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MSE LOWER BOUNDS FOR DETERMINISTIC PARAMETER ESTIMATION

Eric Chaumette et al. (1)

ONERA - DEMR/TSI, The French Aerospace Lab, Chemin de la Hunière, F-91120 Palaiseau, France

ABSTRACT
This paper presents a simple approach for deriving computable lower
bounds on the MSE of deterministic parameter estimators with a
clear interpretation of the bounds. We also address the issue of
lower bounds tightness in comparison with the MSE of ML esti-
mators and their ability to predict the SNR threshold region. Last,
as many practical estimation problems must be regarded as joint
detection-estimation problems, we remind that the estimation per-
formance must be conditional on detection performance.

Index Terms— Estimation, Signal detection

1. INTRODUCTION

Lower bounds on the mean square error (MSE) in estimating a set
of deterministic parameters from noisy observations provide the best
performance of any estimators in terms of the MSE. They allow to
investigate fundamental limits of a parameter estimation problem or
to assess the relative performance of a specific estimator. All exist-
ing bounds on the MSE of unbiased estimators are different solu-
tions of the same norm minimization problem under sets of appro-
priate linear constraints defining approximations of unbiasness in the
Barankin sense (1). The weakest and the strongest definition of un-
biasness leads respectively to the Cramér-Rao bound (CRB) and to
the Barankin bound (BB), which are, the lowest (non trivial) and the
highest lower bound on the MSE of unbiased estimators. Therefore,
the CRB and BB can be regarded as key representative of two gen-
eral classes of bounds, respectively the Small-Error bounds and the
Large-Error bounds. Indeed, in non-linear estimation problems three
distinct regions of operation can be observed. In the asymptotic re-
gion, the MSE of estimators is small and, in many cases, close to
the Small-Error bounds. In the a priori performance region where
the number of independent snapshots and/or the signal-to-noise ratio
(SNR) are very low, the observations provide little information and
the MSE is close to that obtained from the prior knowledge about
the problem. Between these two extremes, there is an additional am-
biguity region, also called the transition region. In this region, the
MSE of maximum likelihood estimators (MLEs) deteriorates rapidly
with respect to Small-Error bounds and generally exhibits a thresh-
old behavior corresponding to a ”performance breakdown” high-
lighted by Large-Error bounds. Additionally, in nearly all fields of
science and engineering, a wide variety of processing requires a bi-
nary detection step (detector) designed to decide if a signal is present
or not in noise. As a detector restricts the set of observations avail-
able for parameter estimation, any accurate MSE lower bound must
take into account this initial statistical conditioning. If the derivation
of any lower bound with statistical conditioning is ”straightforward”
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for realizable detectors (which do not depend on the true parameter
values), it remains an open problem for clairvoyant detectors (which
depend on the true parameters value), including optimal detectors
(Bayes or Neyman-Pearson criteria).

2. BARANKIN BOUND APPROXIMATIONS

For the sake of simplicity we will focus on the estimation of a single
real function g (θ) of a single unknown real deterministic parameter
θ. In the following, unless otherwise stated, x denotes the random
observation vector of dimension M , Ω the observations space, and
p (x; θ) the probability density function (p.d.f.) of x depending on
θ ∈ Θ, where Θ denotes the parameter space. Let L2 (Ω) be the real
Hilbert space of square integrable functions over Ω.

2.1. Lower bounds and norm minimization

In the search for a lower bound on the MSE of unbiased estimators,
two fundamental properties of the problem at hand, introduced by
Barankin [6], must be noticed. The first property is that the MSE

of a particular estimator ĝ
(
θ0

)
(x) ∈ L2 (Ω) of g

(
θ0

)
, where θ0

is a selected value of the parameter θ, is a norm associated with a
particular scalar product 〈 | 〉θ:

MSEθ0

[
ĝ

(
θ0

)]
=

∥∥∥ĝ
(
θ0

)
(x)− g

(
θ0)∥∥∥

2

θ0
,

〈g (x) | h (x)〉θ0 = Eθ0 [g (x) h (x)∗] .

