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Enhancing Hyperspectral Image Unmixing
With Spatial Correlations

Olivier Eches, Nicolas Dobigeon, Member, IEEE, and Jean-Yves Tourneret, Senior Member, IEEE

Abstract—This paper describes a new algorithm for hyper-
spectral image unmixing. Most unmixing algorithms proposed
in the literature do not take into account the possible spatial
correlations between the pixels. In this paper, a Bayesian model is
introduced to exploit these correlations. The image to be unmixed
is assumed to be partitioned into regions (or classes) where the sta-
tistical properties of the abundance coefficients are homogeneous.
A Markov random field, is then proposed to model the spatial
dependencies between the pixels within any class. Conditionally
upon a given class, each pixel is modeled by using the classical
linear mixing model with additive white Gaussian noise. For this
model, the posterior distributions of the unknown parameters and
hyperparameters allow the parameters of interest to be inferred.
These parameters include the abundances for each pixel, the
means and variances of the abundances for each class, as well
as a classification map indicating the classes of all pixels in the
image. To overcome the complexity of the posterior distribution,
we consider a Markov chain Monte Carlo method that generates
samples asymptotically distributed according to the posterior. The
generated samples are then used for parameter and hyperpa-
rameter estimation. The accuracy of the proposed algorithms is
illustrated on synthetic and real data.

Index Terms—Bayesian inference, hyperspectral images,
Markov random fields (MRFs), Monte Carlo methods, spectral
unmixing.

I. INTRODUCTION

HYPERSPECTRAL image analysis involves many techni-
cal issues such as image classification, image segmenta-

tion, target detection, and the crucial step of spectral unmixing.
The problem of spectral unmixing has been investigated for
several decades in both the signal processing and geoscience
communities, where many solutions have been proposed (see,
for instance, [1] and [2] and references therein). Hyperspec-
tral unmixing consists of decomposing the measured pixel
reflectances into mixtures of pure spectra whose fractions are
referred to as abundances. Assuming the image pixels are linear
combinations of pure materials is very common in the unmixing
framework. More precisely, the linear mixing model (LMM)
considers the spectrum of a mixed pixel as a linear combina-
tion of endmembers [1]. The LMM requires to have known
endmember signatures. These signatures can be obtained from
a spectral library or by using an endmember extraction algo-
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rithm (EEA). Standard EEAs are reviewed in [3]. Once the
endmembers that appear in a given image have been identified,
the corresponding abundances have to be estimated in the so-
called inversion step. Due to physical considerations, the abun-
dances have to satisfy positivity and sum-to-one constraints. A
lot of inversion algorithms respecting these constraints have
been proposed in the literature. The fully constrained least
squares (FCLS) [4] and scaled gradient [5] algorithms are two
optimization techniques that ensure the positivity and sum-
to-one constraints inherent to the unmixing problem. Another
interesting approach introduced in [6] consists of assigning
appropriate prior distributions to the abundances and to solve
the unmixing problem within a Bayesian framework. However,
all these inversion strategies have been developed in a pixel-by-
pixel context and do not exploit the possible spatial correlations
between the different pixels of the hyperspectral image. In
this paper, we show that taking these spatial correlations into
account allows the unmixing procedure to be improved.

Within a Bayesian estimation framework, a very popular
strategy for modeling spatial information in an image is based
on Markov random fields (MRFs). MRFs have been widely
used in the image processing literature to properly describe
neighborhood dependence between image pixels. MRFs and
their pseudolikelihood approximations have been introduced
by Besag in [7]. They have then been popularized by Geman
in [8] by exploiting the Gibbs distribution inherent to MRFs.
The hyperspectral community has also recently exploited the
advantages of MRFs for hyperspectral image analysis [9]–[11].
However, to our knowledge, MRFs have not been studied
for hyperspectral image unmixing. There are mainly two ap-
proaches that can be investigated to model spatial correlations
between the abundances of a hyperspectral image with MRFs.
The first idea is to define appropriate prior distributions for
the abundances highlighting spatial correlations. This approach
has been adopted by Kent and Mardia in [12] where several
techniques have been introduced for mixed-pixel classification
of remote sensing data. These techniques rely on a fuzzy
membership process, which implicitly casts the achieved clas-
sification task as a standard unmixing problem.1 Modeling the
abundance dependencies with MRFs makes this approach well
adapted to unmix images with smooth abundance transition
throughout the scene.

