

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/

Eprints ID: 5272

To cite this version: Gilles, Olivier and Hugues, Jérôme A MDE-based

optimisation process for Real-Time systems: Optimizing systems at the

architecture-level using the real DSL and library of transformation and

heuristics. (2011) International Journal of Computer Systems Science &

Engineering, 26 (6). ISSN 0267-6192

Open Archive Toulouse Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@inp-toulouse.fr

http://oatao.univ-toulouse.fr/
mailto:staff-oatao@inp-toulouse.fr

Comput Syst Sci & Eng (2011) 1: 3–18
© 2011 CRL Publishing Ltd

International Journal of

Computer Systems
Science & Engineering

A MDE-based optimisation process
for Real-Time systems: Optimizing
systems at the architecture-level
using the real DSL and library of
transformation and heuristics
Olivier Gilles and Jerome Hugues

The design and implementation of Real-Time Embedded Systems is now heavily relying on Model-Driven Engineering (MDE) as a central place to define
and then analyze or implement a system. MDE toolchains are taking a key role as to gather most of functional and non-functional properties in a central
framework, and then exploit this information. Such toolchain is based on both 1) a modeling notation, and 2) companion tools to transform or analyze
models.
Yet, we note the modeling process is driven by the engineer view of the system to be built. This view may fit a particular vision, e.g. a functional breakdown,
but usually overlook another like hardware constraints. Thus, a re-factoring of the model may be required to have a better ?t and optimize resources to actual
CPU or memory resources. Such rewriting may be time-consuming to ensure the semantics is preserved. Optimization is a typical step in a compiler. As for
typical compilation techniques, we claim that MDE toolchains would benefit from automatic optimization techniques that preserve execution semantics,
schedulability or other non-functional constraints. In this paper, we present a first step towards MDE-based system optimisation based on an architectural
description. We first define a generic evaluation pipeline to assess model metrics. We then define a library of elementary transformations and show how
to apply it to evaluate and then transform models using a Domain-Specific Language. Finally, we illustrate this process on an AADL case study modeling a
Generic Avionics Platform.

Keywords: MDE, AADL, optimization, model transformation, domain-specific language.

1. INTRODUCTION

Real-Time embedded systems (RTES) have to reconcile func-
tional correctness and strict adherence to timing requirements.
Such systems define both a hardware and a software architec-
tures, and check they are matching. Different implementation
processes can be followed, but they usually revolve around two
approaches. In an architecture-centric approach, a performance

envelope of the system is defined, based on an architectural de-
sign, with threads, processes and interconnection through several
buses. Then, this architecture is validated, and populated with
functional elements. In a function-centric approach, the oppo-
site path is followed: performance requirements are elicited from
functional blocks.

The choice of one process is mandated by the industry: to
meet hardware requirements or to select hardware components.

vol 27 no 1 November 2011 3

A MDE-BASED OPTIMISATION PROCESS FOR REAL-TIME SYSTEMS

Hence, one needs to be able to

1. validate an architecture based on actual performance met-
rics, and

2. in some cases to correct the initial model in case of perfor-
mance mismatch, to optimise it.

Optimising functional code is now a well-established tech-
niques, based on careful selection of algorithms, compiler tun-
ing and profiling of the generated machine code depending
on the target processor. Yet, optimising software architectures
(set of threads/processes and connections, use of mutexes or
semaphores) tends to overlook the issue of system evaluation,
and either perform a single-step optimization at compile-time,
or trust a formal model of the system to effectively demonstrate
the value of a given optimized RTES instance. This approach
used to be quite efficient with deterministic hardware and soft-
ware components.

Unfortunately, it is becoming less meaningful for current sys-
tems, because of perturbations induced by caches, MMUs [18]
or communication protocols. Furthermore, current optimization
tools generally try to enhance just one aspect of the application
(either memory footprint or response time), without regards for
the actual needs of the final RTES. The choice of the optimiza-
tion criterion and the verification of its effectiveness is left to the
system integrator. This may come late in the process: recovering
from nonworking systems at this stage can have a big impact.

In the mean time, Model-Driven Engineering emerged as a
convenient support for modeling large system. It provides a
framework to gather information related to both functional and
non-functional blocks of a system, and then have a full view of
system architecture, blocks. From this view, it becomes possible
to reason on the performance of the system as a whole, taking
into account all its facets.

In this paper, we propose several contributions to support user-
defined optimization process in a MDE process. This process
is built on 1) the architecture description language AADL to
model the system, 2) the domain-specific language REAL to
evaluate metrics on this model, and 3) a user-parametric library
of heuristics to evaluate relevant performance metrics. These
elements are combined to form an iterative evaluation pipeline
that explores the design space and looks for an optimal rewriting
of the model elements.

Section 2 presents both the AADL and REAL. We present
the evaluation pipeline in section 3 and show in section 4 how
to extract information from AADL model elements to feed this
pipeline. Optimization is built on a restricted set of transforma-
tions that optimize either memory or speed. We present these
transformations in section 5. The selection of an optimal solution
is driven by an heuristic that helps exploring the set of possible
solutions. We implemented two variants based on greedy heuris-
tics derived from the knapsack problem (section 6). We illustrate
this approach, and associated results, on a complete case study
derived from the Generic Avionics Platform in section 7.

2. OVERVIEW OF AADL AND REAL

In this section, we give a brief overview of the foundation bricks
we use: AADL and REAL.

2.1 The SAEArchitectureAnalysis and Design
Language AADL

The SAE AADL [21] is an international standard defining the
basics of architecture description language dedicated to the de-
sign of real-time systems standardized by the SAE. AADL is
component-centric and allows to specify both software and hard-
ware parts of a systems. It allows one to define consistent block
interfaces, and to separate them from block implementation.

An AADL model is made of components. Software compo-
nents (data, thread, thread group, subprogram, process) are dis-
tinguished from execution platform components (memory, bus,
processor, device) and hybrid components (system). Each com-
ponent category mimics the semantics of their counterparts in
embedded systems engineering.

The behavior of a system (e.g. how functional blocks interact)
is fully defined in the standard by mean of “properties” (attributes
with a dedicated semantics) to progressively refine the semantics
of a system,
e.g. dispatching invariants, communication patterns; non-
functional properties (such as timing, priorities, etc) applied to
each model element; non-functional aspects of components can
be described within an AADL model such as thread dispatch-
ing condition (periodic or sporadic), interface specifications and
how components are interconnected. These have a deep impact
on the system’s behavior. Functional aspects (algorithmic spec-
ifications) are attached separately as source code by means of
AADL properties. An introduction to AADL can be found in
[5].

AADL proposes several user-defined extension mechanisms
through property sets and annex languages.

• Property sets allow one to define custom properties to ex-
tend standard ones. This is the path taken by the “Data
modeling annex document” [24] that allows one to model
precisely data types to be manipulated, or the “ARINC an-
nex document” [22] that defines patterns for modeling AR-
INC653 systems based on the Integrated Modular Avionics
pattern.

• AADL annex languages offer the possibility to attach ad-
ditional considerations to an AADL component like be-
havioral specification [23]. They bind a domain-specific
language to components.

These extensions mechanisms are of particular interest to at-
tach project-specific concerns to an architecture for further anal-
ysis such as electric power consumption, modeling of precise
performance of buses, or error modeling. The combination of
properties and languages enable in-depth system analysis.

