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Q2 A new approach to gain scheduling of linear controllers is proposed and applied to a longitudinal flight control

problem. Traditionally, gain scheduling is done a posteriori by the interpolation of controller gains designed for

several operating points or conditions. Themethod proposed here is based on guardianmaps and does not require as

many linear controller syntheses as there are design points. Rather, it extends the performance of an initial single

controller carried out on an arbitrary operating point to the entire domain while ensuring generalized stability all

along the process. The method, which uses a given fixed architecture controller, is successfully applied on the

longitudinal flight control of a business jet aircraft.

Nomenclature

M = Mach number
nz = normal load factor, g
q = pitch rate, deg =s
w = normal velocity perturbation, m=s
�c = commanded elevator angle deflection, rad
�e = elevator angle deflection, rad
� = downwash angle, rad

I. Introduction

AMONGQ3 nonlinear control methods, gain scheduling is one of
the most popular [1,2], and efforts have been made recently to

put forth a unified framework for it [3]. There are mainly two
approaches to designing gain-scheduled controllers. The first
approach consists of designing a set of linear controllers corre-
sponding to a given set of linearized models around equilibrium
points [4–6]. These controllers are then interpolated versus
scheduling variables, which may be exogenous and/or endogenous.
Interpolation can, however, become a challenging issue when
dynamic compensators are considered [7,8], and implementation
problems can occur [5,9,10]. The second approach is based on linear
parameter-varying (LPV) techniques [11,12] and ensures a priori
global stability of the closed-loop system. LPV problems are
formulated as linear matrix inequalities optimization problems , and
controllers are directly obtained in an LPV form; consequently, no
a posteriori interpolation is needed. Unfortunately, this approach can

be rather conservative, especially when the operating domain
becomes large, and itmay lead to nonfeasible optimization problems.

The method proposed here lies somewhere in between these two
categories and seeks to avoid their respective disadvantages while
preserving their benefits. Unlike classic gain scheduling, for which
the design has to be carried out over many equilibrium points, it only
needs one initial controller. The procedure then automatically
constructs controllers that satisfy the stability and performance
requirements for other trim points until the entire operating domain is
covered. Unlike LPV methods, it has the advantage that a fixed
architecture controller can be considered. The final product is a set of
automatically generated controllers for which the combined robust
performance regions cover the entire evolution domain. Thereafter,
these controllers can be easily interpolatedwith respect to scheduling
variables, as they all have the same structure, or they can be imple-
mented directly as lookup tables. The performance constraints
considered here are of the generalized stability type; that is, they are
set in terms of eigenvalue or pole confinement within specific subsets
of the complex plane. These are handled by guardian maps [16],
which provide indications on both the allowable gain regions (i.e.,
the gain regions within which the system’s generalized stability is
fulfilled) and on the controller robustness versus uncertain
parameters.

A preliminary application was performed on a missile benchmark
problem [17] and gave promising results compared with former
papers [18–29]. But unlike themethod in [17], the one presented here
ensures stability and performance all along the process. A new
application to the longitudinal flight control of an aircraft
(Challenger 604) is also presented. Traditionally, flight controllers
use simple controller structures derived from the wide experience
acquired by flight control engineers; they have, indeed, well-studied
and understood architectures [30] and work well in many practical
applications. The present paper builds on thework initiated by Saydy
et al. [31] and Saussié et al [32,33]. It proposes to conserve the
original architecture provided by the manufacturer and to
automatically schedule the gains with scheduling variables, such as
Mach number M and altitude h, in order to satisfy given handling
qualities; this remains one of the most important objectives in flight
control design [34], and several criteria [35] may be used to this
effect. A flight controller must ideally satisfy these handling qualities
[36,37] over the entire flight domain. The longitudinal handling
qualities mainly concern the short-period dynamics of the aircraft,
and satisfying some of them can be cast in terms of eigenvalue
confinement and zero location (mainly for Gibson’s dropback [37]).
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A first controller satisfying the handling qualities at stake is provided
for a given flight condition, and the goal is to extend its performance
to the rest of theflight envelope by scheduling its gainswith respect to
flight condition parameters (Mach and altitude).

The paper is organized as follows. A brief overview of guardian
maps is proposed in Sec. I. Next, two algorithms are proposed to
extend the performance of an initial controller to thewhole operating
domain, and thus yield a scheduled controller. In Sec. III, the aircraft
model of aBombardier, Inc.,Challenger 604 is introduced, aswell as
the handling qualities of interest. Finally, Sec. IV is devoted to the
application of the technique to the design of a scheduled flight
controller for the longitudinal motion of the plane.

II. Guardian Maps: Brief Review

The guardianmap approachwas introduced by Saydy et al. [16] as
a unifying tool for the study of generalized stability of parameterized
families of matrices or polynomials. Here, generalized stability
means confinement of matrix eigenvalues or polynomial zeros to
general open subsets of the complex plane and includes the open left
half-plane and the unit circle as special cases. Some of the basic
concepts are introduced.

A. Guardian Maps

Basically, guardianmaps are scalar-valuedmaps defined on the set
of n � n real matrices (or nth-order polynomials) that take nonzero
values on the set of�-stable matrices (or polynomials) and vanish on
its boundary. The following description will focus on families of
matrices, with the understanding that it applies to polynomials as
well. The stability sets of interest are of the form

S��� � fA 2 Rn�n: ��A� � �g (1)

where� is an open subset of the complex plane of interest, and ��A�
denotes the set consisting of the eigenvalues ofA. Such setsS���will
be referred to as generalized stability sets; thus, they represent the set
of all matrices that are stable relative to �, i.e., which have all their
eigenvalues in �.

Definition II.1: Let � map Rn�n into C. By definition, � guards
S��� if for all A 2 �S���, the following equivalence holds:

��A� � 0, A 2 �S��� (2)

Here, �S denotes closure of the set S. The map is said to be polynomic
if it is a polynomial function of the entries of its argument.

Example II.1: Some guardian maps are given for classical regions
(Fig. 1):Q4

1) For the Hurwitz stability, for ��C
�

�, a guardian map is

�H�A� � det�A� I� det�A� (3)

where � denotes the bialternate product [38] (see Appendix A).
2) For the stability margin, the open �-shifted half-plane region

has a corresponding guardian map

�m�A� � det�A� I � �I � I� det�A � �I� (4)

3) The conic sector with inner angle 2� has a corresponding
guardian map given by

�d�A� � det	A2 � I 
 �1 � 2�2�A� A� det�A� (5)

where �≜ cos � denotes the limiting damping ratio.
4) For the Schur stability, for the circle of radius ! > 0, a

corresponding guardian map is

�p�A� � det�A� A � !2I � I� det�A2 � !2I� (6)

A systematic way of constructing guardian maps for various �
regions can be found in Saydy et al. [16].