The second property is that an unbiased estimator ĝ
(
θ0

)
(x) of g (θ)

should be uniformly unbiased, i.e. for all possible values of the un-
known parameter θ ∈ Θ it must verify:

Eθ

[
ĝ

(
θ0

)
(x)

]
= g (θ) = Eθ0

[
ĝ

(
θ0

)
(x) ν (x; θ)

]
, (1)

where ν (x; θ) = p(x;θ)

p(x;θ0)
denotes the Likelihood Ratio (LR). As a

consequence, the locally-best (at θ0) unbiased estimator is the solu-
tion of a norm minimization under linear constraints:

min
{

MSEθ0

[
ĝ

(
θ0

)]}
under Eθ0

[
ĝ

(
θ0

)
(x) ν (x; θ)

]
= g (θ) ,

solution that can be obtained by using the norm minimization lemma

min
{
uHu under cH

k u = vk, 1 ≤ k ≤ K
}

= vHG−1v

uopt =
K∑

k=1

αkck, α = G−1v, Gn,k = cH
n ck

. (2)

Unfortunately, if Θ contains a continuous subset of R, then the norm
minimization under a set of an infinite number of linear constraints
(1) leads to an integral equation (7) with no analytical solution in
general.



2.2. Linear transformations

Therefore, since the original work of Barankin, many studies [6,
and references therein][5] have been dedicated to the derivation of
“computable” lower bounds approximating the MSE of the locally-
best unbiased estimator (BB). All these approximations derive from
sets of discrete or integral linear transform of the ”Barankin” con-
straint (1), and accordingly of the LR, and can be obtained using the
following simple rationale.
Let θN =

(
θ1, . . . , θN

)T ∈ ΘN be a vector of N test points,

ν
(
x; θN

)
=

(
ν

(
x; θ1

)
, . . . , ν

(
x; θN

))T
be the vector of LR

associated to θN , and ξ
(
θN

)
=

(
ξ
(
θ1

)
, . . . , ξ

(
θN

))T
where

ξ (θ) = g (θ)− g
(
θ0

)
.

Any unbiased estimator ĝ
(
θ0

)
(x) verifying (1) must comply with

Eθ0

[(
ĝ

(
θ0

)
(x)− g

(
θ0)) ν

(
x; θN

)]
= ξ

(
θN

)
, (3)

and with any subsequent linear transformation of (3). Therefore, any
given set of K (K ≤ N) independent linear transformations of (3):

Eθ0

[(
ĝ

(
θ0

)
(x)− g

(
θ0))hT

k ν
(
x; θN

)]
= hT

k ξ
(
θN

)
, (4)

hk ∈ RN , k ∈ [1, K], provides with a lower bound on the MSE (2):

MSEθ0

[
ĝ

(
θ0

)] ≥ ξ
(
θN

)T

G̃HK ξ
(
θN

)
, (5)

where G̃HK = HK

(
HT

KRνHK

)−1
HT

K , HK = [h1 . . . hK ]
and (Rν)n,m = Eθ0 [ν (x; θn) ν (x; θm)]. The BB is obtained by
taking the supremum of (5) over all the existing degrees of freedom(
N, θN , K,HK

)
. All known bounds on the MSE deriving from the

Barankin Bound is a particular implementation of (5), including the
most general formalism introduced lately in [5]. Indeed, the limit of
(4) where N →∞ and θN uniformly samples Θ leads to the linear
integral constraint:

Eθ0

[(
ĝ

(
θ0

)
(x)− g

(
θ0)) η (x, τ)

]
= Γh (τ) , (6)

η (x, τ) =

∫

Θ

h (τ , θ) ν (x; θ) dθ, Γh (τ) =

∫

Θ

h (τ , θ) ξ (θ) dθ,

where each hk =
(
h

(
τk, θ1

)
, . . . , h

(
τk, θN

))T
is the vector of

samples of a parametric function h (τ , θ) , τ ∈ Λ ⊂ R, integrable
over Θ. As the consequence, the integral form of (5) is [5][7]:





MSEθ0

[
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(
θ0

)
lmvu

(x)
]

=

∫

Λ

Γh (τ) β (τ) dτ

ĝ
(
θ0

)
lmvu

(x)− g
(
θ0

)
=

∫

Λ

η (x, τ) β (τ) dτ

∫

Λ

Kh (τ ′, τ) β (τ) dτ = Γh (τ ′)

, (7)

Kh (τ , τ ′) = Eθ0 [η (x, τ) η (x, τ ′)]