Figure 1 illustrates an architecture with 4 AADL threads. Two
periodic threads, LP Sender and HP Sender, whose periods and
priorities are respectively 12 and 1000 ms, and 10 and 2000
ms, execute subprograms that send data events through their out
event data port msg out to the Receiver sporadic thread in event
data port msg in, with a Minimum Inter-Arrival Time (MIAT) of
500 ms. This calls the awakening of the call sequence containing
the receiver subprogram at priority 6. A periodic Handler thread
is dispatched at priority 8 each 1000 ms to perform health mon-
itoring. Information on the worst-case execution time of each

4 computer systems science & engineering

O. GILLES AND J. HUGUES

Figure 1 An AADL model.

functions, and overhead from the execution platform (duration
of a context switch, time to send an event, etc.) enables full
analysis of temporal behavior; whereas properties on the code
and stack size of each thread would enable memory analysis.

2.2 REAL, an AADLv2 annex language

We note the analysis criteria can be quite large and cover con-
cerns like memory, scheduling, power, security, safety,
Besides, the evaluation of metrics be project or platform depen-
dant, and rely on different analysis frameworks. Thus, one needs
a versatile way to express and compute metrics.

These considerations lead us to define a AADL language an-
nex: REAL. REAL (Requirement Enforcement Analysis Lan-
guage) aims at checking constraints enforcement on architectural
descriptions at the specification step, saving significant time over
verification at execution time. In this section, we describe the
main features of this language. REAL pursues multiple design
goals:

• Enabling easy navigation through AADL meta-model ele-
ments, yet being at a high-level abstraction. To do so, we
discarded the use of the UML Object Constraint Language
(OCL) and decided to define a specific DSL based onAADL
meta-model concepts to ease writing of constraints.

• Allowing to define generic rules. We note that mathematics
universal quantifiers (∀, ∃) notation is interesting to define
metrics that can apply to a wide range of models, not just
specific instances.

• Allowing for modularity through definition of separate con-
straints that can be later combined.

• Being integrated to the AADL as an annex language, so that
constraints are coupled to models in the model repository.

From these goals, we defined REAL with the following design
decisions: REAL is based on set theory and associated mathe-
matical notations. The basic unit of REAL is a theorem. A
theorem verifies an expression over all the elements of a set that
is called the range set. It allows one to build sets whose ele-
ments are AADL entities (connections, components or subpro-
gram calls). Verification or computations can then be performed
on either a set or its elements by stating Boolean expressions.

In order to write complex expressions, one can use prede-
fined sets, which contain the instances of the AADL model of a
given type, or build intermediary sets, using relations between
elements of sets (e.g. returns the elements of the set A which are
subcomponents of any elements of the set B). Listing 1 shows
how to compute the worst case execution time of a set of threads.

−−Computes the WCET of a set of threads
theorem threads wcet

foreach th in Local Set do var wcet := last (property

(th, ”Compute Execution Time ”));
return (Msum (wcet));

end threads wcet ;

Listing 1: REAL example

Subtheorems calls can be used to extract values computed
from range sets different than the current one -thus allowing
constructs like get all the instances of threads which periodicity
is equal to the minimum periodicity in the system. These can
also be used to define pre-required constraints on the model.

Finally, subtheorems calls can also be used to build local or
global variables, or to check pre-required constraints on the
model. Callee theorems inherit during theorem interpretation
from the caller environment (the local set), and the user can pass
parameters. Thus, it is possible to design a library of theorems
that will be used by higher-level, user-defined theorems.

REAL [7, 6] has been integrated as an annex language in

vol 27 no 1 November 2011 5

A MDE-BASED OPTIMISATION PROCESS FOR REAL-TIME SYSTEMS

OCARINA [14], our AADL toolsuite. We present full examples
of REAL in the next sections and show how it can help computing
metrics of AADL models to drive an optimization process.

Let us note other formalisms like UML/MARTE would offer
similar support. Yet, the expression power of AADL, combined
with its simple extensions mechanisms to attach DSL to the core
language provide a very pragmatic way to solve our problem.

3. EVALUATION PIPELINE

Evaluation of the RTES performances strongly depends on hard-
ware resources and scheduling constraints. When considering
optimisation, one has to evaluate the architecture, and balance
criteria. We consider the system is fully defined as one ADL-
based model such as MARTE or AADL. As there is no a unique
criteria, we want to give freedom to the end designer, to do so,
we have to solve three challenges:

1. Defining an evaluation strategy of the architecture, that is
the best way to evaluate an architecture key metrics;

2. Defining single evaluation criteria,

3. Exploit these metrics to rewrite partially the system’s ar-
chitecture.

The combination of these three elements enables the definition
of an evaluation pipeline: the automated execution of these steps
to lead to an optimized variant of the user’s model as output.

3.1 Evaluating an architecture

An architecture modeled in AADL is just one artifact represent-
ing an embedded system to be exploited. Actually, one can define
three stages where to evaluate model’s performance:

• Model-Level Evaluation, which evaluates the criteria values
on the current model;

• Operation-Level Evaluation, which computes the value of
the criteria after the application of a set of transformation
operations on the current model.

• Binary-Level Evaluation, which measures the value of the
criteria on the actual system executable generated from the
current model;

Model Level Evaluation (MLE) relies on information com-
puted on the current model. It is a direct application of REAL
formulas, or external tools like schedulability that can be verified
directly on the model using Cheddar [25].

Let us note the method we use is quite general. We focused
only on per-subprogram WCET analysis. Integrating end-to-end
fiows computations like in [13] would provide a higher-level es-
timate of the actual end-to-end latency of complex computation
chains.

Operation Level Evaluation (OLE) relies on a priori knowl-
edge of the impact of some optimisation steps. Impacts of the
different operations are presented in section 5. This computation
provides an estimate and does not ensure full accuracy. Yet, both

MLE and OLE can be performed at model-level and can be quite
efficient to reduce the number of candidate architectures during
optimisation.

In some occasion, one can generate code from a model. We
take advantage of this new source of inputs to evaluate the model
in more depth. Binary level evaluation (BLE) relies on external
tools which measures the binaries WCET and memory footprint.
This information is more precise than a priori values from OLE,
yet is more time-consuming: one has to generate code, compile
it and runs benchmarks or other tools.

To fetch the information required for BLE, we use a set of
internal and external tools. To manipulate the AADL mod-
els and generate a full application from a set of AADL mod-
els and functional code, we use the Ocarina toolsuite [14]. In
addition, Bound-T [17] allows to extract WCET and stack size
from application built for SPARC-like processor. We take ad-
vantage of code generation from AADL performed by Ocarina,
and on its code generation strategies to compute both memory
and WCET values. The code generated only use static mem-
ory pre-allocation. Hence, we can use GNU BINUTILS and
get information on memory consumption. Furthermore, we ex-
ploit the AADL models to derive a configuration file for guiding
Bound-T in the evaluation of the WCET (see [8]).

The combination of AADL models, code generation and eval-
uation using REAL provides an efficient way to compute all
information without user intervention. This is an important gain
to perform automatic optimization of the whole system.

3.2 Evaluation criteria

Although the notion of performances on a Real-Time Embedded
System is highly dependent on the system domain, one can define
three typical performance factors: schedule, data fiow latency
and memory. Their valuation heavily depends on the topology of
the system (nodes and threads connection patterns), the schedul-
ing policy and resource allocation strategies. Computing these
values can be performed by third-part tools. In some cases, these
are simple computations based on elementary formulas and, e.g.
summing a property values over a set of components; or requir-
ing a dedicated tool for performing evaluation.

In this study, we only consider the first case, using REAL to
express metrics based on the static view an architecture: hier-
archy of components and resource metrics such as worst-case
execution time of both the user code and the run-time environ-
ment, and static memory consumption.

Computed values can then be put back in the original AADL
model using a MDE framework. For simplicity and readability,
we chose to store them in a new version of the architectural
model used for code generation: the annotated model. In this
paper, references to the model actually design the annotated
model, since model annotation is the first natural step towards
optimization.