Conversely, this paper proposes to exploit the pixel correla-
tions in an underlying membership model. This strategy allows
more flexibility and appears more suited for images composed
of distinct areas, as frequently encountered in remote sensing
applications. Moreover, this approach has the great advantage

1Note that, to our knowledge, Kent and Mardia’s paper is one of the earliest
work explicitly dealing with linear unmixing of remotely sensed images.



of easily generalizing the Bayesian algorithms previously in-
troduced in [6] and [13]. It consists of introducing labels
that are assigned to the image pixels. To take into account
the possible spatial correlations between the observed pixels,
a Potts–Markov field [14] is chosen as prior for the labels.
This prior enforces the neighboring pixels to belong to the
same class. Potts–Markov models have been extensively used
for the classification/segmentation of hyperspectral data in the
remote sensing and image processing literatures [10], [11],
[15], [16]. Other research works, such as [17] and [18], have
proposed alternative strategies for modeling spatial correlations
between pixels for the classification of hyperspectral images.
All these works have shown that taking into account the spatial
correlations is of real interest when analyzing hyperspectral
images.

The new unmixing strategy studied in this paper assumes that
the hyperspectral image to be analyzed is partitioned into ho-
mogeneous regions (or classes) in which the abundance vectors
have the same first and second order statistical moments (means
and covariances). This assumption implies an implicit image
classification, modeled by hidden labels whose spatial depen-
dencies follow a Potts–Markov field. Conditionally upon these
labels, the abundance vectors are assigned appropriate prior
distributions with unknown means and variances that depend
on the pixel class. These prior distributions ensure the positivity
and sum-to-one constraints of the abundance coefficients. They
are based on a reparametrization of the abundance vectors
and are much more flexible than the priors previously studied
in [6] and [13]. Of course, the accuracy of the abundance
estimation procedure depends on the hyperparameters associ-
ated with these priors. This paper proposes to estimate these
hyperparameters in a fully unsupervised manner by introducing
a second level of hierarchy in the Bayesian inference. Non-
informative prior distributions are assigned to the hyperparam-
eters. The unknown parameters (labels and abundance vectors)
and hyperparameters (prior abundance mean and variance for
each class) are then inferred from their joint posterior distri-
bution. Since this posterior is too complex to derive closed-
form expressions for the classical Bayesian estimators, Markov
chain Monte Carlo (MCMC) techniques are studied to alleviate
the numerical problems related to the LMM with spatial con-
straints. MCMC allow one to generate samples asymptotically
distributed according to the joint posterior of interest. These
samples are then used to approximate the Bayesian estimators,
such as the minimum mean square error (MMSE) or the max-
imum a posteriori (MAP) estimators. Note that the underlying
classification and abundance estimation problems are jointly
solved within this Bayesian framework.

The paper is organized as follows. The unmixing problem
is formulated in Section II. Section III introduces a hierar-
chical Bayesian model appropriate to this unmixing problem.
The MCMC algorithm required to approximate the Bayesian
LMM estimators is described in Section IV. Simulation results
conducted on simulated and real data are provided in Sections V
and VI. Finally, conclusions are reported in Section VII.

II. PROBLEM FORMULATION

The LMM assumes that the spectrum of a given pixel is a
linear combination of deterministic endmembers corrupted by

an additive noise [1] considered here as white Gaussian. The
observed L-spectrum of a given pixel p is defined as

yp = Map + np (1)

where L is the number of spectral bands, M = [m1, . . . ,mR]
is a known L×R matrix containing the L-spectra of the
endmembers, ap is the R× 1 abundance vector, R is the
number of endmembers that are present in the image, and np

is the noise vector. The vector np is classically assumed to
be an independent and identically distributed (i.i.d.) zero-mean
Gaussian sequence with unknown variance s2

np|s2 ∼ N (0L, s
2IL) (2)

where IL is the L× L identity matrix. Note that the noise
variance is the same for all pixels of the hyperspectral image
and does not vary from one pixel to another, which has been
a common assumption in the hyperspectral literature [19],
[20]. Considering an image of P pixels, standard matrix no-
tations can be adopted, leading to Y = [y1, . . .yP ] and A =
[a1, . . . ,aP ].