=

∫∫

Θ

h (τ , θ) Rν (θ, θ′) h (τ ′, θ′) dθdθ′,

Rν (θ, θ′) = Eθ0

[
p(x;θ)

p(x;θ0)
p(x;θ′)
p(x;θ0)

]
=

∫

Ω

p(x;θ)p(x;θ′)
p(x;θ0)

dx,

Note that if h (τ , θ) = δ (τ − θ) (limit case of HN = IN where
N = K → ∞) then Kh (τ , τ ′) = Rν (τ , τ ′) and (7) becomes the

simplest expression of the exact Barankin Bound [6, (10)]. However,
in most practical cases, it is impossible to find an analytical solution
of (7) to obtain an explicit form of the exact Barankin Bound on the
MSE, which somewhat limits its interest.
Nevertheless this formalism allows to use discrete (4) or integral (6)
linear transforms of the LR, possibly non-invertible, possibly opti-
mized for a set of p.d.f. (such as the Fourier transform in [5]) in
order to get a tight approximation of the BB.

2.3. Non-linear transformations

At the opposite, the use of a non-linear transformation of the unbi-
asness definition (1) of type:

Eθ0

[
ĝ

(
θ0

)
(x) t (ν (x; θ))

]
= h (g (θ)) (8)

is more obscure since it seems a difficult mathematical task to com-
pute the bias transformation function h ( ) as a function of the LR
transformation function t ( ) and of the LR. Nevertheless there is
a class of estimation problems where non-linear transformations of
the LR can be used to derive new lower bounds on the MSE. It is
the class of estimation problems characterized by a p.d.f. p (x; θ)
for which there exists at least one real valued function t ( ) such that,
the transformation of p.d.f. p (x; θ) by t ( ) is still - up to a normal-
ization constant, w.r.t. x, k (θ, t) - a p.d.f. of the form p (x; ) but
parameterized by a modified parameter value γ, function of the ini-
tial parameter θ and of the transformation t ( ):

t (p (x; θ)) = k (θ, t) p (x; γ (θ, t)) , k (θ, t) =

∫

Ω

t (p (x; θ)) dx

(9)
Then an unbiased estimator verifying (1) verifies as well,∀θ ∈ Θ:
∫

Ω

ĝ
(
θ0

)
(x) t (p (x; θ)) dx = k (θ, t)

∫

Ω

ĝ
(
θ0

)
(x) p (x; γ (θ, t)) dx

= k (θ, t) g (γ (θ, t))

what implies,∀θ ∈ Θ :

Eθ0

[(
ĝ

(
θ0

)
(x)− g

(
θ0)) t (p (x; θ))

p
(
x; θ0

)
]

=

k (θ, t)
[
g (γ (θ, t))− g

(
θ0)] .

In the most general case, if there exists a set of functions tθ ( ) veri-
fying (9), then any unbiased estimator also verifies,∀θ ∈ Θ:

Eθ0

[(
ĝ

(
θ0

)
(x)− g

(
θ0)) tθ (p (x; θ))

p
(
x; θ0

)
]

=

k (θ, tθ)
[
g (γ (θ, tθ))− g

(
θ0)] .

Therefore, if we update the definition of ν (x; θ) and ξ (θ) in (6)
according to:

ν (x;θ) =
tθ (p (x; θ))

p
(
x; θ0

) , ξ (θ) = k (θ, tθ)
[
g (γ (θ, tθ))− g

(
θ0)] ,

all the results released in the previous section still hold, the linear
integral transformation becoming a mixture of linear and non-linear
integral transformations:

η (x, τ) =

∫

Θ

h (τ , θ)
tθ (p (x; θ))

p
(
x; θ0

) dθ,
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Fig. 1. Comparison of MSE lower bounds versus SNR

Γh (τ) =

∫

Θ

h (τ , θ) k (θ, tθ)
[
g (γ (θ, tθ))− g

(
θ0)] dθ.