We have defined a library of functions to evaluate local criteria
using REAL, and then combined them to build one global value,
biased towards some architectural patterns:

• Maximum distance to deadline, for each non-schedulable
thread – and minimum distance to deadline whenever the
system is actually schedulable;

6 computer systems science & engineering

O. GILLES AND J. HUGUES

• Maximum memory overhead, for each overloaded process,
and minimum free memory;

• Maximum task response time for each top-level subpro-
gram, or distance to the response time upper limit if such
value had been defined.

Other functions have been defined to check that the architec-
ture is not overloaded: response time analysis for schedulability
and global memory consumption. These metrics have been de-
fined to express the “laxity” of the model, that is an evaluation
of the available resources, and ensure that a potential rewrit-
ing of the model does not overload the system. Their careful
combination will drive the global optimization loop: metrics are
computed, then an optimization algorithm will select a transfor-
mation operation and apply it to generate an annotated model;
and reiterate the process until it converges.

Let us note we defined these metrics to refiect particular op-
timization criteria. Since these are written in a separate generic
language, other metrics can be computed and adapted for the
system in consideration.

We illustrate this process for the Minimum Distance To Dead-
line (MDTD) criteria. They are formed of two metrics that com-
pute the distance to deadline (or laxity). This criteria indicates
how fiexible in timing the architecture is.

3.3 Distance to deadline at Model Level

The Merge operation impacts the model structure, since it se-
rializes previously concurrent subprograms. While performing
model-level evaluation of the MDTD, one should consider that
the threads evaluated are either optimized (i.e. have been pre-
viously merged) or not. In a regular AADL models, threads
non-functional values needed by evaluation are directly associ-
ated with the thread component with standard AADL properties
: Deadline and Compute Execution Time (the latter being the
WCET). Computing a single distance to deadline can thus be
done by the REAL theorem illustrated in listing 2, where the
Local Set is expected to contain a single element (this property
is verified by the unique subtheorem).

theorem distance to deadline regular
foreach th in Local Set do var wcet := last (property

(th, ”Compute Execution Time ”));
var deadline := property (th, ”Deadline”); requires (

unique) ;
return (Msum (wcet - deadline)) ;

end distance to deadline regular ;

Listing 2: Distance to deadline on non-fusioned threads

Finally, computing the MDTD consists in compute the mini-
mum values of the different distances to deadline in the system.
Thus we defined the REAL theorem 3. In this theorem, we pre-
dict whether the current thread is optimized or not by using the
Fusion Occurred property, defined in the Transformations prop-
erty set, which is set (with the value true) on all theorem resulting
from a Merge.

theorem minimum distance

to deadline

foreach th in Thread Set do var distance := if exists

(th , ” Transformations : : Fusion
Occurred ”)

then compute

distance to deadline optimized (th)

else compute

distance to

deadline regular (th); return (Mmin (distance));

end minimum distance to deadline ;

Listing 3: Minimum distance to deadline

3.4 Distance to deadline at Operation Level

In the case of Merge operation, the operation itself will impact on
the MDTD value, since it will create a new thread with possibly
tighter distance to deadline. Hence, we must compute this new
thread MDTD before actually creating it. To do so, we build a set
which contains the threads candidate to merging, and pass it to
the theorem that will compute the new MDTD into the Local Set.
We use the theorem 1 illustrated above, in order to compute the
sum of the WCETs of the candidate threads. The GCD function
compute the Greatest Common Divisor between the parameter-
given list — thus it computes the future period of the merged
thread. Since we iterate on the system set, the final expression
is only computed once.

theorem distance to deadline candidate
foreach s in System

Set do

var wcet := compute threads wcet (Local Set) ;

var period := GCD (property (Local Set, ”Dead-

line”));
return (Mmin (wcet - deadline)) ;

end distance

to

deadline

candidate;

Listing 4: Compute distance to deadline of a new thread

vol 27 no 1 November 2011 7

A MDE-BASED OPTIMISATION PROCESS FOR REAL-TIME SYSTEMS

4. EVALUATION PIPELINE

The steps we described in the previous sections provide a way
to perform the evaluation of one particular configuration. From
the output of one step, one can decide which optimization step
is to be taken. We define an “evaluation pipeline” that combines
all these steps to perform a global optimization of the system.

Figure 2 illustrates the evaluation pipeline that implements
this process. In red are the different levels of evaluation, while
the yellow ellipse shows the current architectural model as initial
state. As the figure suggests, a system to be optimized can be
evaluated in 3 ways. There are two branches: full model-based
evaluation, and binary-level evaluation. Doted lines shows ac-
tions done when an evaluation does not select a system. This
generic evaluation pipeline needs to: 1) select a candidate trans-
formation, or 2) decide on the actual evaluation to be performed.
These are controlled by the evaluation criteria defined by the user,
through the library of evaluation functions and the optimisation
algorithms selected.

Let us note BLE is the most time-consuming path: it implies
two more stages: code generation and compilation, and binary
analysis. The precise evaluation of WCET at binary level relies
on complex computations over the whole call graph of the system
[26], and is the most time-consuming part of the process. Other
steps like OLE and MLE only perform some computations over
the model and are much faster. Thus, BLE should be performed
only at key steps of the global optimisation process.

The outcome of one run of the evaluation pipeline is to decide
the list optimisation transformation to be performed to build a
new intermediate model.

In the next section, we present the intermediate description
of model activities that is used by all evaluations steps. This
intermediate description extracts only the information relevant
to our optimisation scheme.

Then, we list elementary transformations we designed in sec-
tion 5. Besides, the selection of the actual transformation can be
driven by different algorithms, we discuss this in section 6.

5. FROM AADL MODELS TO ACTIVITIES

The AADL provides a rich way to define an embedded system.
Yet, we only need a subset of this information to perform evalua-
tion and optimization. We consider monolithic (non distributed)
systems modeled using theAADL, and we focus on the optimisa-
tion of time and memory resources. We assume the scheduler in
place follows the SCHED FIFO policy of RT-POSIX, or equiv-
alent policy. We assume all tasks are either periodic, or sporadic
(with a minimum inter-arrival time between events) to test for
schedulability using Response Time Analysis.

Optimisation is typical in the compiler domain [1]: a program
is abstracted, and transformed to reduce copy of variables, to
propagate constants, or to unroll loops. . . We follow a similar
pattern and abstract AADL models as a set of activities, carrying
one atomic unit of computation.

From a high-level perspective, an AADL model is a set of
interconnected components, subprograms define leaf piece of
functional elements, call sequences define a list of subprograms
by one thread. Threads are interconnected through ports. Sub-

programs can exchange event and data through threads’ ports.
Let us note that call sequences gather subprograms, yet com-
pilers can aggressively optimize them. Therefore, we do not
consider subprograms individually, but rather consider call se-
quences only.

Hence, the key abstraction in an AADL model we retain is the
call sequence that uses a set of ports in in or out mode and execute
subprograms. A Thread is reduced to the mechanism by which
a subprogram is executed at some point in time. By reallocating
subprograms to threads, we can reduce memory consumption
while preserving scheduling.

5.1 Call sequences

We divide a call sequence in two aspects : functional aspects and
temporal aspects. The functional aspects of a call sequence are
defined as CSF=(ICS, OCS(SP)i), where ICS (resp. OCS) are
input (resp. output) ports used by the call sequence, and SP is
a suite of subprograms to be executed. We define the temporal
aspect of a call sequence as CST =(TIWPS) where

CST :

T is a triggering event, either timed
event or event sent by some other
entities

I minimum interval between dispatch
(or period)

W the worst-case execution time;
P priority of execution;
S a function that maps input data and

events set ICS to an output data set
OCS:

6. THREADS

A thread is a non-empty set of call sequences. Sequences within
a thread cannot preempt each others, while they can preempt
other thread call sequences, based on the scheduling policy. A
thread also embeds calls to the runtime to interact with other
threads.