B. Stabilizing Gain Characterization

Let fA�r�: r 2 U � Rkg be a continuous family of n � nmatrices
that depends on the (usually) uncertain parameter vector r :�
�r1; . . . ; rk�, where each entry lies in a given range for which only the
bounds are known: say, r 2 U � Rk.

Theorem II.1: Let S��� be guarded by the map ��. The family
fA�r�: r 2 Ug is stable relative to� if, and only if: a) it is nominally
stable [i.e., A�r0� 2 S��� for some r0 2 U), and b) 8 r 2 U,
��	A�r0����	A�r��> 0 (i.e., ��	A�r�� does not vanish in U).

Corollary II.1: Let S��� be guarded by themap � and consider the
family fA�r�: r 2 Ug. Then, C defined by

C� fr 2 Rk: ��	A�r�� � 0g (7)

and divides the parameter spaceRk into componentsCi that are either
stable or unstable relative to�. To see which situation prevails for a
given componentCi, one only has to testA�r� for any one point inCi.

Example II.2: Suppose that the closed-loop poles of a given system
are specified by the polynomial:

p�s� � s3 
 k1s2 
 k2s
 1 (8)

where k1 and k2 denote some controller gains. If the damping region
� > 0:7 is the one considered (Fig. 2), then one obtains [e.g., by
applying Eq. (5) to the companion matrix Q5corresponding to p]

���p� � 2k32 � k21k22 � 4k1k2 
 2k31 
 1 (9)
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Fig. 1 Regions for Example II.1.
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Fig. 2 Stability region �.
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Setting this quantity to zero yields the three components in the
parameter space �k1; k2� of Fig. 3. It can be verified that the set of all
gains �k1; k2� that place all the closed-loop poleswithin the preceding
damping zone is the component C3. Any other choice of the gains
outside of C3 yields closed-loop poles outside the damping conic
region. One arrives to this conclusion simply by testing� stability of
p�s� for any three pairs �k1; k2� in C1, C2, and C3, respectively.

C. Robust Stability

For the application at hand, the model is given as linearized state-
space models for several operating points that depend on two
parameters, namely, Mach numberM and altitude h. Consequently,
the stability of one- and two-parameter families of real matrices
relative to a domain � is considered.

1. One-Parameter Family Stability Test

Single-parameter polynomial matrices of the following form are
considered:

A�r� � A0 
 rA1 
 � � � 
 rkAk (10)

with Ai given constant matrices, and such that A�r0� is� stable. The
corresponding guardian map ��	A�r�� is a polynomial in r. Let

r� _� supfr < r0: ��	A�r�� � 0g�or �1 if none exist�
r
 _� inffr > r0: ��	A�r�� � 0g�or
1 if none exist�

be the maximal perturbation bounds for nonsingularity of matrices
around r� r0.

Lemma II.1: Let A�r� � A0 
 rA1 
 � � � 
 rkAk be a polynomial
matrix in the uncertain parameter r real with given constant matrices
Ai, such that A�r0� is stable with respect to �, and let S��� be
guarded by a map ��. Then, A�r� is stable relative to � for all
r 2 �r�; r
�. Furthermore, this interval is the largest one containing
r0.

2. Two-Parameter Family Stability Test

Let us consider the stability of two-parameter polynomial families
of real matrices (or polynomials) relative to a domain � for which
S��� is endowed with a polynomic guardian map ��:

A�r1; r2� �
Xi�k
i�0

Xj�l
j�0

ri1r
j
2Aij (11)

with r1 and r2 real parameters. The theorem by Saydy et al. [16] gives
necessary and sufficient conditions for the stability ofA�r1; r2� over a
specific rectangle-shaped domain �r1; r2� 2 	�1; �1� � 	�2; �2�. A
novel corollary is stated here in order to find the largest stable open
rectangle with a fixed side, as will be explained next.

Let r0 ≜ �r01; r02� be a nominal parameter vector such thatA�r01; r02�
is� stable. By freezing one of the parameters (say, r2 � r02), one can
easily compute the largest (open) interval containing r01, Imax�r02�≜
�r�1 ; r
1 �, such that 8 r1 2 Imax�r02�, A�r1; r02� 2 S��� (Lemma II.1).
Similarly, for r1 � r01 fixed, one can obtain the largest (open) interval
containing r02, Imax�r01�≜ �r�2 ; r
2 �, such that 8 r2 2 Imax�r01�,
A�r01; r2� 2 S���. When both parameters vary, it is, of course, not
true in general that the family is� stable within Imax�r02� � Imax�r01�
(see Fig. 4 for an illustration).

Therefore, given a nominal parameter vector r0 ≜ �r01; r02� and
fixed side 	�1; �1� � Imax�r02� containing r01, the largest open interval
��2 ; �2� is sought, such that

8 �r1; r2� 2 	�1; �1� � ��2 ; �2�; A�r1; r2� 2 S��� (12)

as illustrated in Fig. 5. Naturally, one can choose 	�2; �2� � Imax�r01�
and seek the largest open interval ��1 ; �1�, such that

8 �r1; r2� 2 ��1 ; �1� � 	�2; �2�; A�r1; r2� 2 S��� (13)

Before stating the corollary, which enables statements such as the
one in Eq. (12) or in Eq. (13), some notations are introduced. Let

�1�r2�≜ p	r2 ���1�p	r2 ���1� (14)

and

�2�r2�≜ detB�p	r2 �; p0	r2 �� (15)

Fig. 3 Set C3 of all gains ensuring � stability.

2r

1r

0 0
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Fig. 4 Instability of Imax�r
0
2� � Imax�r

0
1�.
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Fig. 5 Largest stable rectangle with a fixed side.
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where, for each r2, p	r2 ��r1�≜ ��	A�r1; r2�� denotes the univariate
polynomial in r1, the coefficients of which are themselves
polynomials in r2, p0	r2 � denotes its derivative with respect to r1, and
B�a; b� designates the Bezoutian of two polynomials, a and b (see
Appendix B).

Corollary II.2: LetA�r01; r02� 2 S��� and let �� be a guardian map
for S���. Choose 	�1; �1� � Imax�r02�. Define r2 as the largest root of
�1�r2� strictly less than r02 (set to�1 if no such root exists), and r2 as
the smallest root of �1�r2� strictly larger than r02 (set to
1 if no such
root exists)

Also define �2 as the largest root 	 of �2�r2�, r2 � 	< r02, for
whichp		��r1� has a root in 	�1; �1� (set to r2 if none exists); and�2 as
the smallest root 	 of �2�r2�, r02 <	 � �r2, for which p		��r1� has a
root in 	�1; �1� (set to �r2 if none exists).