At first sight, the proposed rationale, which is a generalization of [1],
does not seem appealing, since a non-linear transformation of type
(8) or (9) is unlikely to exist whatever the form of the p.d.f., although
the linear transformation of the LR (6) is always possible. However,
it is applicable to M -dimensional complex circular Gaussian p.d.f.:

p (x; θ) = p (x;m (θ) ,C (θ)) =
e−(x−m(θ))HC(θ)−1(x−m(θ))

πM |C (θ)|
where the transformation tq (y) = yq [1] and the observation model
results from a mixture of deterministic and stochastic signals in pres-
ence of Gaussian interference.
Indeed, in this case C (θ) = Ψ (ζ)CsΨ (ζ)H + Cn, m (θ) =

m (ε), θ =
[
εT , ζT , vec (Cs)

T , vec (Cn)T
]T

and:

tq (p (x; θ)) = k (θ,q) p (x; γ (θ, q)) (10)

k (θ,q) =
πM(1−q)

qqM

∣∣∣∣
C (θ)

q

∣∣∣∣
1−q

γ (θ, q) =

[
εT , ζT ,

vec (Cs)

q

T

,
vec (Cn)T

q

]T

2.4. Lower bounds and threshold region determination

In non-linear estimation problems, ML estimators exhibit a threshold
effect, i.e. a rapid deterioration of estimation accuracy below a cer-
tain SNR or number of snapshots. This effect is caused by outliers
and is not captured by standard techniques such as the CRB. The
search of the SNR threshold value (where the CRB becomes unreli-
able for prediction of ML estimator variance) can be achieved with
the help of the BB approximations introduced above. For example,
let us consider the single tone estimation problem:

x = sθ+n, sθ = aψ(θ), ψ(θ) =
[
1, ej2πθ, ..., ej2π(M−1)θ

]T

where θ ∈ ]−0.5, 0.5[, a2 is the SNR (a > 0) and n is a com-
plex circular zero mean white Gaussian noise (Cx = Id). Then
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Fig. 2. Effect of the non-linear transformation (10) on MSE lower
bounds tightness

θ̂ML = max
θ

{
Re

[
ψ(θ)Hx

]}
. Figure (1) shows the behaviour

of various BB approximations as a function of SNR in the case of
M = 10 samples: CRB, HCRB, MSB, AB, CGQLB described in
[6] and TTB described in [5]. The MSE of the MLE is also shown in
order to compare the threshold behaviour of the bounds. Figure (2)
shows the benefits for tightness of the introduction of the non-linear
transformation (10), illustrated in the case of the MSB (M = 10).

3. CONDITIONAL LOWER BOUNDS

In many practical problems of interest, the observations vector x
can be modelled as a mixture of a signal of interest sθ and a noise n
(x = sθ + n) where the signal of interest sθ is not always present.
Such problems require first a binary detection step (decision rule) to
decide if the signal of interest sθ is present (H1) or not (H0) in the
noise before running any estimation scheme [2]:

H0 : x = n
H1 : x = sθ + n

The derivation of optimal decision rules require knowledge of the
p.d.f. of observations under each hypothesis and the a priori prob-
ability of each hypothesis (P (H0) , P (H1)), if known (Bayes
criterion). If no a priori probability of hypotheses is available, then
the Neyman-Pearson criterion is often used:

max {PD = P (D | H1)} under PFA = P (D | H0) = α,

where D denotes the event of detection of sθ . Both criteria lead to
the likelihood ratio test (LRT):

P (x|H1)
P (x|H0)

H1
≷
H0

T

which is generally not realizable since it almost always depend at
least on one of the unknown parameters θ. Therefore, a common
approach to designing realizable tests is to replace the unknown
parameters by estimates, the detection problem becoming a com-
posite hypothesis testing problem (CHTP). Although not necessar-
ily optimal for detection performance, the estimates are generally
chosen in the maximum likelihood sense, thereby obtaining the
generalized likelihood ratio test (GLRT). Additionally, as a detec-
tion step restricts the set of observations available for parameter
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estimation, any MSE lower bound must take this statistical con-
ditioning into account, which is straightforward for realizable test
by resorting to the norm minimization approach. Indeed, if D
is a realizable conditioning event (detection test) with probabil-
ity PD (θ) =

∫
D

p (x; θ) dx, the conditional lower bounds are
obtained by substituting D and p (x | D; θ) = p(x;θ)

PD(θ)
for Ω and

p (x; θ) in the MSE norm definition:

MSEθ0|D
[
ĝ

(
θ0

)]
=

∥∥∥ĝ
(
θ0

)
(x)− g

(
θ0

)∥∥∥
2

θ0|D
〈g (x) | h (x)〉θ0|D = Eθ0 [g (x) h∗ (x) | D]

=

∫

D

g (x) h∗ (x) p
(
x | D; θ0

)
dx.

