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ABSTRACT

Micro-tomography produces high resolution images of bio-
logical structures such as vascular networks. In this paper,
we present a new approach for segmenting vascular network
into pathological and normal regions from considering their
micro-vessel 3D structure only. We define and use a condi-
tional random field for segmenting the output of a watershed
algorithm. The tumoral and normal classes are thus character-
ized by their respective distribution of watershed region size
interpreted as local vascular territories.

Index Terms— Segmentation, conditional random field,
micro-tomography, brain tumor

1. INTRODUCTION

High resolution micro-tomography provides an efficient
imaging technique for the systematic 3D analysis of supra-
cellular structures such as micro-vascular networks [1, 2].
Since the diameters of most capillary vessels are distributed
between5 and 9 microns, micrometric spatial resolution is
necessary for such a method to capture the entire vascular
network.

Specific3-D images of vessel networks can be obtained
from the injection of an X-ray contrast agent in various tis-
sues [1]. It brings to the fore specific features of normal or
pathological vessels, as for example in the brain [3]. To be
more precise, tumorous vessels are large, irregular and tortu-
ous, compared to normal ones in most tumors and organs. As
opposed to classical microscopic studies, the scale of analy-
sis in CT-volumes is different from single cell, thus providing
important organizational level of information. At the millime-
ter scale, the number of vessels is very important, so that it is
not reasonable to perform manually any vessel segmentation.
It is thus necessary to develop automatic segmentation meth-
ods for a systematic, quantitative, reliable and differentiated
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investigation of normal and pathological networks. Such seg-
mentation allows ultimately a detailed comparison between
normal and pathological vessels with respect to their shape
and spatial distribution as well as the determination of the
angiogenic regions of a given tumor. A reliable automated
segmentation would be of high interest because there is in-
deed a growing evidence in the recent literature [4] that the
maturation and maybe the normalization of tumoral vascu-
lar networks may be related to the observed resistance of the
brain tumors to various treatments [5].

In this paper, we propose a segmentation method adapted
to normal/tumorous vessel networks. We consider binary vol-
umes composed of a background and a 3D network repre-
senting the vessels. The binarization is performed using an
hysteresis thresholding (see [3]) and is robust since the to-
mographic data are very contrasted. Our objective is to find
a criterion to segment this network in two classes. From a
careful inspection of the obtained image of vessels, it is clear
that in the tumoral region the vessels are larger, very irregular,
with complex shape quite different from the smooth elongated
cylinders observed in normal regions. This observation sug-
gests that vessel shape could be used to distinguish normal
and pathological regions. Nevertheless, the automatic skele-
tonization of the vessels is very time consuming. Further-
more the quality of this skeletonization largely depends on the
vessel smoothness (the thinning step of most skeletonization
procedures is not robust when irregular shapes are present).
Hence, it is neither easy nor computationally efficient to use
vessel shape as a segmentation criteria. Fortunately another
important property of tumorous vessels can be observed : the
vessels in the tumor are further apart from each other [3]. The
local vessel territories can thus be used for segmenting the
vessel network.

We therefore quantify this sparsity for segmenting the net-
work as being the main differentiating structural property. We
first partition the volume into regions associated to local vas-
cular territories using a watershed algorithm. Then we seg-
ment the full partitioned volume based on the size of each



partitioned 3D region, which exhibits different distribution in
normal and pathological tissues. Thedifferent steps of the
methods are detailed in section 2.

To segment the partitioned volume, we consider the graph
where each vertex represents a region and edges are defined
between adjacent regions. We show that the watershed region
distribution follows a power-law tailed Pareto law leading to
noisy segmentation when considering a maximum likelihood
estimator. We therefore regularize the solution by introducing
a conditional random field, detailed in section 3. Finally, the
segmentation results are described in section 4.