Thus, ��2 ; �2� is the largest open interval, such that

8 �r1; r2� 2 	�1; �1� � ��2 ; �2�; A�r1; r2� 2 S��� (16)

Proof: First, let 	�2; �2� � ��2 ; �2�. Let us prove that the family
A�r1; r2� is stable on 	�1; �1� � 	�2; �2�; that is, ���r1; r2� � p	r2 ��r1�
does not vanish for any �r1; r2� 2 	�1; �1� � 	�2; �2�.

According toQ6 Theorem [16], A�r1; r2� is stable for all �r1; r2� 2
	�1; �1� � 	�2; �2� if, and only if, U1

cr � and the univariate
polynomials p�2 and p	r2 �, r2 2 U2

cr, have no zeros in 	�1; �1�, where

U1
cr :� fr2 2 	�2; �2�: �1�r2� � 0g (17)

and

U2
cr :� fr2 2 	�2; �2�: �2�r2� � 0g (18)

According to the definitions of r2, �r2, �2 , and �2 , one has
r2 � �2 < �2 � �2 < �


2 � �r2. Consequently, it follows by con-

struction thatU1
cr �, as r2 and �r2 are, respectively, the largest (less

than r02) and the smallest (greater than r02) roots of �1�r2�. Similarly,
p�2 andp	r2 �, r2 2 U2

cr have no zeros in 	�1; �1� for, indeed, �2 and�2
are, respectively, the largest (less than r02) and the smallest (greater
than r02) roots of �1�r2� for which such a property holds. This proves
� stability of A�r1; r2� for all 	�1; �1� � 	�2; �2� with
�2 < �2 � �2 < �


2 .

By definition,�2 and�

2 are either1 (�1 and
1, respectively)

or are such that either A�r1; �2� or A�r1; �2� is� unstable for some
value of r1 2 	�1; �1�. Therefore, any choice of �2 � �2 or �2 � �2
would lead, with the same proof, to the instability of A�r1; r2� over
	�1; �1� � 	�2; �2�. Consequently, ��2 ; �2� is the largest open
interval, such that

8 �r1; r2� 2 	�1; �1� � ��2 ; �2�; A�r1; r2� 2 S��� (19)

□

Example II.3: To illustrate the preceding, let the closed-loop poles
of a given system be specified by the uncertain polynomial

d�s� � s3 
 s2 
 s
 r21 
 r22 (20)

where r1 and r2 denote uncertain parameters with nominal values

r01 � r02 � 0:5. If the open left half-plane ��C
�

� is the stability
region considered, then a guardian map is

���r1; r2� � �r21 
 r22��1 � r21 � r22� (21)

By setting �� to zero, we easily see that the stable component is the
interior of the unit disk, except the origin (light gray region in Fig. 6).
It follows that

p	r2 ��r1� � �r41 
 �1 � 2r22�r21 
 r22 � r42 (22)

p0	r2 ��r1� � �4r
3
1 
 �2 � 4r22�r1 (23)

and the corresponding Bezoutian matrix is

B�pr2 ;p0r2 �

�
0 4r22 � 4r24 0 �2r22
 6r42 � 4r62

�2
 4r22 0 2� 4r22
 4r42 0

0 2� 4r22 0 4r22 � 4r42
4 0 �2
 4r22 0

2
664

3
775

(24)

which yields

�2�r2� � detB�p	r2 �; p0	r2 �� � 16r22�r22 � 1� (25)

Letting �r01; r02� � �0:5; 0:5� yields Imax�r02� � ��0:866; 0:866�.
By choosing, for instance, 	0:3; 0:7� � Imax�r02�, one obtains

�1�r2�≜ p	r2 ��0:3�p	r2 ��0:7� � �r42 � 0:82r22 � 0:0819��r42 � 0:02r22

� 0:2499� (26)

the real roots of which are f�0:9539;�0:7141; 0:7141; 0:9539g.
Therefore, r2 ��0:7141 and �r2 � 0:7141. The roots of �2�r2� are
f�1; 0; 1g. Since none of the polynomials, p	0��r1� and p	1��r1�, has a
root in 	0:3; 0:7�, one can conclude, according to Corollary II.2, that
��0:7141; 0:7141� is the largest open interval, such that

8 �r1; r2� 2 	0:3; 0:7� � ��0:7141; 0:7141�; d�s� 2 S���
(27)

If, instead, the interval 	�0:5; 0:8� � Imax�r02� is chosen, one
obtains

�1�r2�≜ p	r2 ���0:5�p	r2 ��0:8�
� �r42 � 0:5r22 � 0:1875��r42 
 0:28r22 � 0:2304� (28)

with roots f�0:866;�0:6; 0:6; 0:866g. In this case, r2 ��0:6 and
�r2 � 0:6. The roots of �2�r2� are f�1; 0; 1g, and p	0��r1� has a root
(namely zero) in 	�0:5; 0:8�. Therefore, according to Corollary II.2,
�0; 0:6� is the largest open interval, such that

8 �r1; r2� 2 	�0:5; 0:8� � �0; 0:6�; d�s� 2 S��� (29)

III. Gain-Scheduling Procedure

In typical gain-scheduling techniques, LTI Q7controllers have to be
designed on different linearized models; controller interpolation is

(0,0)

2r

1r

1

1

Case1Case 2

Fig. 6 Example.
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done a posteriori or switching laws are implemented between the
various controllers. In the interpolation approach case, even if the
controllers designed on each operating point fulfill the requirements
locally, there is no guarantee that between the synthesis points
stability is retained, especially if the designer did not take enough
synthesis points [4,9]. Moreover, depending on controller complex-
ity, interpolation problemsmay arise. For example, in the case ofH1
control or 	 synthesis, an initial order reduction phase is often
required on each LTI controller in order to ensure that all the
controllers have the same order and structure [21]. In the switching
approach case, the designed controllers must cover the entire domain
and, again, the number of synthesis points is crucial. So the three
major issues are the number of synthesis points, the controller
structure, and the stability and performance satisfaction on the entire
domain [1,2]. The present method proposes to address these issues.

The basic idea is as follows. Let K0, an initial fixed-structure
controller, be designed for a particular trim condition. This controller
naturally presents some robust performance margins with respect to
trim variables; that is, it will no longer ensure performance for a limit
trim condition. By adjusting K0 (according to a method based on
guardian maps; see Appendix C), we obtain a new controller K1

having its own robust performance margins. By taking another
worst-case condition where K1 fails, another controller K2 is
designed, and so on, until covering the entire operating domain.

