w.r.t. r) that stabilizes the system for r ∈ [rmin, rmax].

For an initial parameter value r0 = rmin, let K0 be a nominal choice of stabilizing gains, that is, such that the
eigenvalues of A(r0,K

0) are inside Ω. With K = K0, we apply Lemma 1 to find the largest stability interval
]r0, r0[. Thus the vector K0 stabilizes the system for any parameter r in ]r0, r0[. If r0 = +∞ or r0 > rmax, one
can stop as K0 ensures stability ∀r ∈ [rmin, rmax]. Moreover, we have νΩ(r0,K

0) = νΩ(r0,K
0) = 0 if r0 and

r0 happen to be finite.

If r0 ≤ rmax, we proceed as follows. Fix r1 = r0. The equation νΩ(r1,K) = 0 defines new components in the
space of gain parameters that are either stable or unstable (Corollary 1). By definition of r0, νΩ(r0,K

0) = 0 and
K0 lies on the boundary of a stable component. In [10], an algorithm was developed to search inside a component
in order to find a new vector K1 which places closed-loop poles strictly inside Ω. This new choice leads to a
new stability interval ]r1, r1[ with r0 ∈ ]r1, r1[. The same steps are repeated till possibly covering all values of
parameter r ∈ [rmin, rmax].

If the algorithm succeeds, it yields a sequence of controllers
{

K0, . . . ,Ki, . . . ,Kn
}

satisfying all the criteria
on the corresponding intervals {[rmin, r0[ , . . . , ]ri, ri[ , . . . , ]rn, rmax]}. Moreover, the entire parameter range
[rmin, rmax] is covered since by construction ri+1 < ri. The user is then free to exploit this set of satisfying
controllers depending on the way they will be implemented: look-up tables, switching controllers or interpolation
of the data to name a few. Algorithm 1 is then proposed.

Remark 1. Going “rightward” from rmin to rmax is an arbitrary choice and one can adapt the algorithm to make
it work “leftward”. This leads to different results in general.

As an example, Fig. 6 deals with the synthesis of a scheduled PI controller with respect to some measurable
parameter r. If Ω is a stability region of interest, we suppose that the algorithm starts at r = r0 and find an
adequate choice of gains inside the component C∗ (blue shape) ensuring the pole confinement in Ω (Fig. 7). After
a robustness analysis in r, the upper stability limit of this peculiar controller is reached at r = r1. The procedure
is then repeated. The final scheduled affine controller in r (red line) is then chosen.

4. APPLICATION TO THE LAUNCHER VEHICLE PROBLEM

We apply the algorithm presented in the previous section to our launcher vehicle problem. The goal is to find the
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Algorithm 1. Single parameter gain-scheduling algorithm

Step 0: Initialization
Let Ω be a region of the complex plane and νΩ a corresponding guardian map, A (r,K) a closed-
loop matrix depending polynomially on the single parameter r ∈ [rmin, rmax] and the gain vector
K = [Kj ] ∈ Rp. Obtain a controller K0 designed for the nominal case r0 = rmin ensures nominal
stability relative to Ω. Set n← 0.

Using Lemma 1 on A(r,K0), find the largest stability interval ]r0, r0[ containing r0.

If r0 > rmax then Stop else set the counter n← n+ 1.

Step n.1: Synthesis phase
Find a new gain vector Kn inside a component defined by νΩ(rn−1,K) = 0 using search algorithm
(see [10]) with initial vector Kn−1.

Step n.2: Robustness analysis
Using Lemma 1 on A(r,Kn), find the largest stability interval ]rn, rn[ containing rn−1.

If rn > rmax then go to Final Step or Stop else set the counter n← n+ 1 and go to Step n.1.

Final Step: Interpolation
If an interpolation K = K(r) is sought, use Lemma 1 to check if stability is preserved ∀r ∈
[rmin, rmax].
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r0r 1r 2r

1

2

( )
( )

K r
K r

r

2
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Fig. 6: Scheduled PI synthesis
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Fig. 7: Scheduling function after algorithm application

simplest controller that will fulfill all the requirements.