A. Introducing Spatial Dependencies Between Abundances

We propose in this paper to exploit spatial correlations be-
tween the pixels of the hyperspectral image to be analyzed.
More precisely, it is interesting to consider that the abundances
of a given pixel are similar to the abundances of its neighbors.
Formally, the hyperspectral image is assumed to be partitioned
into K regions or classes. Let Ik ⊂ {1, . . . , P} denote the sub-
set of pixel indexes belonging to the kth class. A label vector of
size P × 1 denoted as z = [z1, . . . , zP ]

T with zp ∈ {1, . . . ,K}
is introduced to identify the class to which each pixel p belongs
(p = 1, . . . , P ). In other terms, zp = k if and only if p ∈ Ik. In
each class, the abundance vectors to be estimated are assumed
to share the same first and second order statistical moments, i.e.,
∀k ∈ {1, . . . ,K}, ∀p ∈ Ik

E[ap] = μk, E
[
(ap − μk)(ap − μk)

T
]
= Λk. (3)

Therefore, the kth class of the hyperspectral image is fully char-
acterized by its abundance mean vector μk and its abundance
covariance matrix Λk.

B. Markov Random Fields

To describe spatial correlations between pixels, it is impor-
tant to properly define a neighborhood structure. The neighbor-
hood relation between two pixels i and j has to be symmetric:
if i is a neighbor of j, then j is a neighbor of i. This relation
is applied to the nearest neighbors of the considered pixel,
for example, the fourth, eighth, or 12th nearest pixels. Fig. 1
shows two examples of neighborhood structures. The four-pixel
structure or 1-order neighborhood will be considered in the
rest of this paper. The associated set of neighbors, or cliques,
has only vertical and horizontal possible configurations (see [7]
and [8]).

Once the neighborhood structure has been established, the
MRF can be defined. Let zp denote a random variable as-
sociated with the pth pixel of an image (having P pixels).



Fig. 1. 4-pixel (left) and 8-pixel (right) neighborhood structures. The consid-
ered pixel appear as a black circle whereas its neighbors are in white.

Fig. 2. Synthetic images generated from a Potts–Markov model with (from
left to right) β = 0.8, 1.4, and 2.

In the context of hyperspectral image unmixing, the variables
z1, . . . , zP indicate the pixel classes and take their values in
a finite set {1, . . . ,K}, where K is the number of possible
classes. The whole set of random variables {z1, . . . , zP } forms
a random field. An MRF is then defined when the conditional
distribution of zi given the other pixels z−i only depend on its
neighbors zV(i), i.e.,

f(zi|z−i) = f
(
zi|zV(i)

)
(4)

where V(i) is the neighborhood and z−i = {zj ; j �= i}. This
paper focuses on the Potts–Markov model since it is very
appropriate to hyperspectral image segmentation [11]. Given a
discrete random field z attached to an image with P pixels, the
Hammersley–Clifford theorem yields

f(z) =
1

G(β)
exp

⎡
⎣ P∑
p=1

∑
p′∈V(p)

βδ(zp − zp′)

⎤
⎦ (5)

where β is the granularity coefficient, G(β) is the normalizing
constant or partition function, and δ(·) is the Kronecker func-
tion (δ(x) = 1 if x = 0, and δ(x) = 0 if otherwise). Note that
drawing a label vector z = [z1, . . . , zP ] from the distribution
(5) can be easily achieved without knowing G(β) by using a
Gibbs sampler [21]. The hyperparameter β tunes the degree of
homogeneity of each region in the image. Some simulations
have been conducted to show the influence of this parameter
on image homogeneity. Synthetic images have been generated
from a Potts–Markov model with K = 3 (corresponding to
three gray levels in the image) and a 1-order neighborhood
structure. Fig. 2 indicates that a small value of β induces a
noisy image with a large number of regions, contrary to a large
value of β that leads to few and large homogeneous regions.
It is unnecessary to consider values of β ≥ 2 since, for the
1-order neighborhood structure adopted here, “when β ≥ 2, the
Potts–Markov model is almost surely concentrated on single-
color images” [22, p. 237]. Note, however, that for larger

neighborhood systems, a smaller value of β would be enough to
obtain uniform patches in Potts realizations. For example, β is
expected to be about twice as small for a 2-order neighborhood
[23]. In this paper, the granularity coefficient β is fixed a priori.