In what follows, two gain-scheduling algorithms are introduced:
one for the single-parameter case (one scheduling variable) and one
for the two-parameter case (two scheduling variables). In virtue of
Lemma II.1 and Corollary II.2, generalized stability will be ensured
all along the procedure. The algorithms automatically produce a set
of controllers for which the combined robust performance regions
cover the entire operating domain. They will prove efficient in the
longitudinal motion control problem, as only two parameters, Mach
number and altitude, are involved.

A. Single-Parameter Gain-Scheduling Algorithm

The first algorithm proposed is applied in the case of a systemwith
one single parameter r. Let � be the region of eigenvalue
confinement of interest and �� be a corresponding guardianmap. Let
A�r;K� denote the closed-loop state-space matrix with K� 	Ki� as
the gain vector. With a slight abuse in notation, let us denote
���r;K� :� ��	A�r;K��. If A�r;K� depends polynomially on the
parameters, and the boundary of � is defined polynomially, then
���r;K� is a multivariable polynomial as well. We seek to find K
(scheduled with respect to r) that stabilizes the system for
r 2 	rmin; rmax�.

For an initial parameter value r0 � rmin, letK
0 be a nominal choice

of stabilizing gains: that is, such that the eigenvalues ofA�r0;K0� are
inside �. With K�K0, Lemma II.1 is applied to find the largest
stability interval �r0; �r0	. Thus, the vectorK0 stabilizes the system for
any parameter r in �r0; �r0	. If �r0 �
1 or �r0 > rmax, one can stop as
K0 ensures stability 8 r 2 	rmin; rmax�. Moreover, ���r0;K0� �
��� �r0;K0� � 0 if r0 and �r0 happen to be finite.

If �r0 � rmax, one proceeds as follows. Fix r1 � �r0. The equation
���r1;K� � 0 defines new components in the space of gain
parameters that are either stable or unstable (Corollary II.1). By
definition of �r0, ��� �r0;K0� � 0 and K0 lies on the boundary of a
stable component. In [39] (see Appendix C), an algorithm was
developed to search inside a component in order to find a new vector
K1 that places closed-loop poles strictly inside �. This new choice
leads to a new stability interval �r1; �r1	 with �r0 2�r1; �r1	. The same
steps are repeatedQ8 until possibly covering all values of parameter
r 2 	rmin; rmax�.

If the algorithm succeeds, it yields a sequence of controllers
fK0; . . . ;Ki; . . . ;Kng satisfying all the criteria on the corresponding
intervals f	rmin; �r0	; . . . ; �ri; �ri	; . . . ; �rn; rmax�g. Moreover, the entire
parameter range 	rmin; rmax� is covered since, by construction,
ri
1 < �ri. The user is then free to exploit this set of controllers,
depending on the way they will be implemented: lookup tables,
switching controllers, or interpolation of the data to name a few.

Remark III.1: Going “rightward” from rmin to rmax is an arbitrary
choice, and one can easily adapt the algorithm to make it work
“leftward”. This would lead to different results in general.

Example III.1: The following simple example illustrates the
procedure for the synthesis of a one-parameter fixed-structure
scheduled controller: namely, a PD Q9controller. The system at stake is
described by a second-order one-parameter transfer function:

F�s; a� � 1

s2 
 0:2a�a � 10�s
 a2 (30)

where the parameter a 2 	0; 10�. The objective is to design a
scheduled PD controller (Fig. 7)C�s� � Kp�a� 
 Kd�a�s that places
the closed-loop poles inside the region � defined by Fig. 8, where
open-loop poles (unstable) are indicated for some values of a.

The closed-loop corresponding state-space matrix is given by

A�a; Kp; Kd� � A0 
 A1a
 A2a
2 (31)

with

A0 �
0 1

�Kp �Kd

� �
A1 �

0 0

0 2

� �
A2 �

0 0

�1 �0:2

� �

(32)

A corresponding guardian map �� is

���A� � �m�A��p�A��d�A� � ���a; Kp; Kd� (33)

with, by applying Eqs. (4–6),

�m�A� � 1
2
�10 � Kd 
 2a � 0:2a2��Kp 
 10a � 5Kd 
 25� (34)

�p�A� � �a2 
 Kp � 144��144 � 24a
 Kp 
 3:4a2


 12Kd��144
 24a
 Kp � 1:4a2 � 12Kd� (35)

�d�A� � 1
2
	�Kd 
 0:2a2 � 2a�2 � 2a2 � 2Kp��a2 
 Kp� (36)

For a fixed value a� a0, Corollary II.1 states that vanishing
���a0; Kp; Kd� divides the gain parameter spaceR2 into components
that are either stable or unstable relative to�. One can then obtain the
admissible gain regions, ensuring that all closed-loop poles are inside

_

+
PD F(s,a)

YR

Fig. 7 Feedback configuration.

Fig. 8 General stability target region and open-loop poles.
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the target region� (see Fig. 9, where shaded areas are� stable). For
the a� 0 and a� 10 cases, the intersection is empty, implying that
there exists no single PD controller satisfying the constraints for both
extreme values. Scheduling the controller gains is therefore
necessary.

For step 0, a first controller �K0
p; K

0
d� � �106:3; 17:7� is de-

signed for a� 0, which satisfies the constraints with closed-loop
poles �8:85� 5:29j (�� 0:858, !n � 10:3). The application of
Lemma II.1 yields that this controller is robust for
a 2� � 1:447; 1:778	.

For step 1.1, we set a� 1:778 as the upper robust stability limit
and look for another gain �Kp;Kd� inside the stable component
defined by ���1:778; Kp; Kd� � 0 [Eq. (33)]. The search algorithm
yields the new controller �K1

p; K
1
d� � �103:1; 20:6�.

For step 1.2, the PD controller �K1
p; K

1
d� is found to be stabilizing

with respect to � for a 2� � 0:0243; 4:479	.
Three other iterations lead to the results compiled in Table 1.

Finally, one has a set offive controllers for which the stability domain

union covers the entire range of a. This sequence of stabilizing
controllers can then be exploited to find a polynomial interpolation
through the gains �Kip; Kid�. The scheduled PDgainswith respect toa
are those of Eqs. (37) and (38) and are illustrated in Fig. 10. Figure 11
shows that the closed-loop poles are inside the target region � for
different values of a. After replacing the gains by their scheduled
expressions, one must check that the polynomial ���A� � ���a�
does not vanish for any a 2 	0; 10� assessing that the closed-loop
poles remain inside the region�:

Kp�a� � �10:12a
 118:78 (37)

Kd�a� � �0:17a2 
 1:74a
 17:72 (38)

B. Two-Parameter Gain-Scheduling Algorithm

A new algorithm is introduced to handle two-parameter families.
Let A�r1; r2;K� denote the closed-loop state-space matrix, with
K� 	Ki� as the gain vector and � as the target stability region. A
controller K�r1; r2� scheduled with respect to r1 and r2 is sought; it
must place the poles within � for all

�r1; r2�	r1;min; r1;max� � 	r2;min; r2;max�

The algorithm is mainly based upon Algorithm 1 and alternates
between synthesis of scheduled controllers with respect to r1 and
robustness analysis of these controllers along r2.

a) a = 0 b) a = 10
Fig. 9 Stabilizing gain regions for different values of a� f0; 10g.