We define a thread as : T = ((CST)T IP), where (CST)T is
the set of call sequences run by T , and I the minimum interval
of dispatch of T , which always verifies : I= GCD({ICS|CS ∈
CST }), and P is the priority of the thread. With the definition
of call sequence presented above, and to avoid dynamic priority
changes, we need to assess that ∀CS ∈ T P CS = PT

In the test case presented in 1, we have 4 threads, each one
containing a call sequence. In terms of temporal point of view,
we describe them respectively as :

• LP Sender = ((CS1)2000), with CS1 =(clock, 2000200,
12(clock → (msg out)))

• HP Sender = ((CS2)1000), with CS2 =(clock
100020010(clock → (msg out)))

• Receiver = ((CS3), 1000), with CS3 =(msg in5002006(msg
in → ()))

• Handler = ((CS4)1000), with CS4 =(clock10002008())

8 computer systems science & engineering

O. GILLES AND J. HUGUES

Figure 2 Evaluation pipeline.

where clock is a periodic dispatch event.
Having defined this intermediate representation, we now de-

fine atomic optimization operations.

7. OPTIMISATION THROUGH THE RE-
ALLOCATION OF ACTIVITIES TO
THREADS

We propose three elementary operations that allow to explore
the different configurations of the system: merging, moving or
splitting thread activities. In this study, we focus on merge and
move, and make the hypothesis that threads execute just one
function (at the model level), so splitting threads is not relevant.

7.1 Move

The Move operation migrates a thread from one process to
another one. The connections to other blocks are maintained
to preserve the fiow of information exchange, thus changing the
configuration of inter-process connections. We do not allow to
move threads accessing to local pool of data from one process
to another, since it would imply to build new connections and
additional code to access the data remotely. This is unlikely to
lead to a decrease in resource usage, and thus does.

While the operation does not induce overhead, it does im-
pact the system behaviour: it impacts the pattern of inter-thread
communications and then lead to changes the process buffers
and synchronization constructs. It also has an indirect impact by
allowing or restricting the number of potential merge in either
source or target processes. While distribution-related impacts
have not been studied in the scope of our work, we defined two
obvious impacts of this operation at local level :

• change source/target process CPU load and thus schedula-
bility;

• change source/target memory occupation.

This is to be noticed that indirect impact does not have to
be measured at that stage, since it is to be revealed by model
evaluation in a following iteration.

The implementation of the Move operation and its selection
relies only on the AADL topology and an evaluation of the load
of each process.

7.2 Merge

The Merge operation produces a new thread that will encompass
the legacy code of the former threads, and dispatch them at re-
quired rate. Its implementation relies on the notion of activity we
introduced in the previous section. Merging two threads imply
building a new call sequence with an equivalent semantics.

In order to support this operation, an automaton is generated,
with low memory and instruction overhead (a switch/case con-
struct, an enumeration declaration and an array of bounded size)
to guarantee determinism. This automaton will be dispatched
at a rate which is the new thread period, defined by the greater
common divider (GCD) of the former threads periods. A local
scheduler ensures that at any dispatch the automaton triggers the
due code. The Merge operation impacts performances:

• by allowing to serialize inter-thread connections, it allows to
remove synchronizations constructs such as mutexes, thus
reducing the measured WCET;

• by factorizing the system resources, it allows to decrease
memory usage;

• by reducing the number of potential context switches, it
reduce slightly the actual WCET and the scheduling com-
plexity;

• yet, by removing possible preemption, it decreases the sys-
tem schedulability.

In the general case, allocating call sequences to the same
thread is equivalent to merging threads. Merging two threads
implies building one new thread whose behavior is equivalent to
the global behavior of the two threads: call sequences are dis-
patched when triggering events are received, while preserving
their periods and deadlines.

We reduce the problem space to the study of three cases: 1)
merge of two sporadic call sequences, 2) merge of two periodic
call sequences, and 3) merge of a periodic and sporadic call
sequences.

7.3 Case 1: Sporadic call sequences.

They are dispatched when an event occurs on one of its in ports,
after the MIAT time has elapsed. To infer the resulting thread pat-
tern, two factors have to be considered : the input events senders
identities and the MIAT value of each thread to be merged.

vol 27 no 1 November 2011 9

A MDE-BASED OPTIMISATION PROCESS FOR REAL-TIME SYSTEMS

Let us consider we want to allocate CS1 and CS2 to the same
thread. If CS2 is dispatched as a result of an event from CS1,
then CS2 is said to be dependent of CS1. At the model level,
a dependency between two threads appears as a connection be-
tween the two threads passing through their respective event or
event data ports.

In the general case, connections on AADL model are purely
informative, CS2 may send no event at the end of its dispatch.
As a result, in the merged thread, both call sequences will only
depend on their respective trigger ports, and thus stay sporadic.
The dependency will be represented as a connection from CS1’s
out ports to CS2’s in port. In case of non-dependent call se-
quences, the same result remains.

As a consequence, the thread that will run the two call se-
quences will also be sporadic.

7.4 Case 2: Periodic call sequences.

Allocating two periodic call sequences to one thread means the
resulting thread is able to schedule both call sequences at the
correct period. Since a thread cannot stop the execution of one
call sequence to start a new one, it means that we need to build
a static off-line scheduling, and test its feasibility prior to the
merge.

Each call sequence from the original threads will create a
call sequence in the merged thread. Those call sequences will
be executed sequentially at dispatch time. Figure 3 shows two
periodic threads candidates for merge. The call sequences share
a direct dependency. At each dispatch, the thread needs to select
the list of call sequence to be run. Yet, AADL forbids a thread
to call more than one call sequence.

To preserve model readability, we use the following modeling
pattern: each dispatch will execute a call sequence that is the
concatenation of call sequences to be run, each call sequence is
attached to an AADL mode, a mode being one possible config-
uration of a thread. Mode is computed by the thread after each
dispatch. By doing so, we preserve at modeling level the in-
formation of the different dispatch options. We call this pattern
“mode shifting”.

Figure 4 illustrates the thread resulting from the merge of two
periodic threads. Two call sequences, CS1 and CS2, send data to
different ports. Color difference indicates that they are executed
in two different modes.

In the figure, colored subprograms are added to handle local
scheduling of the two call sequences:

• G1 and G2 are the temporal guards which control the dis-
patch time of CS1 and CS2;

Like in the sporadic case, a self-connection appears because
of the direct dependency between the call sequences.

7.5 Case 3: Periodic and sporadic call se-
quences

Assigning both a periodic and a sporadic call sequence to a thread
is the exact definition of an AADLv2 Hybrid thread. Therefore,
the transformation is trivial.

The same transformation holds if one want to add another
sporadic or periodic call sequence. In this case we fall back to
the previous transformations. We detail these situations in the
next sections.

7.6 Formal Description of the Merge Process

In this section, we define the transformations we discussed in
the previous section formally.

From the previous discussion, we can define the merge func-
tion of two threads, so that for a couple of threads T 1, T 2 we
build a new thread whose call sequences are a combination of
the initial ones, and whose temporal properties derive from the
properties of the initial threads.

The resulting threads need to be able to execute the same call
sequences, at dispatch time that are compatible with the initial
schedule. We identify two required corrections:

• The initial threads were dispatched by the executive, in
a preemptive manner at specific instants. The resulting
thread should dispatch the same call sequences, in a non-
preemptive fashion. The thread should built a local sched-
uler that executes each call sequence. See algorithm 1.

• The initial threads were dispatched with different priorities.
If we end up with one thread in the system, everything will
be dispatched by the local scheduler. If the merge process
ends up with more than one thread, then we need to preserve
also the running priority of the thread.

In case of periodic call sequences merge, we need to preserve
the system behaviour. The behaviour of a set of periodic tasks
is defined by a period, yet a thread can execute itself only at a
given, constant, rate.