C. Abundance Reparametrization

As explained before, the fraction vectors ap should satisfy
positivity and sum-to-one constraints defined as

R∑
r=1

ar = 1, ar > 0, ∀r = 1, . . . , R. (6)

To ensure that these constraints are satisfied, we have con-
sidered a reparametrization for positive parameters summing
to one that was introduced in [12] for the spectral unmixing
of satellite images. Note that this reparametrization has also
shown interesting results for a pharmacokinetic problem [24]
and has been recently applied to hyperspectral unmixing [25].
This reparametrization consists of rewriting the abundances as
a function of random variables that will be referred to as logistic
coefficients in the rest of this paper. A logistic coefficient vector
tp = [t1,p . . . , tR,p]

T is assigned to each abundance vector ap,
according to the relationship

ar,p =
exp(tr,p)∑R
r=1 exp(tr,p)

. (7)

Initially, the spatial dependencies resulting from the image
partitioning described in Section II-A are based on the first
and second order moments of the abundance vectors ap.
However, the spatial constraints defined in (3) can be easily
adapted when using logistic coefficient vectors. Indeed, in each
class, the unknown logistic coefficient vectors are assumed
to share the same first and second order moments, i.e., ∀k ∈
{1, . . . ,K}, ∀p ∈ Ik

ψk =E[tp|zp = k]

Σk =E
[
(tp −ψk)(tp −ψk)

T
]
. (8)

With this reparametrization, the kth class is fully characterized
by the unknown hyperparameters ψk and Σk.

III. HIERARCHICAL BAYESIAN MODEL

This section investigates the likelihood and the priors inher-
ent to the LMM for the spectral unmixing of hyperspectral
images, based on Potts–Markov random fields and logistic
coefficients. The unknown parameter vector associated with
the proposed Bayesian model is denoted as Υ = {T , z, s2},
where s2 is the noise variance, z is the label vector, and
T = [t1, . . . , tP ] with tp = [t1,p, . . . , tR,p]

T(p = 1, . . . , P ) is
the logistic coefficient matrix. Note that the noise variance s2

is unknown in this paper, contrary to the model considered
in [12].



A. Likelihood

The additive white Gaussian noise sequence of the LMM
allows one to write2 yp|tp, s2 ∼ N (Map(tp), s

2IL)(p =
1, . . . , P ). Therefore, the likelihood function of yp is

f(yp|tp, s2) ∝
1

sL
exp

[
−
∥∥yp −Map(tp)

∥∥2
2s2

]
(9)

where ∝ means proportional to and ‖x‖ =
√
xTx is the stan-

dard �2 norm. By assuming independence between the noise
sequences np(p = 1, . . . , P ), the likelihood of the P image
pixels is

f(Y |T , s2) =

P∏
p=1

f(yp|tp, s2). (10)

B. Parameter Priors

This section defines the prior distributions of the unknown
parameters and their associated hyperparameters that will be
used for the LMM.

1) Label Prior: The prior distribution for the label vector
z = [z1, . . . , zP ]

T introduced in Section II-B is a Potts–Markov
random field with a 1-order neighborhood and a known gran-
ularity coefficient β. The resulting prior distribution can be
written as in (5), where V(p) is the 1-order neighborhood shown
in Fig. 1 (left).

2) Logistic Coefficient Prior: Following the approach de-
scribed in Section II-A, each component of tp is assumed to
be distributed according to a Gaussian distribution. In addition,
as highlighted in Section II-C [see (8)], the mean and variance
of the logistic coefficients depend on the class to which the
corresponding pixel belongs. Therefore, the prior distribution
for tp is defined conditionally upon the pixel label

tr,p|zp = k, ψr,k, σ
2
r,k ∼ N

(
ψr,k, σ

2
r,k

)
(11)

where the hyperparameters ψr,k and σ2
r,k depend on their pixel

class k. As suggested in Section I, a hierarchical Bayesian
algorithm will be used to estimate these hyperparameters. For
a given pixel p, by assuming prior independence between the
coefficients t1,p, . . . , tR,p, the prior distribution for the vector
t = [t1,p, . . . , tR,p]

T is

f(tp|zp = k,ψk,Σk) ∼ N (ψk,Σk) (12)

where ψk = [ψ1,k, . . . , ψR,k]
T and Σk = diag(σ2

r,k) is the
R×R diagonal matrix whose diagonal elements are σ2

r,k.
By assuming prior independence between the P vectors

t1, . . . , tP , the full posterior distribution for the logistic coef-
ficient matrix T is

f(T |z,Ψ,Σ) =
K∏

k=1

∏
p∈Ik

f(tp|zp = k,ψk,Σk) (13)

with Ψ = [ψ1, . . . ,ψK ] and Σ = {Σ1, . . . ,ΣK}.