Table 1 Algorithm steps

Step i Kip Kid Stability domain �ai �ai	
0 106.3 17.7 � � 1:447; 1:778	
1 103.1 20.6 � � 0:0243; 4:479	
2 86.2 22.6 ]1.964, 7.599[
3 48.6 21.3 ]3.327, 9.768[
4 10.9 18.1 ]5.494, 11.535[

a) Scheduled gain Kp with respect to a b) Scheduled gain Kd with respect to a

Fig. 10 Algorithm results and scheduled gains with respect to a.
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The main idea of the algorithm is as follows. For a fixed
r2 � r2;0 � r2;min, use Algorithm 1 to find a stabilizing scheduled
gainK0�r1� over 	r1;min; r1;max�, and then use Corollary II.2 to find the
largest open interval �r2;0; �r2;0� containing r2;0. Therefore, the
scheduled gain K0�r1� stabilizes the system on 	r1;min; r1;max��
�r2;0; �r2;0�. Set r2 � r2;1 � �r2;0 and find a scheduled gain K1�r1�
	r1;min; r1;max�; it stabilizes the systemover 	r1;min; r1;max� � �r2;1; �r2;1�.
The procedure must be repeated until it covers the entire domain.
This leads to Algorithm 2, for which the first steps are illustrated in
Fig. 12.

The algorithm yields a sequence of scheduled controllers
fK0�r1�; . . . ;Ki�r1�; . . . ;Kn�r1�g stabilizing the system relative to
� on

	r1;min; r1;max� � f	r2;min; �r2;0�; . . . ; �r2;i; �r2;i�; . . . ; �r2;n; r2;max�g

Moreover, the entire parameter range 	r2;min; r2;max� is covered since,
by construction, r2;i
1 < �r2;i. The interpolation technique is left to
the user.

IV. Flight Controller Problem

The Bombardier, Inc., Challenger 604 aircraft longitudinal
control problem is described. After a short description of the open-
loop model and its LPV description, the retained controller archi-
tecture and the requirements, also known as handling qualities, are
introduced. A scheduled controller that will be effective on the entire
flight envelope is sought.

A. Open-Loop Linear Parameter-Varying Description

For design purposes, only the short-period equations ofmotion are
considered:

_w
_q
_�

2
4

3
5� Zw U0 Z�

Mw Mq M�

Ew 0 E�

2
4

3
5 w

q
�

2
4

3
5
 Z�e

M�e

0

2
4

3
5�e (39)

At trimmed level flight, the dimensional coefficients Zw, Z�,Mw,
Mq,M�,Ew,E�,Z�e , andM�e

dependmainly onMach numberM and
altitude h. The state variable � denotes the tail downwash angle. The
downwash is experienced by a horizontal tail placed in the flow
behind the wing. This vortex diminishes the incidence angle of the
tail by an angle �. The available measurements are pitch rate q and
normal acceleration nz:

q
nz

� �
� 0 1 0

~Zw ~Zq ~Z�

� � w
q
�

2
4

3
5
 0

~Z�e

� �
�e (40)

where

nz � � _w � U0q � lx _q�=g (41)

so ~Zw, ~Zq, ~Z�, and ~Z�e can be deduced from the other coefficients.
Twenty flight conditions at different altitudes and Mach numbers
were provided, as illustrated in Fig. 13. An LPV description is then
deduced by interpolating the data:

_x a � Aa�M;h�xa 
 Ba�M;h��e (42)

Algorithm 1 Single-parameter gain-scheduling algorithm

Step 0: initialization

Let � be a region of the complex plane; �� be a corresponding guardian map; and A�r;K� be a closed-loop matrix, depending polynomially on the single
parameter r 2 	rmin; rmax� and the gain vector K� 	Kj� 2 Rp. Obtain a controller K0 designed for the nominal case r0 � rmin, which ensures nominal
stability relative to �. Set n 0. Using Lemma II.1 on A�r;K0�, find the largest stability interval �r0; �r0	 containing r0.

If �r0 > rmax, then Stop, else set the counter n n
 1.
Step n.1: synthesis phase

Find a new gain vector Kn inside a component defined by ��� �rn�1;K� � 0 using a search algorithm (see Appendix C) with an initial vector Kn�1.
Step n.2: Robustness analysis
Using Lemma II.1 on A�r;Kn�, find the largest stability interval �rn; �rn	 containing �rn�1.
If �rn > rmax, then go to Final Step or Stop, else set the counter n n
 1 and go to Step n.1.
Final step: interpolation

If an interpolation K�K�r� is sought, use Lemma II.1 to check if stability is preserved 8 r 2 	rmin; rmax�.

Algorithm 2 Two-parameter gain-scheduling algorithm

Step 0: Initialization

Let � be a region of the complex plane; �� be a corresponding guardian map; and A�r1; r2;K� be a matrix depending polynomially on the two parameters
�r1; r2� 2 	r1;min; r1;max� � 	r2;min; r2;max� � R2 and the gain vector K� 	Kj� 2 Rp. Let K0, such that A�r1;min; r2;min� is � stable.

Set n 0, r2;0 � r2;min

Step n.1: synthesis of a scheduled controller with respect to r1
Use Algorithm 3 to find a scheduled gain vector Kn�r1� with fixed value r2 � r2;n. The scheduled controller Kn�r1� ensures nominal stability for
�r1; r2� 2 	r1;min; r1;max� � fr2;ng.

Step n.2: robustness analysis of Kn�r1� along r2
Use Corollary II.2 to find the largest open interval �r2;n; �r2;n� containing r2;n, such that the scheduled gain vector Kn�r1� stabilizes the system
8 �r1; r2� 2 	r1;min; r1;max� � �r2;n; �r2;n�.

If �r2;n > r2;max, then go to Final Step or Stop, else set the counter n n
 1, r2;n � �r2;n�1 and go to Step n.1.
Final step: interpolation
If an interpolation K�K�r1; r2� is sought, Then use Corollary II.2 to check if stability is preserved 8 �r1; r2� 2 	r1;min; r1;max� � 	r2;min; r2;max�.