2. METHOD

We start with binarized volumes (micro-vascular networks
images are highly contrasted and easy to binarize). A dataset
consists of several sub-volumes, which may have different
sizes. For segmenting the entire volume, we consider the fol-
lowing steps:

Closing-On each sub-volume, a closing with a ball as a struc-
turing element is applied. The radius of the ball is4 voxels.
This pre-processing step aims to repair vessels which may
have been split into different connected components during
the binarization process. The closing step cleans the data for
the next step.

Down-sampling- We then merge the different sub-volumes.
However, in order to restrain the need for memory allocation,
we have to down-sample the different sub-volumes. We as-
sociate a single voxel to each3 × 3 × 3 cube of the initial
data, before merging the sub-volumes. To avoid disconnect-
ing vessels, we assign value1 (vessel) to each voxel in the
down-sampled volume for which at least one of the voxels
on the corresponding cube at the initial resolution belongs to
vessels.

Registration and merging- The merging step is performed
by registering the sub-volumes. We only have to estimate
a translation vector between two overlapping sub-volumes.
This vector is computed by maximizing the number of com-
mon voxels marked as vessels. An example of a full volume
is shown on figure 1

Distance map-A distance map is computed from calculating
the Euclidean distance in 3D from each nearest vessel.

Watershed-We compute the watershed of the inverse of the
distance map, shown on figure 2. The result is displayed on
figure 3. Since it is expected that the tumor is surrounded by
vessels, the vessels are localized on the boundaries of water-
shed regions.

Labeling- We label the watershed regions into tumor and non
tumor areas. We develop an original model based on a Condi-
tional Random Field on a graph which is detailed in section 3.
The segmentation obtained is shown in figure 4.

Fig. 1. volume rendering of the full volume of data after the
merging step

Fig. 2. Distance map to any vessel

3. A CONDITIONAL RANDOM FIELD ON THE
WATERSHED GRAPH

In this section, we detail the graph labeling algorithm based
on a Conditional Random Field (CRF) that we propose for
segmenting the tumor.

We consider a graphG, derived from the partitioned vol-
ume issued from the watershed algorithm. Each region of the
watershed result is considered as a vertexi if it is not con-
nected to the volume boundary. The set of vertices is denoted
by I. The edges are defined by the following neighborhood
relation: i ∼ j if and only if i andj correspond to two con-
nected regions.

We label the graphG by gi = 1 for tumor regions and
gi = 0 for non-pathological regions. The resulting informa-
tion is the region sizesi and some prior knowledge on the
connectivity of the tumor. To embed these two informations
into a single model we consider a binary Conditional Ran-
dom Field on the graphG. Conditional random fields can be
seen as an extension of the standard Markov Random Field
approach based on the Bayes formalism [6, 7]. The posterior
is directly modeled instead of defining it through the product
of a prior and a likelihood. In our context, this allows normal-
izing the weight of the data term and the interaction potentials
independently of the local topology of the graph.



Fig. 3. Watershed on the distance map opposite

Fig. 4. Segmentation: tumor (white) and normal tissue (grey)

3.1. Likelihood definition

To definethe likelihood we consider two sub-volumes,Vt and
Vs, corresponding to tumor and normal tissues respectively.
The empirical volume distribution of both classes exhibits a
heavy tail behavior. Consistently, the log-log histograms dis-
play a linear behavior leading to Pareto parameters estima-
tion. We successfully tested the Pareto distribution hypothesis
using the Kolmogorov-Smirnov test, (p= 0.06 for the empir-
ical tumor volume distribution andp = 4.10−8 for normal
tissue).