To emulate the behavior of multiple threads in a single one, we
build an off-line schedule of the original system. This scheduler
defines which thread is to be executed at any point of the time.
Then we divide the time between equals intervals short enough
to include the tasks that are dispatched at the same time in the
original system. This interval will be the new thread period. For
each thread dispatch instant, we compute the set of tasks to be
dispatched.

This cannot be done in the general case, and requires the initial
set of call sequences matches one precondition: there is no call
sequence with a total WCET greater than the period, as it will
delay the next dispatch. The implementation of the schedule
takes the form of a list of call sequences. Such list is bounded,
since the execution schema actually repeats itself every least
common multiple of the call sequences, so this notion -called
hyper-period -is sufficient in order to define a schedule applicable
at any time of the application.

We made the following design choice for our algorithm:

• to dispatch all call sequences, we need to define a minimal
time base to dispatch the task, that will in turn execute call
sequences. We choose the greatest common denominator
among original tasks periods.

• if the periods of call sequences are non-harmonic, then there
could be no call sequence to be executed at some dispatch

10 computer systems science & engineering

O. GILLES AND J. HUGUES

Figure 3 Two periodic threads.

Figure 4 Merge of two periodic threads RC 1 (resp. RC 2) computes the next mode to be executed after the execution of CS1 (resp. CS2).

Input: CS : Call Sequence[] – Assume sorted
Output: Schedule : Integer[]
Quantum ← GCD(period(T 1), period(T 2)) HyperPeriod ← LCM(period(T 1), period(T 2))
Iter ← 0

Exec ← 1

while Iter ≤ HyperPeriod do
CS j ← First(CS)
while CS j ≤ Last(CS) do

Per ← Period(CS j)/Quantum
if Iter mod Per = 0 then

Schedule(Exec)← in mode(CS j)
Exec ← Exec+1

end
Iter ← Iter+1

Schedule(Exec)← Temporal Guard
Exec ← Exec+1

end
end

Algorithm 1: Schedule builder algorithm.

instant. We add a temporal guard to prevent early execution
of the call sequence

Transformation 5.1 (Rewriting call sequence #1). If two call
sequences are periodic, then we apply algorithm 1 to compute
an offiine scheduling. If this algorithm applies, then two oper-
ators G and R are defined. They define the temporal guard and
reconfiguration operators that will schedule CS call sequences.
Each call sequence CSiis rewritten as:

R1 : CSi →
(G(CSi)CSiR(CSi))

.
In case of call sequences having to be executed at a given

time of the hyper-period, one must define a priority policy. We
consider: Priority of the pre-merged thread or call sequence,
and Temporal Precedence of the call sequences.

In a typical, non-merged 1-call sequence thread, the call se-
quence inherits the thread priority. In a merged, multiple call-

sequence thread, we need to define the priority of the thread. We
chose to avoid explicitly dynamic priority change to preserve
system determinism, and follow the recommendations from the
Ravenscar profile [4]. We chose to pick one static priority for
the thread.

Among the different potential values, we opt for the follow-
ing: the thread inherits the lower priority amongst the merged
threads call sequences. However, in order to keep the system
behaviour identical to the previous model, one should allow to
increase priority. To tackle this issue, we propose to use a ded-
icated mutex, configured using the Priority Ceiling Protocol, as
a “priority shifter”.

Hence, the thread accessing a protected data inherits its pri-
ority. For call sequence iof priority P istrictly greater than the
thread priority, we create a local variable priority shifteriwhose
priority is P i, and add an access to i’s subprogram calls to the
priority shi f teri. This provides an efficient way to adapt pri-
ority, without impeding determinism. We define the following
transformation rules:

Transformation 5.2 (Priority). The running priority of a
thread, result of the merge of two call sequences is their minimum
priority:

PT = min(P (CS1)P (CS2))

.
Transformation 5.3 (Rewriting call sequence #2). If the prior-

ity of a call sequence CS is higher than the priority of the hosting
thread, then we add a priority shifter object to the system. It is
a PCP mutex, whose ceiling priority is the priority of CS. The
thread will execute the following call sequence:

R2 : CS → (PSCSget()CSPSCSrelease())

.

vol 27 no 1 November 2011 11

A MDE-BASED OPTIMISATION PROCESS FOR REAL-TIME SYSTEMS

Transformation 5.4 (Chaining rules). In the general case,
merging two threads will use these different transformations,
following the pattern:

Input: Threads T1, T2

Output: Thread T3, merge of T1, T2

CS ←CST1

⋃
CST2

;
P ← min(PCSi |CSi ∈CS) – Rule 5.2
foreach CSi ∈CS do

if PCSi > P then
CSi ← R2(CSi) – Rule 5.3

end
end
foreach CSi ∈CS|CSi periodic do

CSi ← R1(CSi) – Rule 5.1
end
I ← GCD(CS) – Rule 5.1
return T3 = (CS, I, P)

When two rules apply, we decide to apply first rule 5.3, then
5.1, so that CS1 becomes R1(R2(CS1)). The rationale is that
we need first to decide whether CS1 needs to be executed (rule
5.1), then we adjust its priority (rule 5.3).

When iterating over a complex model, we store annotations
in the model to know whether a particular thread is the result of
a transformation. This allows us to recognize rewritten call se-
quences. Should we need to merge threads that are the result of
the previous algorithm, we strip annotations, and undo rewrit-
ing rules, prior to applying again the whole algorithm. This
guarantees optimal computation of the different parameters, at a
minimal overhead.

The definition of the Merge and Move transformations are the
two basic blocks for optimizing both memory and schedule of
a system, we illustrate how to select operations to be performed
in the next section.

8. DRIVING OPTIMIZATION

In the previous sections, we defined how to evaluate metrics on a
model using REAL, and how to perform atomic transformations
that could lead to an optimised systems. In this section, we
illustrate how to drive the global optimization process.

To find a fitting solution for a given hardware deployment, it
is necessary to find an optimal arrangement of the optimization
operations. Since those operations’ impact on performances de-
pends on the model they are applied on, it is not feasible to build
an a priori arrangement without controlling regularly the actual
system value using either model-level or binary-level evalua-
tions.

In the context of Real-Time Embedded Systems, this opti-
mization process is equivalent in finding an optimal binding of
all activities (threads, subprograms, etc.) onto execution re-
sources (buses, processors) with limited capacity. Such optimal
arrangements problems in finite capacity containers belong to
the knapsack class [11]. In the case studied, the effectiveness
of the inclusion of a given component into a set depends on
the components already present in the set. This belong to the
quadratic knapsack family of problems.

Thanks to this observation, we prototyped several solutions to
solve this problem with a near-optimal solution. Each solution
has been implemented directly in our AADL tool Ocarina. Out
of generality, we selected two greedy heuristics. Our objective is
to demonstrate the genericity of our approach. Several heuristics
have already been defined, their implementation and comparison
in the context of RTES is left as future work.

8.1 Fully Greedy Heuristic

Although the knapsack problems, as NP-hard problems, have
currently no exact solution of polynomial complexity, one can
try to find a near-optimal solution at lower cost, using some
heuristics. For the quadratic knapsack problem, an algorithm
providing a near-optimal solution in polynomial time is proposed
in [10].

We propose in algorithm 2 an adaptation of this algorithm that
addresses our actual problem. We use the heuristics found during
the optimization operation study: merge only occurs when a
candidate set of operation has been selected, and can be bounded
by the number of thread components in the system.

Our solution consists in electing a node using evaluation cri-
teria defined in the previous section, and search amongst a list
of threads sorted according to the same criterion to found the
optimal set of merging that can be done with this thread. The
merge is then actually done, then a move operation is tried from
another process to the current one (since it just lost at least one
thread component due to the merge operation). The algorithm
then iterate until their is no more merge possible in the system.