Fig. 11 Eigenvalue value confinement with scheduled controller.
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y� Ca�M; h�xa 
Da�M;h��e (43)

with

xa � 	w q ��T y� 	q nz�T

Aa�M;h� �
X2
i�0

X2
j�0

AijM
ihj Ba�M;h� �

X2
i�0

X2
j�0

BijM
ihj

Ca�M;h� �
X2
i�0

X2
j�0

CijM
ihj Da�M;h� �

X2
i�0

X2
j�0

DijM
ihj

(44)

Even if more accurate interpolations can be found, the present
one is sufficient for the problem at stake. To diminish interpolation
errors, the flight envelope is split into two regions leading to two
LPV descriptions: one for low to middle altitudes (h 2 	5; 000;
25; 000 ft�) and another one for middle to high altitudes
(h 2 	25; 000; 41; 000 ft�). This improves the quality of interpola-
tion on a more restricted zone. Special attention is given to the
interpolation at the common border h� 25; 000 ft in order to
maintain continuity between the two LPV descriptions. Figure 14
shows the short-period mode poles at different altitudes. In general,
natural frequency increases with Mach number and damping ratio
diminishes with altitude.

Because of the presence of multiple delays in the actuator and
sensor dynamics, both the actuator and IRUQ10 sensors (q and nz) are

modeled by high-order transfer functions (each 15th), as provided by
Bombardier, Inc. (Fig. 15). Since the characteristics of both the
actuator and sensors do not vary with Mach number and altitude, no
interpolations with respect to M and h are needed. After balanced
reduction of these elements and incorporation in the short-period
model, a suitable eighth-order LPV description is finally obtained in
the form of

2r

1r

1,minr

2,minr

2,maxr

1,maxr

2r

1r

1,minr

2,minr

2,maxr

1,maxr

2,0r

2,0r

2,1r

2,1r

2,1 2,0r r

2,0r
0

1 stable with ( )rK

1
1 stable with ( )rK

Fig. 12 Algorithm 2 illustration.
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Fig. 13 Flight envelope.
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Fig. 14 Short-period mode evolution within flight envelope.
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_x� A�M;h�x
 B�c (45)

q� Cqx (46)

nz � Cnz�M;h�x (47)

where x is the concatenation of the state vector xa and the states of the
actuator and sensor dynamic approximations, and �c is the actuator
input. Note that the new input and output matrices B andCq are both
independent ofM and h.

B. Controller Architecture

Figure 15 shows a classic longitudinal flight controller archi-
tecture designed to track pitch rate commands:mainly, the short-term
dynamics. The architecture consists of a stability augmentation
system (SAS) and a control augmentation system (CAS).

Thevariable parameters are the SAS gainsKq andKnz , the PIQ11 gains
Kp and Ki, and the feedforward gain Kff . The noise and washout
filters are fixed first-order filters: a low-pass filter 10=�s
 10� on the
nz measure and a washout filter s=�s
 3� on the q channel. By
adding the two filter states and the integrator state to the open-loop
state vector, the closed-loop state-space model is then

_x

_xq

_xnz

_xi

2
66664

3
77775

�

A�M;h� 
 �Kq � Kp�BCq �KqB KnzB KiB

3Cq �3 0 0

10Cnz �M;h� 0 �10 0

�Cq 0 0 0

2
66664

3
77775

|�������������������������������������������������{z�������������������������������������������������}
Acl

x

xq

xnz

xi

2
66664

3
77775




�Kp 
 Kff�B
0

0

1

2
66664

3
77775

|������������{z������������}
Bcl

�ref (48)

q� 	Cq 0 0 0 �|����������{z����������}
Ccl

x
xq
xnz
xi

2
664

3
775 (49)

where xi denotes the integrator state, xnz denotes the nz noise filter
state, and xq denotes the washout filter state. The closed-loop Acl

matrix depends on M, h, and the controller gains (except for the
feedforward gain Kff). The controller gain matrix is denoted by

K � 	Kq Knz Kp Ki Kff � (50)

The problem consists, therefore, in tuning the gain matrix K in
order to satisfy specific handling qualities.

C. Handling Qualities

The overall performance objective is to track pitch rate commands
with predicted level 1 handling qualities and desired time-domain
response behavior. The handling quality criteria considered in this
paper are the short-period mode damping ratio �sp, the settling time
(ST), Gibson’s dropback [37] Drb (see Appendix D), the gain
margin MG, and the phase margin M’ of the CAS loop. The
boundaries of these criteria are defined by military standards [35].
Even though handling qualities are primarily defined for military
aircraft, they are usually applied to commercial aircraft with slight
modifications derived from manufacturer experience. Table 2
summarizes the considered handling quality boundaries. More
handling qualities may be taken into account, like frequency
response-based criteria (i.e., pitch attitude bandwidth !BW�

and
phase delay 
p ).

V. Controller Design

The scheduled controller will be designed in two steps in order to
adequately illustrate the one- and two-parameter cases. First, a
controller scheduledwith respect toMach numberM at fixed altitude
h� 5000 ft is designed. Then, theMach scheduled controllerwill be
extended to the full flight envelope with varying altitude.

A. Constraints

The time-domain objectives are simply expressed via pole
constraints. More precisely, the issue is to maintain low-frequency
closed-loop poles inside a target region � (Fig. 16): the damping
condition is set to � > 0:7 and the stability degree must be greater
than 1 (i.e., � <�1).

A corresponding guardian map ��, which depends on M, h, Kp,
Ki, Kq, and Knz is then built by applying Eqs. (4) and (5):

���Acl� � �m�Acl��d�Acl� (51)

As the gainKff has no influence on the closed-loop pole location, it
is dedicated to exactly tune the dropback value after tuning the other
gains with the gain-scheduling algorithm. To have a null dropback
(refer to Saussié et al. [40]), one has to take

Fig. 15 Attitude hold control system.

1

0.7

Im

Re

Fig. 16 Target zone �.

Table 2 Handling quality boundaries

HQ Q22s Level 1 Good Level 1

�sp 0:35< �sp < 1:35 0:7< �sp < 1:35
ST ST�2%� � 3 s ST�1%� � 3 s
Drb �0:2 � Drb � 0:5 0:0 � Drb � 0:3
MG >6 dB
M’ >45�
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Algorithm 3 Algorithm to find a new vector gain inside an active component

0. Initialization.
Let � and K0 2 Rp, such that ���K0� � 0 and n are the maximum desired number of main loop iterations.

Set the counter m 0.
1.Main loop.
While m � n
For i from one to p

a) Fix all the gains K to their current values except Ki.
b) The guardian map ���K� now only depends on Ki.
c) Using Lemma II.1, find the largest stability interval �Ki; �Ki	 containing Kmi .
d) Set Km
1i  �Ki 
 �Ki�=2.