Therefore, we consider the following likelihood :
{

p(si|gi = 1) = βts
−αt

i if si < min t

p(si|gi = 1) = 0 otherwise
(1)

and
{

p(si|gi = 0) = βss
−αs

i if si < min s

p(si|gi = 0) = 0 otherwise
(2)

where αt, βt (resp. αs, βs) are the parameters of the
likelihood of tumor (resp. normal tissue). The minima are
obtained through normalization of the distributions to1, i.e.

min = ((α − 1)/β))
1

−α+1 . To estimate these parameters,we
first discretize the volume space on the logarithm scale and
then apply a linear regression in the log-log domain. On the
considered volumes, the regression givesαs = 2.909 and
log(βs) = 16.05 for the normal tissue andαt = 1.791 and
log(βt) = 5.174 for tumor. Let us consider the maximum

classification shown in figure 5. The two classes are obvi-
ously mixed due to the overlapping between the tumor and
normal class distributions. Moreover, the heavy tail of the
normal class distribution is under the tumor class distribu-
tion, so that the tumor class tends to be overestimated by the
maximum likelihood estimator. Therefore, a local filter is not
sufficient to de-noise the maximum likelihood segmentation
but a global model is necessary to regularize the result.

Fig. 5. Maximum likelihood using Pareto distributions

3.2. Posterior distribution

To regularize the solution, we consider a generalization of the
Ising model [8]. Here we have to take into account two dis-
tinct properties. First, the number of neighbors of a given ver-
tex is not constant. Besides, the size of neighbor region is also
spatially variable. Therefore, we extend the Ising model by
considering an attractivity property proportional to the contact
surface between two regions as proposed in [9]. Therefore,
small regions have a low impact on their neighbors. However,
using this principle, the weight of the regularization term with
respect to the data term depends on the size of the region.
This may prevent regularization for small regions. Besides,
the likelihood defined by Pareto distribution is equal to zero
for small regions. To overcome this problem we consider a
Conditional Random Field by directly addressing the poste-
rior as follows

P (G = g|s) =
1

Z
exp



−β
∑

{i,j}:i∼j

Surf(i, j)δgi 6=gj

−
∑

i

∑

j:j∼i

Surf(i, j)f(log(p(si|gi)))



 , (3)

whereSurf(i, j) is the contact surface between regionsi and
j and:

f(log(p(si|gi))) =

{

log(p(si|gi)) if p(si|gi) 6= 0
M otherwise

(4)
We maximize the posterior with a Metropolis dynamic em-
bedded into a simulated annealing scheme [8].



4. RESULTS

We consider real intra-cortical images obtainedusing syn-
chrotron tomography imaging at the European Synchrotron
Radiation Facility (ESRF) [1, 10]. They consist of rat brain
implanted with 9L gliosarcoma cells. The resolution is about
one micron and a dataset represents about8mm3. The re-
constructed image is first binarized using hysteresis thresh-
olding and mathematical morphological open/closure proce-
dures. The segmentation result obtained forβ = 5, is shown
on figure 6. The tumor segmentation in green corresponds to
the experts expectation. It can provide statistical information
about the vascular network characteristics. First, we can more
precisely evaluate the Pareto distribution parameters. We ob-
tain αs = 3.089 and log(βs) = 18.79 for the normal tissue
andαt = 1.524 and log(βt) = 3.420 for tumor. This new
estimation is stable when performing a new segmentation us-
ing these parameters. We also show the difference between
the two vascular networks by computing the vessel diameter
histograms (see figure 7,H0 hypothesis rejected with p-value
2.2e−16 using KS test) and the average vessel density (4.7%
of vessel voxels for normal tissue versus7.4% for tumor).
Similar results have been obtained on six volumes represent-
ing a tumor at different stages. We are currently conducting a
statistical study.

Fig. 6. Result: normal tissue (red) and tumor (green) (β= 5)

Fig. 7. Vessel diameter distribution, in micron, for normal
tissue (left) and tumor (right)

5. CONCLUSION

In this paper, we have proposed a new approach for the seg-
mentation of vascular networks, consisting of a CRF segmen-
tation based on the watershed graph of the vessel tree. We

have shown that this methods permits to segment tumourous
and normal brain vascular networks. We found that both re-
gions exhibit different statistical properties (vascular density
and vessel diameter). In future work, we can extend this seg-
mentation to a larger number of classes, as for example being
able to evaluate tumor necrotic regions or hyper-vascular hot
spots at the tumor border.
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