2Note that the dependence of the abundance vector ap on the logistic
coefficient vector tp through (7) has been explicitly mentioned by denoting
ap = ap(tp).

3) Noise Variance Prior: A conjugate inverse-gamma dis-
tribution is assigned to the noise variance

s2|ν, δ ∼ IG(ν, δ) (14)

where ν and δ are adjustable hyperparameters. This paper
assumes that ν = 1 (as in [6]) and estimates δ jointly with
the other unknown parameters and hyperparameters (using a
hierarchical Bayesian algorithm).

C. Hyperparameter Priors

Hierarchical Bayesian algorithms require one to define prior
distributions for the hyperparameters. Note that the hyper-
parameters ψr,k and σ2

r,k fully describe the different classes
partitioning the image. The prior distributions for ψr,k and
σ2
r,k are conjugate distributions. More precisely, a vague

inverse-gamma distribution is chosen for the logistic coefficient
variance σ2

r,k, i.e.,

σ2
r,k|ξ, γ ∼ IG(ξ, γ) (15)

where ξ = 1 and γ = 5 (in order to obtain a large variance).
Moreover, a centered Gaussian distribution with unknown vari-
ance has been chosen as prior for the logistic coefficient mean

ψr,k|v2 ∼ N (0, v2) (16)

where υ2 is another adjustable hyperparameter. By as-
suming independence between the different mean vec-
tors ψk, as well as between the covariance matrices
Σk for k = 1, . . . ,K, the priors for Ψ and Σ can be
expressed as

f(Ψ|v2) ∝
K∏

k=1

R∏
r=1

(
1

v2

) 1
2

exp

(
−
ψ2
r,k

2v2

)
(17)

f(Σ|ξ, γ) ∝
K∏

k=1

R∏
r=1

γξ

Γ(ξ)

(
σ2
r,k

)−(ξ+1)
exp

(
− γ

σ2
r,k

)
. (18)

Jeffreys’ priors are chosen for the hyperparameters δ and υ2

(see, e.g., [26, p. 131] for the details including computations)

f(δ) ∝ 1

δ
1R+(δ) f(v2) ∝ 1

v2
1R+(v2) (19)

where 1R+(·) denotes the indicator function defined on R
+.

These choices reflect the lack of knowledge regarding these
two hyperparameters. At this last hierarchy level within the
Bayesian inference, the hyperparameter vector can be defined
as Ω = {Ψ,Σ, υ2, δ}.

D. Joint Distribution

The joint posterior of the unknown parameter vector Θ =
(Υ,Ω) is classically defined using the hierarchical structure

f(Θ|Y ) = f(Y |Υ)f(Υ|Ω)f(Ω) (20)

i.e., f(Θ|Y ) is proportional to the product of the likelihood
by the priors and hyperpriors. The posterior distribution (20)



associated with the LMM is too complex to obtain closed-
form expressions for the MMSE or MAP estimators of the
unknown parameter vector Θ. To alleviate this problem, we
propose to use MCMC methods to generate samples that are
asymptotically distributed according to (20). The generated
samples are then used to approximate the Bayesian estimators.
The next section studies a hybrid Gibbs sampler that generates
samples asymptotically distributed according to the posterior
distribution (20).

IV. HYBRID GIBBS SAMPLER

This section studies a Metropolis-within-Gibbs sampler that
generates samples according to f(Θ|Y ). The proposed sam-
pler iteratively generates samples according to the conditional
distributions detailed below.