End
A new gain vector Km
1 is then obtained.

a) If kKm � Km
1k � �K�1
 kKmk� (with �K arbitrary small positive value), then Stop.
b) Else, set m m
 1.

End

Table 3 Nominal eigenvalue assignment on �M0; h0� � �0:25; 5000�

Open-loop poles Closed-loop poles8>>>>><
>>>>>:

0

�0:926� 1:34i��� 0:569; !� 1:63�
�3
�8:43
�10
�15:1

)

8>>><
>>>:

�1:69� 0:781i��� 0:9; !� 1:86�
�2:44
�3:85
�5:80� 3:90i��� 0:83; !� 6:99�
�8:52

a) Scheduled Kp b) Scheduled Ki

c) Scheduled Kq d) Scheduled Knz

Fig. 17 Scheduled gains with respect to M at h0 � 5000 ft.
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Kff ��
1
 KnzCnz�M; h�A�M;h��1B

CqA�M;h��1B
(52)

B. Scheduled Controller with Respect to M at h0 � 5000 feet

Algorithm 3 is used to find a scheduled controller with respect to
M at h0 � 5000 ft.

1. Phase 0: Initial Static Controller

AsKff has no influence on the pole assignment, a first static output
feedback controller K�0� is designed on the flight condition
�M0; h0� � �0:25; 5000� (the lowest left corner of the flight
envelope) using the technique introduced in [40]. Table 3 shows the
eigenvalue assignment. The gains are

K �0� � 	�0:0048 10:29 0:865 2:552 0�.

2. Phase 1: Pole Confinement

With the knowledge of a first stabilizing controller, Algorithm 3
finds successive controllers that fulfill the pole confinement
requirements for M 2 	0:25; 0:6�. The algorithm alternates between
synthesis phases and robustness analysis phases:

1) For the synthesis phase, M is fixed and the guardian map
���Acl� [Eq. (51)] depends on the gains Kp, Ki, Knz , and Kq, where
Acl is of the form

A0 
 KpA1 
 KiA2 
 KnzA3 
 KqA4

Starting from K�n�1�, which verifies ���Acl� � 0, a new gain vector
K�n� is found inside a stable component defined by ���Acl� � 0.

2) For the robustness analysis phase, the gain vector K�n� is fixed
and the guardian map ���Acl� [Eq. (51)] depends only on the Mach
numberM, whereAcl is of the formA0 
MA1 
M2A2. The analysis
results in the segment �Mn; �Mn� on which the controller K�n�

stabilizes the system.
Figures 17a–17d show the resulting successive gains found with

Algorithm 3. These sequential gains ensure the stability condition on
the entire Mach number domain 	0:25; 0:6�. At this point, one can
decide to switch between these gains, depending on thevalue ofM, or
continuous functions inM can be sought by interpolating data. The
shape of the interpolating functions is free to the user (piecewise
linear or polynomials). In the present case, third-order polynomial
interpolations are obtained with the polytoolMATLAB function
(dashed lines). Figure 18 illustrates the closed-loop poles for
M 2 	0:25; 0:6�, showing that all pole confinement constraints are
satisfied.

3. Phase 2: Dropback Adjustment and Time Responses

Kff�M� is calculated to ensure null dropback by using Eq. (52)
with h� h0 andM 2 	0:250:6�. Figure 19 shows the time responses
for a 5 s unit step and then a null input for different Mach number
values at h0 � 5000 ft. Settling times remain around 3 s, and
dropback is zero for each value as predicted.

−10 −8 −6 −4 −2 0 2
−10

−8

−6

−4

−2

0

2

4

6

8

10

Real Part

Im
ag

in
ar

y 
P

ar
t

Fig. 18 Closed-loop pole confinement for M 2 � 0:25 0:6 � at

h0 � 5000 ft.
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Fig. 19 Time responses forM 2 � 0:25 0:6 � at h0 � 5000 ft.

a) Scheduled Kp b) Scheduled Ki

Fig. 20 Scheduled gains Kp and Ki with respect toM and h.
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C. Scheduled Controller, with respect toM and h

Afirst scheduled controller with respect toM has been found in the
previous section for the lowest altitude h� 5000 ft. It now remains
to extend it to the entire flight envelope.

1. Phase 1: Pole Confinement

Algorithm IIIBQ12 produces scheduled feedback gains with respect to
M and h that ensure the pole confinement constraints on the entire

flight envelope. As before, it alternates between synthesis phases at a
fixed altitude and robustness analysis phases.

1) For the synthesis phase, altitude hn is fixed and Algorithm 3
provides a scheduled controller Kn�M� with respect toM at altitude
h� hn.

2) For the robustness analysis phase, the scheduled controller
Kn�M� is stable athn forM 2 	M�hn�; �M�hn��. Note that, as theflight
domain is not rectangular, the Mach number minimum and
maximum limits are functions of the altitudeh. The analysis results in
the segment �hn; �hn	, such that Kn�M� stabilizes the system on the
domain 	M�hn�; �M�hn�� � �hn; �hn�, and the next synthesis is made at
hn
1 � �hn.

Figures 20a and 20b show the examples of resulting gain surfaces
(Kp and Ki) found with Algorithm IIIB. These scheduled gains
ensure the stability condition on the entire flight domain. No simple
polynomial interpolations were actually sought but, instead, gains
were implemented in lookup tables with multilinear interpolation.
Such a technique is fairly standard, and dedicated algorithms are
available in the MATLAB/Simulink environment. Figure 21
illustrates that all closed-loop poles are inside �t.

2. Phase 2: Dropback Adjustment, Time Responses,
and Robustness Margins

Once again, Eq. (52) is used to obtain a scheduled gain Kff�M;h�
that ensures null dropback on the entire flight envelope. For time
simulations, a gridding of the entire flight envelope is considered.
Figures 22a and 22b show time responses for a 5 s unit-step entry in
�ref . They are satisfying for the entire flight envelope and, as
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Fig. 21 Closed-loop pole confinement for full flight envelope.
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predicted, Gibson’s dropback [37] is almost null for every
configuration. Figures 23a and 23b illustrate the gain and phase
margin levels on the complete flight envelope when the CAS loop is
opened. The gain margin requirement (greater than 6 dB) is largely
satisfiedQ13 for most part of flight envelope. The same applies for the
phasemargin requirement (greater than 45�), whereworst cases have
a phase margin above 42�. Thus, even if gain and phase margin
requirements were not part of the synthesis, they are mostly fulfilled.
Finally, Table A1 shows the handling qualities for the 20 flight
conditions originally provided by Bombardier, Inc. (Fig. 13).