In order to elect the first element of the set of merging can-
didate, we use the maximum number of in and out connections
connected to other threads of the same process, because we do
know from previous studies than serializing connections allows
to reduce significantly the system WCET. Other heuristics could
be easily specified.

This solution theoretical complexity in terms of operation is
in O(n3), n being the maximum number of threads in a process.
However, it is usually quite lower, since sets to merge tends to
count more than two elements, and a cost function in actual im-
plementation usually prevents some obviously non-schedulable
combinations to be explored.

8.2 Half Greedy Heuristic

Using the criteria defined in section 3.2, we propose an algorithm
that explores a larger part of the solution graph than the Full
Greedy Heuristic, and thus is expected to return a result closer
to the optimal.

This solution (algorithm 3) consists in building the optimal
set of merge for each thread, and then select the better result
according to our evaluation to perform the actual merge. This
operation is repeated until no more merge is possible. One should
note that this procedure actually has some greediness since we do
not explore all the combinations of merging set but only the most
optimal next merge at each step. This explains the “half-greedy”
denomination.

This solution theoretical complexity in terms of operations is

12 computer systems science & engineering

O. GILLES AND J. HUGUES

in O(n4), n being the maximum number of thread in a process.
However, it is usually quite lower, for the same reasons than the
fully greedy solution.

These two heuristics have been implemented directly in Oca-
rina. Since we separate model evaluation from design space
exploration, the implementation of the heuristics itself is quite
light, and required only a few hundreds line of code to be imple-
mented. Other elements are either supported by REAL, or part
of a more generic model transformation engine also integrated
to Ocarina.

Hence, the approach we propose is fully generic: one can ei-
ther define its own metrics using REAL; or implement another
design space exploration strategy inside Ocarina. This explo-
ration may be used to favor other metrics such as availability,
bandwidth, etc. For instance, in [20], authors illustrate the ar-
chitecture of a system can be reorganized to minimize the impact
of a failure. Such method can be implemented using

Input: System S
forall p ∈ Process(S) do

repeat
Sort(T hreads(p))
T ← First(T hreads(p))
Candidate Set ← /0
repeat

Best Value ← 0 forall t2 ∈ T hreads(p) do
if t2 �= T then

Current Value ←Compute Value(Candidate Set, t2) if
Current Value > Best Value then

Best Value ←Current Value Best Candidate ← t2
end

end
end
Candidate Set ←Candidate Set ∪Best Candidate

until noBest Candidate f ound ;

if Candidate Set �= /0 then
S ← Merge(Candidate Set) S ← Move(Candidate Set,S)

end
until Candidate Set = /0 ;

end
Algorithm 2: Fully Greedy Algorithm.

our approach following the same patterns: define metrics, select
an heuristics and apply it to the system under consideration.

In the following, we illustrate the efficiency of our process
and its implementation.

9. TEST CASE: THE GENERIC AVIONIC
PLATFORM

We selected a case study to assess our solution, based on an ab-
straction of a complete avionics system. The Software Engineer-
ing Institute at CMU, the Naval Weapons Center and IBM’s Fed-
eral Sector Division participated in the creation of the Generic
Avionic Platform (GAP), as reported in [15], in the 80s. This
model as been designed first to assess suitability of early re-
visions of the Ada language [16]. Although this model is no
longer representative of current avionics architecture, it provides
a freely available definition of a meaningful RTES. We chose
to model this system in AADLv2. Figure 5 illustrates its main
threads, data fiows and processes, in a representation which only
take account of connection existence (multiples connections be-
tween two threads are represented by a single connection).

Input: System S
forall p ∈ Process(S) do

repeat
Best Set Value ← 0

Final Set ← /0
forall T ∈ T hreads(p) do

T ← First(T hreads(p))
Candidate Set ← /0
repeat

Best Value ← 0

forall t2 ∈ T hreads(p) do
if t2 �= T then

Current Value ←Compute Value(Candidate Set, t2) if
Current Value > Best Value then

Best Value ←Current Value Best Candidate ← t2
end

end
end
Candidate Set ←Candidate Set ∪Best Candidate

until noBest Candidate f ound ;

if Best Value > Best Set Value then
Best Set Value ← Best Value Final Set ←Candidate Set

end
end
if Final Set �= /0 then

S ← Merge(Final Set) S ← Move(Final Set,S)
end

until Final Set = /0 ;

end

Algorithm 3: Half Greedy Algorithm.

Table 2 Optimization costs and gains.

FGO-CB HGO-CB FGO-PB HGO-PB
Iterations 536 86 723 101
Duration (s) 4.19 2.63 2.88 3.37
Memory gain 30% 32% 39% 36%

The GAP defines 16 threads, either periodic or sporadic, with
different periods/minimum interarrival times, and a great yet het-
erogeneous amount of connections. Because of its complexity,
the specification followed a functionality-oriented modeling, and
offered schedulable implementations of the GAP. Following our
optimisation process, we were able to merge those threads into
only 5 threads, while preserving the global schedulability of the
system. In the following, we discuss the different experiments
performed.

In order to demonstrate the modularity of evaluation tech-
niques, we run the optimization algorithms with the evaluation
criteria described in section 3.2:

• connection-based, which search for the maximum number
of inter-connections in a set of threads;

• deadline-based, which search for the GCD of thread dead-
lines closer to the set of threads’ maximal deadlines.

Table 1 shows the content of the threads built by both Full
Greedy Optimization (FGO) and Half Greedy Optimization
(HGO), with the connection criteria for operation evaluation, and
the period-based one. ‘+’ symbol denotes thread addition, i.e.
two threads being present, ‘x’ denotes composition of threads.
Apart from the move operation which moves a merged thread
from Displays to Weapons in the HGO version of the model,
we can see than the resulting models are slightly different. We
discuss these differences below. Since no optimization criteria

vol 27 no 1 November 2011 13

A MDE-BASED OPTIMISATION PROCESS FOR REAL-TIME SYSTEMS

Figure 5 GAP main data flows.

Table 1 Iterations of the GAP platform after different optimisations.

Original Weapons Weapon Selection (Sporadic, 200ms) + Weapon Trajectory (Sporadic, 100ms)
+ Weapon Release (Sporadic, 200ms)

Display HUD Display (Periodic, 52ms) + MPD Tactical (Periodic, 52ms) + Radar
Control (Periodic, 40ms) + Target Track + MPD Status (Periodic, 200ms)
+ MPD Stores (Periodic, 200ms) + Builtin Test (Periodic, 1000ms) +
Keyset (Periodic, 200ms) + HOTAS (Periodic, 40ms) + RWR Threat
(Periodic, 100ms) + RWR Control (Sporadic, 400ms)

FGO-CB System Weapons (Weapon Selection x Weapon Trajectory x Weapon Release)
Display (HUD Display x MPD Tactical)+ (Radar Control x Target Track x MPD Status x

MPD Stores x Builtin Test x Keyset x HOTAS) + (RWR Threat x RWR Control)
HGO-CB System Weapons (RWR Control x Radar Control x MPD Status x MPD Stores x Builtin Test x

Keyset x HOTAS) + (Weapon Selection x Weapon Trajectory x Weapon
Release)

Display (HUD Display x HUD Tactical)
FGO-PB System Weapons (Weapon Selection x Weapon Trajectory x Weapon Release) + (Target Track x

Radar Control x HOTAS)
Display (HUD Display x MPD Tactical) + (MPD Status x MPD Stores x Builtin Test x

Keyset x RWR Threat x RWR Control)
HGO-PB System Weapons (MPD Status x MPD Stores x Builtin Test x Keyset x RWR Control x Weapon

Selection x Weapon Trajectory x Weapon Release) + (HUD Display x
HUD Tactical)

Display (Target Track x Radar Control x HOTAS)

14 computer systems science & engineering

O. GILLES AND J. HUGUES

changed the content of the Navigation process, we choose not to
display them in the results.