As a result, the Conditional Fisher Information Matrix (CFIM) is [2]:

F (θ | D)i,j = Eθ

[
∂ ln p(x;θ)

∂θi

∂ ln p(x;θ)
∂θj

| D
]
− ∂ ln PD(θ)

∂θi

∂ ln PD(θ)
∂θj

F (θ | D)i,j = −Eθ

[
∂2 ln p(x;θ)

∂θi∂θj
| D

]
+ ∂2 ln PD(θ)

∂θi∂θj

The possible influence of the detection step on parameter estimation
performance can be illustrated by the study of the influence of the
energy detector:

xHx
H1
≷
H0

T

on the single tone estimation problem (§2.4)[3] and on the estima-
tion of the direction of arrival (DOA) of a signal source by means of
a 2 sensors array called monopulse antenna [2]. This high-precision
technique is widely used in tracking systems where:

x = βg + n, g = [1, r (θ)]T

θ is the deviation angle from array boresight, r (θ) is the monopulse
ratio. If β is of Rayleigh type, then the p.d.f. of r̂ (θ) = x2

x1
without

conditioning follows a Student distribution with mean value 0 and
a smoothly increasing variance [2] as the SNR decreases. It is the
alternative case where the transition region is smooth when the de-
tection threshold effect is negligible. Intuitively, the detection step
is expected to modify MSE behavior mainly in the transition region
where it plays a crucial role in selecting instances with relatively
high signal energy - sufficient to exceed the detection threshold - and
disregarding instances mainly consisting of noise that deteriorate the
MSE. The former analysis is confirmed theoretically by the lower
bounds behavior in both figures (3)(4). As a consequence, such a
detection step is expected to improve the lower bounds tightness
in the transition region and to significantly modify the conditions
required to attain the CRB and thus to obtain an efficient estimator
(figure (4)). A more unexpected and non intuitive result highlighted
by figure (1) is the increase of the MSE of the MLE in the tran-
sition region resulting from observations conditioning. Indeed,
if we consider the stochastic case, i.e. a ∼ CN 1 (0, snr), then

θ̂ML = max
θ

{∣∣ψ(θ)Hx
∣∣2

}
and one can check that the behavior of

its MSE is the opposite and true to the common intuition.
Last, the derivation and the computation of a non-trivial estimation
lower bound conditioned by a clairvoyant detectors (the condi-
tional CRB is always 0) [4], including optimal detectors (Bayes or
Neyman-Pearson criteria), remains an open problem.

4. REFERENCES

[1] W. R. Blischke, A. J. Truelove and P. B. Mundle, ”On non-
regular estimation . I.Variance bounds for estimators of location
parameters”, JASA, vol. 64, pp. 1056-1072, 1969.

[2] E. Chaumette, P. Larzabal, P. Forster, ”On the Influence of a
Detection Step on Lower Bounds for Deterministic Parameters
Estimation”, IEEE Trans. on SP, vol 53, pp 4080-4090, 2005

[3] E. Chaumette, J. Galy, F. Vincent, A. Renaux, P. Larzabal,
”MSE lower bounds conditioned by the energy detector”, EU-
SIPCO 2007

[4] E. Chaumette, J. Galy, F. Vincent, P. Larzabal, ”Computable
Lower Bounds for Deterministic Parameter Estimation”, CAM-
SAP 2007

[5] K. Todros and J. Tabrikian, ”A new lower bound on the mean-
square error of unbiased estimators”, ICASSP 2008

[6] E. Chaumette, J. Galy, A. Quinlan, P. Larzabal, ”A New
Barankin Bound Approximation for the Prediction of the
Threshold Region Performance of Maximum-Likelihood Esti-
mators”, IEEE Trans. on SP, vol. 56, pp. 5319-5333, 2008

[7] E. Chaumette, A. Renaux, P. Larzabal, ”Lower bounds on the
mean square error derived from mixture of linear and non-linear
transformations of the unbiasness definition”, ICASSP 2009