A. Conditional Distribution of the Label Vector z

For each pixel p (p = 1, . . . , P ), the class label zp is a
discrete random variable whose conditional distribution is fully
characterized by the probabilities

P
[
zp = k|Θ−zp

]
∝ f(tp|zp = k,ψk,Σk)f(zp|z−p)

where Θ−zp denotes Θ without zp, k = 1, . . . ,K (K is the
number of classes), and z−p denotes the vector z whose pth
element has been removed. These posterior probabilities can be
expressed as

P
[
zp = k|Θ−zp

]
∝ exp

⎡
⎣ ∑
p′∈V(p)

βδ(zk − zp′)

⎤
⎦

×|Σk|−1/2 exp

[
−1

2
(tp −ψk)

TΣ−1
k (tp −ψk)

]

(21)

where |Σk| =
∏R

r=1 σ
2
r,k. Note that the posterior probabilities

of the label vector z in (21) define an MRF. Consequently,
sampling from this conditional distribution can be achieved
using the scheme detailed in [21], i.e., by drawing a discrete
value in the finite set {1, . . . ,K} with the probabilities (21).

B. Conditional Distribution of Logistic Coefficient Matrix T

For each pixel p, the Bayes theorem yields

f
(
tp|zp = k,ψk,Σk,yp, s

2
)

∝ f(yp|tp, s2)f(tp|zp = k,ψk,Σk)

∝
(

1

s2

)L
2

exp

{
− 1

2s2
∥∥yp −Map(tp)

∥∥2}

× |Σk|−
1
2 exp

[
−1

2
(tp −ψk)

TΣ−1
k (tp −ψk)

]
. (22)

Unfortunately, it is too difficult to generate samples distributed
according to (22). Therefore, a Metropolis–Hastings step is

used, based on a random walk method [27, p. 245] with a
Gaussian proposal distributionN (0, u2

r). The variance u2
r of the

instrumental distribution has been fixed to obtain an acceptance
rate between 0.15 and 0.5 as recommended in [28].

C. Conditional Distributions of the Noise Variance

The Bayes theorem yields

f(s2|Y ,T , δ) ∝ f(s2|δ)
P∏

p=1

f(yp|tp, s2).

As a consequence, s2|Y ,T , δ is distributed according to the
following inverse-gamma distribution

s2|Y ,T , δ ∼ IG
(
LP

2
+ 1, δ +

P∑
p=1

∥∥yp −Map(tp)
∥∥2

2

)
.

D. Conditional Distribution of Ψ and Σ

For each endmember r (r = 1, . . . , R) and each class k (k =
1, . . . ,K), the conditional distribution of ψr,k can be written as

f
(
ψr,k|Θ−ψr,k

)
∝f(ψr,k|v2)

∏
p∈Ik

f
(
tr,p|zp = k, ψr,k, σ

2
r,k

)
.

Similarly, the conditional distribution of σ2
r,k is

f
(
σ2
r,k|Θ−σ2

r,k

)
∝ f

(
σ2
r,k

) ∏
p∈Ik

f
(
tr,p|zp = k, ψr,k, σ

2
r,k

)
.

Straightforward computations allow the following results to be
obtained

ψr,k|Θ−ψr,k
∼N

(
v2nktr,k

σ2
r,k + v2nk

,
v2σ2

r,k

σ2
r,k + v2nk

)

zr,k|Θ−σ2
r,k

∼IG

⎛
⎝nk

2
+ 1, γ +

∑
p∈Ik

(tr,p − ψr,k)
2

2

⎞
⎠

with nk = cardI(k) tr,k = (1/nk)
∑

p∈Ik tr,p.

E. Conditional Distribution of υ2 and δ

The conditional distributions of υ2 and δ are the following
inverse-gamma and gamma distributions, respectively

v2|Ψ ∼ IG
(
RK

2
,
1

2

K∑
k=1

ψT
kψk

)
δ|s2 ∼ G

(
1,

1

s2

)
.

V. SIMULATION RESULTS ON SYNTHETIC DATA

Many simulations have been conducted to illustrate the ac-
curacy of the proposed algorithm. The first experiment consid-
ers a 25 × 25 synthetic image with K = 3 different classes.
The image contains R = 3 mixed components (construction
concrete, green grass, and micaceous loam) whose spectra



Fig. 3. Left: actual labels. Right: estimated labels.

TABLE I
ESTIMATION OF ABUNDANCE MEANS AND VARIANCES (×10−3)

Fig. 4. Top: abundance maps of the 3 pure materials for LMM. Bottom:
abundance maps of the 3 pure materials estimated by the hybrid Gibbs sampler
(left to right: construction concrete, green grass, micaceous loam).