9.1 Connection-based optimisations

Table 1 shows the content of the threads built by both Full Greedy
Optimization (FGO) and Half Greedy Optimization (HGO),
with the connection criteria for operation evaluation, and the
period-based one. ‘+’ symbol denotes thread addition, i.e. two
threads being present, ‘x’denotes composition of threads. Apart
from the move operation which moves a merged thread from
Displays to Weapons in the HGO version of the model, we
can see than the resulting models are slightly different. We dis-
cuss these differences below. Table 2 reports time to perform
the whole optimisation process, measured on the time to exe-
cute the algorithm and other tasks related to model management
(parsing, manipulation, . . .).

We note that both algorithms take a few seconds to complete.
Memory consumption is decreased by more than 30% in each
case. This mostly results in the merging of threads that reduce
memory at runtime.

Let us note that in all configurations scheduling is preserved.

9.1.1 Fully Greedy Algorithm results

• Displays: With FGO, we impose the first operand of
the merge operation. As indicated above, the main cri-
teria for choosing this thread is the number of connec-
tions with others threads. In our example, it elects the
Builtin_Test thread, which receives data from nearly
all others threads in the process. The first merge done is
with MPD_Status_Display, because it shares many
connections with the former one. Target_Tracking,
the second thread to be merged is chosen because of its
connection with the previous, although its period is dan-
gerously low (40 ms). Then a set of control and display
threads are merged, because their higher periods and low
CPU usage make their merging costless. The new thread
has a period of 40 ms.

Since no other thread can be added, HUD_Display
is selected as next candidate to merge. Its period be-
ing of 52 ms, thus the decomposition in prime num-
bers is 13-2, it is quite unlikely to support many merges.
MPD_Tactical_Display, however, has also a period
of 52 ms, thus is selected to merge. Finaly, a third
merge candidate is elected amongst the two staying thread
(RWR_Threat_Response and RWR_Control). Their
respective periods being of 100 ms and 400 ms, the merge
actually occurs and produce a thread which period is 100
ms. Since no other threads in the process have WCET and
periods allowing new merges, a move is tried, although it
will not apply, since the current process is already more
loaded than the other ones.

• Weapons: The same merges are performed than in
the fully greedy algorithm. The thread moved ran-
domly is (Radar_Control x Target_Track x MPD_Status
x MPD_Stores x Builtin_Test x Keyset x HOTAS)

• Navigation: It contains two connected periodic threads of
respective periods 80 ms and 59 ms. Since the periods have
a GCD of 1, no merge can be performed, and thus no move
is actually tried.

A second iteration of the algorithm failed to find new optimiza-
tion, thus stopping the algorithm, with an effective complexity
of 536 operation evaluations.

9.1.2 Half Greedy Algorithm results

• Displays: Comparatively to the full-greedy algorithm, the
first set to be selected in the test case includes RWR Control
but excludes Target Tracking, because its tight period limits
the number of further potential merges. Like in the fully-
greedy algorithm, HUD Display and MPD Tactical Display
are merged. Finally, RWR Threat Response stays as is,
suffering of its lack of connections with others threads.

Weapons: It contains three strongly connected sporadic
threads, with different minimum inter-arrival times (MIAT),
all multiples of 100 ms. MIAT, however, is relative to a
given signal, thus it should not be modified by the merg-
ing operation. Those three thread are merged into one,
since their respective WCET allow their execution during
the minimum MIAT of the merged threads. The move op-
eration select thread from the overloaded Displays process,
choosing randomly the first merged thread Target Tracking
for moving to Weapons.

Navigation: Like in the half greedy algorithm, no merge
nor move is performed.

A second iteration of the algorithm tries to optimize each new
version of the processes, which have been modified by the last
move operation. In our case however, tight periods make this
step impossible, and thus stop the algorithm, after 86 operation
evaluations.

9.2 Deadline-based optimisations

9.2.1 Fully Greedy Algorithm results

• Displays: From the evaluation criteria, the algorithm
searches first the nearer deadlines. A second iteration of the
process merges low-deadline threads (all deadlines are 40
ms) into the new thread: thr 1. A second set of three threads
of period 200 ms is then merged into a new one. Finaly,
two threads of periods of 52 ms are merged into the third
thread. Threads with unique periods are then processed :
all have a GCD of 100 ms, and thus they are merged with
the second one whose period become 100 ms. No move is
performed.

• Weapons: Two threads of period 200 ms are merged into
one, then the merged thread (Target Track x Radar Control
x HOTAS) is moved from Displays.

• Navigation: Like in previous execution, no merge nor
move are possible.

vol 27 no 1 November 2011 15

A MDE-BASED OPTIMISATION PROCESS FOR REAL-TIME SYSTEMS

A second iteration impacts Weapons, and trigger the merge of the
last non-merged thread (of period 100 ms), and (Weapon Selec-
tion x Weapon Trajectory), changing its period to 100 ms. The
algorithm then stop, with a total of 723 operation evaluations.

9.2.2 Half Greedy Algorithm results

The same set of threads is selected for merging. Then, although
the order vary, the threads built are the same than in the half-
greedy version, yet for a total of 101 operation evaluations. This
difference stems from the variant between algorithms: the Half
Greedy algorithm is more aggressive and rejects more configu-
rations that the Full Greedy variant.

9.3 Conclusion

The execution of these two heuristics lead to an overall reduc-
tion in memory consumption while preserving initial scheduling
constraints. Table 2 lists a gain ranging from 30% to 39% de-
pending on the heuristics and metrics selected. This confirms the
initial requirement to have an adaptable process to test different
model optimization strategies.

Furthermore, we note that the time to explore the full design
space is less than 5 sec. This is partly due to the reduced number
of admissible permutations in the design: irrelevant designs are
discarded when they fail to respect resource constraints. Besides,
these metrics are simple computations at model-level, they are
quite fast. Object-level performance evaluation are more precise,
but are seldom required.

One important aspect of the optimisation process is to ensure
it preserves the semantics of the initial system, while enhancing
one particular set of metrics. Since we can generate the initial
system, and the optimised one, we could compare their behavior
on long execution time so as to ensure scheduling orders and
timing requirements are preserved.

10. RELATED WORKS

The optimisation of models, prior to code generation, has already
been discussed in various works.

In [19], authors discuss optimisation of architecture imple-
mented as Simulink blocks. Yet, this work is restricted to one
family of systems, and is fully automated, without control from
the user. Furthermore, they only address one dimension: reduc-
ing the number of intermediate buffers for transmitting data. Our
contribution aims at more genericity by separating evaluation,
design space exploration and model transformation. Only model
transformation is canonical. Other elements can be adapted by
the system designer to finely tune its process.

In [12] authors exploit the nature of data to be managed in
transactional memory to decrease communication load, provid-
ing a very particular optimization techniques for these systems.
Our work aims at generalizing optimization and integrate them in
a general framework that mixes evaluations, selection of model
transformation and code generation. We applied our work on a
generic avionic platform, it can be adapted to other approaches
by adapting metrics and heuristics, for instance for embedded,

networked or critical systems by adapting metrics and tuning
heuristics. Separation of concerns between metrics and heuris-
tics enable efficient implementation of project-specific optimiza-
tion.

Related to the AADL modeling framework, the
ARCHEOPTERIX [9] project use combinatorial explo-
ration of the design, and provide some heuristics to achieve
better allocation. However, they rely on extensions of AADL
through specific property sets. The designer has to adapt its
model prior to optimization. Our contribution rely on pure
AADLv2 notations to achieve the same objective.