A. CONTROLLER ARCHITECTURE

Derived from previous experiments, a controller of the following form is sought:

C(s) = K1s
2 +K2s+K3

s (s/35 + 1) (s/50 + 1) (15)

The integral effect on θ allows to indirectly minimize the angle of attack α and the roll-off property limits the
controller bandwidth. In order not to destabilize the bending modes, a 4th order elliptic is added. The controller
poles are deliberately fixed and only the numerator coefficients can be tuned. After state and output augmentation
of the model with the controller and filter dynamics, the problem can be cast as a static output feedback:

ACL(∆) = A(∆)−B(∆)
[
K1 K2 K3

]
C(∆) (16)
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with ∆ = t for LPV design or ∆ = ti for gridding analysis. It now boils down to adjust the gains K1, K2, K3 in
order to satisfy the requirements for any t ∈ [25, 60].

B. SYNTHESIS

Three pole confinement constraints are considered in the application of the algorithm:

• Hurwitz stability (Eq. 7)

• Real part constraint on the rigid mode (Eq. 8 with α < −0.4)

• Damping constraint on the rigid mode (Eq. 9 with ζ > 0.5 for nom case, ζ > 0.15 for lf and hf cases )

After computation, the algorithm delivers the gains of Fig. 8. A sequence of three controllers is sufficient to cover
the considered time domain. The diamond signs (♦) denote the gains (i.e. controller) computed by the algorithm at
a specific time t; then the horizontal dashed magenta line indicate the stability interval of the concerned controller.
When the other gains and time t are fixed, the vertical red line show the allowable variation of a specific gain
before losing general stability. Table 1 gathers the gain values as for their respective robust stability domain (as
defined by the pole confinement constraints).
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Fig. 8: Scheduled gains found by the algorithm
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Controller K1 K2 K3 Time t Stability domain in t
#1 0.79 2.75 2.40 25 t ∈ ]22.33 , 51.43[
#2 0.54 1.61 0.86 51.42 t ∈ ]46.18 , 59.04[
#3 0.41 1.28 0.61 59.03 t ∈ ]54.67 , 65.25[

Table 1: Sequence of controllers

Starting from the sequence of controllers found by the algorithm, the following time affinely dependant controller
is chosen:

C(s, δt) = C0(s) + δtC1(s) (17)

C0(s) = 0.98s2 + 2.95s+ 2.3
s (s/35 + 1) (s/50 + 1) (18)

C1(s) = − 0.605s2 + 1.85s+ 1.7
s (s/35 + 1) (s/50 + 1) (19)

with δt ∈ [0 , 1] and δt = t− 25
60− 25 .

C. RESULTS

As expected the damping ratio requirement is satisfied for each case and the bending modes are still stable (Fig.
9). The stability margins (Fig. 10) are adequate for delay and phase margins. Concerning the gain margins, at time
t = 25 s, it is less than the 3 dB requirement for the hf case. Nevertheless, we consider this as satisfying. The
controller discretization (control period 27 ms) yields satisfying time-responses on the LTV model for all three
cases. The maximum α values are 3.71◦ (nom), 3.72◦ (lf) and 3.78◦ (hf).

5. CONCLUSION

In this article, a scheduling algorithm based upon guardian maps is successfully applied to a launcher vehicle
control problem. With an a priori fixed architecture controller, which is scheduled with respect to time t, robust-
ness and performance objectives are fulfilled for any time between 25 s and 60 s. The results proved very good
even on the flexible models and for worst cases. Moreover the SISO margins satisfy the requirements and the
controller discretization with a 27 ms period does not affect the good results obtained with the continuous time
controller. With the addition of the elliptic filter, the controller is a 7th order one, which is very reasonable for
such an ambitious problem.
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[9] D. Saussié, G. Baldesi, C. Döll, and C. Bérard. Self-scheduling controller for a launcher in atmospheric ascent. In
Proceedings of the 17th IFAC World Congress, Seoul, Korea, 2008.
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