(L = 413 spectral bands) have been extracted from the spectral
libraries distributed with the ENVI package [29]. A label map
generated using (5) with β = 1.1 is shown in Fig. 3 (left). The
mean and variance of the abundances have been chosen for
each class, as reported in Table I. These values reflect the fact
that the first endmember is more present in Class 1 (with an
average concentration of 60%), the second endmember is more
present in Class 2 (with an average concentration of 50%),
and the third endmember is more present in Class 3 (with an
average concentration of 50%). In this simulation scenario,
the abundance variance has been fixed to a common value of
0.005 for all endmembers, pixels, and classes. The generated
abundance maps for the LMM are depicted in Fig. 4. Note that a
white (black) pixel in the fraction map indicates a large (small)
value of the abundance coefficient. The noise variance is chosen
such that the average signal-to-noise ratio (SNR) is equal to
SNR = 19 dB, i.e., s2 = 0.001.

The MMSE and MAP estimators for the unknown parame-
ters can be computed from samples generated with the Gibbs
samplers presented in Section IV. For instance, the marginal

TABLE II
GLOBAL mses OF EACH ABUNDANCE COMPONENT

MAP estimates of the label vector ẑMAP are shown in Fig. 3
(right) for the proposed hybrid Gibbs algorithm. The MMSE
estimates of the abundances conditioned upon ẑMAP are shown
in Fig. 4. A number of NMC = 5000 iterations (including
500 burn-in iterations) have been necessary to obtain these
results. The proposed algorithm generates samples distributed
according to the full posterior of interest. Then, these samples
can be used to compute the posterior distributions of the param-
eters of interest. For instance, the estimated abundance means
and variances have been reported in Table I (last row). The
estimated classes, abundance coefficients, and abundance mean
vectors are clearly in accordance with their actual values.

The LMM hybrid Gibbs algorithm is compared respectively
with its non-spatial constrained Bayesian counterpart devel-
oped in [6]. The synthetic image shown in Fig. 3 has been
analyzed by the initial algorithm in [6] with the same number
of iterations NMC in addition to the FCLS algorithm [4]. As
a criterion, the global MSE of the rth estimated abundances
has been computed for each algorithm. This global MSE is
defined as

MSE2
r =

1

P

P∑
p=1

(âr,p − ar,p)
2 (23)

where âr,p denotes the MMSE estimate of the abundance ar,p.
Table II reports the different results, showing that the algorithm
developed in this paper (referred to as “Spatial”) performs
better than the non-spatial constrained algorithms (referred to
as “Bayesian” and “FCLS”).

VI. SIMULATION RESULTS ON AVIRIS IMAGES

A. Performance of the Proposed Algorithm

This section illustrates the performance of the proposed
spatial algorithm on a real hyperspectral dataset, acquired over
Moffett Field (CA, USA) in 1997 by the JPL spectro-imager
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS).
Many previous works have used this image to illustrate and
compare algorithm performances with hyperspectral images
[30]. The first region of interest, shown in Fig. 5, is a
50 × 50 image. The dataset has been reduced from the original
224 bands to L = 189 bands by removing water absorption
bands. As in [6], a principal component analysis has been
conducted as a preprocessing step to determine the number of
endmembers present in the scene. Then, the endmember spectra
have been extracted with the help of N-FINDR algorithm
proposed by Winter in [31]. The R = 3 extracted endmembers,
shown in Fig. 6, corresponds to soil, vegetation and water.3 The

3Note that the influence of the endmember extraction step on the unmixing
results has been investigated in [21] by coupling the proposed algorithm with
other EEAs.



Fig. 5. Real hyperspectral data: Moffett field acquired by AVIRIS in 1997
(left) and the region of interest shown in true colors (right).

Fig. 6. R = 3 endmember spectra obtained by the N-FINDR algorithm.

Fig. 7. Label map estimated by the LMM-based proposed algorithm for R =
3 (left), R = 4 (middle) and R = 5 (right).

Fig. 8. Abundance maps estimated by the proposed algorithm (from left to
right: vegetation, water and soil).

algorithm proposed in Section IV has been applied on this
image with NMC = 5000 iterations (with 500 burn-in itera-
tions). The number of classes has been set to K = 4 since
prior knowledge on the scene allows 4 areas in the image to
be identified: water point, lake shore, vegetation and soil.

The estimated classification and abundance maps for the
proposed hybrid Gibbs algorithm are shown in Figs. 7 (left)
and 8. The results are very similar to those obtained with the
Bayesian (see [6, Fig. 9 (top)]) or the FCLS algorithms (see [6,
Fig. 9 (bottom)]).