In [3], the authors evaluate a bin-packing algorithm to allo-
cate processes to processors in an AADL model. The level of
granularity is that of a pool of threads. This approach allows one
to deploy an application on a set of CPUs. Compared to this ap-
proach, our contribution proposes model rewriting strategies to
achieve better CPU and memory usage while preserving schedu-
lability, at thread-level. Both contributions are complementary.

In [2], authors evaluate an optimization tool for optimizing
memory footprint of CCM-based applications. The proposed
approach relies on the merge of CCM components, for soft real
time system. This approach is similar to the one we propose.
Yet, our contribution relies on a lighter middleware (the AADL
runtime, implemented by our POLYORB-HI runtime), which is
finely optimised, and on a stricter scheduling discipline. There-
fore, we extend this work to mission critical, hard real-time sys-
tems.

Furthermore, compared to most optimisation techniques, we
provide control over the metrics to guide the optimisation pro-
cess. We believe this is a requirement to address heterogeneity
in RTES architectures.

11. CONCLUSION

Model-Driven Engineering is an appealing technology for build-
ing real-time systems. It allows one to focus on core functional
and non-functional aspects of a system, prior to validation and
code generation. However, optimisations of the final system
are seldom addressed at model-level, and left to the integration
phase where it is performed manually. In the worst case, the
overall systems need to be redesigned if the system does not
meet requirement.

In previous work, we have developed a suite of tools around
AADL to support code generation targeting optimised runtimes
for the high-integrity domain; and later shown how to use this
information to gain precise information on compute execution
time based on precise evaluation of the models or the executable.

Considering elementary transformation steps, and a DSL to
evaluate architecture characteristics, we proposed a user-driven
optimisation process to optimize an architecture: the user can
define its own evaluation functions, and then use them in an
optimisation process. We proposed two variants of an optimisa-
tion algorithm and different evaluation metrics, and applied them
to a representative architecture modeling an avionics platform.
Thanks to a mix of model-level and binary-level evaluation tech-
niques, our results indicate the approach can tackle optimisation
results and help system designers to reduce memory footprint
or meet stricter schedules while preserving its non-functional

16 computer systems science & engineering

O. GILLES AND J. HUGUES

properties.
Future works will extend optimization strategies to distributed

applications, by taking into account the topology of intercon-
nected nodes, and the communication time in the choice of spe-
cific merge or reorganisation of the model. Another extension
is to add proper analysis of the message queues and protected
components of the system: the designer may have been too pes-
simistic in dimensioning queue, or in protecting some data. We
could take advantage of the description of the whole system to
remove useless protections. Finally, a third possible extension is
to add more complex analysis frameworks to have a more precise
definition of the resource usage.

REFERENCES

1. AlfredV.Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Prin-
ciples, Techniques and Tools. Addison-Wesley, 1986.

2. Krishnakumar Balasubramanian and Douglas C. Schmidt. Physical
Assembly Mapper: A Model-driven Optimization Tool for QoS-
enabled Component Middleware. In RTAS’08, 2008.

3. Dionisio de Niz and Peter H. Feiler. On Resource Allocation in Ar-
chitectural Models. In Proceedings of the 11th IEEE International
Symposium on Object-oriented Real-time distributed Computing
(ISORC’08), 2008.

4. B. Dobbing, A. Burns, and T.Vardanega. Guide for the use of the of
the Ravenscar Profile in High Integrity Systems. Technical report,
2003.

5. Peter H. Feiler, David P. Gluch, and John J. Hudak. The Archi-
tecture Analysis & Design Language (AADL): An Introduction.
Technical report, 2006. CMU/SEI-2006-TN-011.

6. O. Gilles and J. Hugues. Validating requirements at model-level. In
Proceedings of the 4th workshop on Model-Oriented Engineering
(IDM’08), June 2008.

7. Olivier Gilles. REAL User’s Guide. Technical report, T’el’ecom
Paris, 2009. available at http://aadl.enst.fr/real.html.

8. Olivier Gilles and J’er ome Hugues. Applying WCET analysis
at architectural level. In Worst-Case Execution Time (WCET’08),
pages 113–122, Prague, Czech Republic, July 2008.

9. Lars Grunske, Aldeida Aleti, Stefan Bjornander, and Indika Mee-
deniya. ArcheOpterix, An Extendable Tool for Architecture Opti-
mization .

10. B. A. Julstrom. Greedy, genetic, and greedy genetic algorithms for
the quadratic knapsack problem. In GECCO’05, 2005.

11. H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems.
Springers, 2004.

12. Behram Khan, Matthew Horsnell, Ian Rogers, Mikel Luj’an, An-
drew Dinn, and IanWatson. Exploiting object structure in hardware
transactional memory. International Journal of Computer Systems
Science and Engineering, 24(5), 2009.

13. K. Kim and C. Im. Hybrid approaches for derivation of tight service
time bounds of distributed emdedded computing systems. Inter-
national Journal of Computer Systems Science and Engineering,
24(1), 2009.

14. Gilles Lasnier, Bechir Zalila, Laurent Pautet, and Jerome Hugues.
OCARINA: An Environment for AADL Models Analysis and
Automatic Code Generation for High Integrity Applications. In
Springer Verlag, editor, AdaEurope’09, Brest, France, Jun 2009.

15. C. D. Locke, D. R. Vogel, and J. B. Goodenough. Generic Avion-
ics Software Specification. Technical Report CMU/SEI-90-TR-8,
Software Engineering Institute, Carnegie Mellon University, Pitts-
burgh, Pennsylvania, USA, 1990.

16. C. D. Locke, D. R. Vogel, and T. J. Mesler. Predictable Real-time
Avionics Design Using Ada tasks and Rendezvou s: A Case Study.
In IRTAW ’90: Proceedings of the fourth international workshop
on R eal-time Ada issues, pages 118–125, New York, NY, USA,
1990. ACM Press.

17. Tidorum Ltd. Bound-T Execution Time Analyzer, url:
http://www.bound-t.com.

18. Enrico Mezzetti, Niklas Holsti, Antoine Colin, Guillem Bernat,
and Tullio Vardanega. Attacking the Sources of Unpredictability in
the Instruction Cache Behavior. In 16th International Conference
on Real-Time and Network Systems (RTNS 2008), Rennes France,
2008.

19. Marco Di Natale and Valerio Pappalardo. Buffer optimization in
multitask implementations of simulink models. ACM Trans. Em-
bed. Comput. Syst., 7(3):1–32, 2008.

20. Sadi M. S., Myers D. G.and Sanchez D., and Jurjens J. Component
criticality analysis to minimize soft errors risk. International Jour-
nal of Computer Systems Science and Engineering, 25(5), 2010.

21. SAE. Architecture Analysis & Design Language V2 (AS5506A),
January 2009. available at http: //www.sae.org.

22. SAE/AS2-C. ARINC653 Annex document for the Architecture
Analysis & Design Language v2.0 (AS5506A), October 2009 2009.

23. SAE/AS2-C. Behavioral Annex Language Specification for the Ar-
chitecture Analysis & Design Language v2.0 (AS5506A) (draft
2.11), October 2009 2009.

24. SAE/AS2-C. Data Modeling Annex document for the Architecture
Analysis & Design Language v2.0 (AS5506A), October 2009.

25. F. Singhoff, J. Legrand, L. Nana, and L. Marc. Cheddar : a fiexible
real time scheduling framework. In ACM SIGAda Ada Letters, New
York, USA, December 2004. ACM Press.

26. Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas
Holsti, Stephan Thesing, David Whalley, Guillem Bernat, Chris-
tian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank Mueller,
Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenstr¨The
worst-case execution-time problem om. overview of methods and
survey of tools. ACM Trans. Embed. Comput. Syst., 7:36:1–36:53,
May 2008.

vol 27 no 1 November 2011 17