The performance of the proposed algorithm has been also
evaluated for different values of the number of endmembers
R. The resulting classification maps for R = 4 and R = 5 are
given in Fig. 7 (middle and right). These maps show that the
classification results are quite robust with respect to the number
of endmembers. The corresponding abundance maps can be
found in [21], as well as the results of the proposed algorithm
when the number of classes varies.

The execution time of the proposed method (combined with
the N-FINDR procedure) has been compared with those of

Fig. 9. AVIRIS image of 190 × 250 pixels extracted from Cuprite scene
observed in composite natural colors.

TABLE III
COMPUTATIONAL TIMES OF LMM-BASED

UNMIXING ALGORITHMS

two other unmixing algorithms when applied on this Moffett
image: the FCLS algorithm (combined with N-FINDR) and
the constrained nonnegative matrix factorization (cNMF) algo-
rithm that jointly estimates the endmember matrix and the abun-
dances [32]. The results are reported in Table III.4 The proposed
method (referred to as “Spatial”) has the higher computational
cost, mainly due to the joint estimation of the labels and
the abundance vectors. However, it provides more information
about unmixing. In particular, the samples generated by the
proposed Gibbs sampler can be used to determine confidence
intervals for the estimated parameters.

B. Simulation on a Larger Image

The performance of the proposed Bayesian algorithm has
also been evaluated on a larger real hyperspectral image. The
selected scene has been extracted from the AVIRIS Cuprite
image, acquired over a mining site in Nevada in 1997. The
geologic characteristics of the complete data have been mapped
in [33]. The area of interest of size 190 × 250 is shown in
Fig. 9 and has been previously studied in [34] to test the
VCA algorithm with R = 14. Therefore, in this experiment,
the same number of endmembers has been extracted by the
VCA algorithm. The number of classes has been set to K = 14,
which seems to be sufficient to capture the natural diversity of
the scene. The proposed algorithm has been used to estimate
the unknown parameters related to the analyzed scene. As
an example, Fig. 10 shows the estimated classification map
(see [21] for more results). The proposed Bayesian inversion
algorithm has been able to identify some regions similar to
those recovered in [34]. For instance, the composition of two
areas (marked as colored rectangles in Fig. 10) is investigated.
Table IV reports the abundance means for the most significant

4These simulations have been carried out with an unoptimized MATLAB
2007b 32-b implementation on a Core(TM)2Duo 2.66-GHz computer.



Fig. 10. Classification map for the 190 × 250 Cuprite area (K = 14).

TABLE IV
ABUNDANCE MEANS FOR THE MOST SIGNIFICANT ENDMEMBERS IN

EACH HIGHLIGHTED REGION

Fig. 11. Comparison of the 6th endmember spectrum extracted by the VCA
algorithm (solid line) with the Montmorillonite signature extracted from the
USGS spectral library (dashed line).

endmembers that appear in the two highlighted regions. From
these tables, one can conclude that the two classes represented
in black and dark gray of the “blue” area are composed of very
mixed pixels (the abundance of the most significant endmember
is 0.201). On the other hand, both classes in the “green” area
are clearly dominated by the sixth endmember. By comparing
its corresponding signature with the materials included in the
USGS library spectra, this sixth endmember matches the Mont-
morillonite spectrum (see Fig. 11). This result is in agreement
with the ground truth. Montmorillonnite is the most commonly
found material in this area [33].

VII. CONCLUSION

A new hierarchical Bayesian algorithm was proposed for hy-
perspectral image unmixing. MRFs were introduced to model
spatial correlations between the pixels of the image. A hidden
discrete label was introduced for each pixel of the image to
identify several classes defined by homogeneous abundances
(with constant first and second order statistical moments).
The positivity and sum-to-one constraints on the abundances
were handled by using an appropriate reparametrization defined

by logistic coefficient vectors. We derived the joint posterior
distribution of the unknown parameters and hyperparameters
associated to the proposed Bayesian LMM. An MCMC method
was then studied to generate samples asymptotically distributed
according to this posterior. The generated samples were used
to estimate the abundance maps as well as the underlying
image labels. The results obtained on simulated data and on
real AVIRIS images are very promising. Future works in-
clude the estimation of the granularity coefficient involved in
Potts–Markov random fields.
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