VI. Conclusions

This paper presents a novel technique for scheduling controllers
with application to the longitudinal flight of a business aircraft. It
applies to systems with one or two parameters. From a single con-
troller designed for one trim condition, the algorithm automatically
varies the controller gains to extend its stability property (i.e.,
essentially pole confinement constraints) to the rest of the parametric
domain. Contrary to classic gain-scheduling techniques, there is no
need to multiple controller synthesis on several trim conditions, as
the algorithms deal automatically with that. Moreover, stability is
guaranteed all along the process. Last but not the least, the technique
can handle any fixed controller architecture. The technique was
successfully applied on the control of the longitudinal flight of a
Bombardier, Inc., Challenger 604. Based on a classic control
scheme, the flight scheduled controller with respect to altitude and
Mach number operates well on the full flight envelope. The pole
confinement constraint is satisfied through the entire flight envelope,
showing the efficiency of the method. Additional criterion (i.e.,
Gibson’s dropback ) was handled by a previously stated theoretical
formula.Q14 Phase and gain margins were checked a posteriori and
proved to be adequate. In spite of thefixed architecture constraint, the
current procedure manages to produce an efficient scheduled
controller through the entire flight envelope with less computational
effort than classic techniques.

Appendix A: Bilaternate Product

LetA andB ben � nmatrices. To introduce the bialternate product
ofA andB, we first establish some notation. LetVn be the 1

2
n�n � 1�-

tuple consisting of pairs of integers �p; q�, p� 2; 3; . . . ; n,
q� 1; . . . ; p � 1, listed lexicographically. That is,

Vn � 	�2; 1�; �3; 1�; �3; 2�; �4; 1�; �4; 2�; �4; 3�; . . . ; �n; n � 1��

Q15 Denote by Vni the ith entry of Vn. Denote

f	�p; q�; �r; s�� � 1

2

�
det

apr aps
bqr bqs

� �

 det

bpr bps
aqr aqs

� ��
(A1)

where the dependence of f on A andB is kept implicit for simplicity.
The bialternate product of A and B, denoted by A� B, is 1

2
n�n � 1�-

dimensional square matrix, for which the ijth entry is given by
�A� B�ij � f�Vni ; Vnj �. For example, the bialternate product of a
3 � 3matrixA� �aij�with the identitymatrix is a3 � 3matrix given
by

A� I �
a11 
 a22 a23 �a13
a32 a11 
 a33 a12
�a31 a21 a22 
 a33

2
4

3
5 (A2)

The bialternate product has some interesting spectral properties. In
particular, if ��A� � �1; . . . ; �n,Q16 then

�	2�A� I�� � f�1 
 �2; �1 
 �3; . . . ; �1 
 �n; �2 (A3)


 �3; . . . ; �2 
 �n; . . . ; �n�1 
 �ng (A4)

Thus, 2�A� I� becomes singular if, and only if, A has opposite
eigenvalues.

Appendix B: Bezoutian

Given any polynomial a�s� � ansn 
 . . .
 a1s
 a0, an ≠ 0,
define the polynomial

â�s� :� sna�s�1� � a0sn 
 . . .
 an�1s
 an

and the matrix

S�a� :�

a1 a2 . . . . . . an

a2
..
.

. . . an 0

..

.
an . . . ..

. ..
.

an 0 . . . . . . 0

2
66664

3
77775 (B1)

The Bezoutian B�a; b� of two polynomials a and b may then be
expressed as the n � nmatrix, n being the largest of the degrees of a
and b, given by

B�a; b� :� S�a�S�b̂�P� S�b�S�â�P (B2)

with P as a certain permutation matrix [41]. Our interest in the
Bezoutian stems from the following result.

Lemma B.1: The polynomials a�s� and b�s� have no common
zeros if, and only, if the associated Bezoutian B�a; b� [or, equiva-
lently, the matrix S�a�S�b̂� � S�b�S�â�] is nonsingular.

Appendix C: Search Algorithm

Let� andK0 denote an initial gain vector, such that ���K0� � 0.
The goal of the search algorithm presented in [40] is to pick a new
gain vectorK inside a stable component C1 (defined by ���K� � 0),
knowing an initial gain vector K0 lying on the border of C1.
According to Corollary II.1, any choice of gains K strictly inside C1

ensures that all the eigenvalues of Acl�K� are strictly inside �. The
main and intuitive idea is that, by picking a new vectorK well inside
the active component C1, hence sufficiently far from its border, the
resulting closed-loop poles will also move well inside �, hence far
from its border.

Example C.1: The same system and constraints as in Example II.2
are considered with �k01; k02� 2 	0; 10� � 	0; 10�. Figure D1 illustrates
the algorithm behavior with the starting point �k1; k2� � �3; 2:5�.

Remark C.1: The main search directions can possibly be enriched
with other search directions as in direct search methods [42,43].
Another alternative would be to consider the local gradient as the
unique search direction and to use Lemma II.1.

Table A1 Handling quality results for the 20

original flight conditions

Case �sp Drb ST(2%) MG �dB� M’���
1 0.90 0 3.32 11.31 44.46
2 0.86 0 2.35 15.19 61.72
3 0.85 0 2.50 12.29 63.80
4 0.77 0 2.40 9.33 59.96
5 0.88 0 3.18 12.49 48.84
6 0.86 0 2.66 14.41 57.35
7 0.85 0 2.44 11.78 63.37
8 0.72 0 1.34 8.99 60.46
9 0.90 0 3.53 12.09 45.28
10 0.84 0 2.30 13.55 61.64
11 0.81 0 2.31 7.56 61.08
12 0.83 0 1.75 5.69 59.07
13 0.88 0 3.82 12.21 45.52
14 0.81 0 2.96 13.47 50.54
15 0.85 0 2.42 11.63 59.07
16 0.79 0 2.52 7.64 57.98
17 0.88 0 3.41 12.79 44.31
18 0.86 0 3.34 12.76 48.45
19 0.81 0 2.83 12.12 52.12
20 0.83 0 2.49 8.77 54.55
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Appendix D: Dropback

Besides the classical time-domain criteria, such as settling time,
overshoot, or rising time, Gibson’s dropback [37] is commonly used
by flight control engineers. It is a short-term measure of the pitch
attitude changes, and it is calculated based on the reduced-order
attitude � response (i.e., without the phugoid mode) to a stick step
input removed after a few seconds. Figure D2 illustrates how to
calculate the dropbackDrb. The quantity qss is the pitch rate steady-
state value. Ideally, having a zero dropback value means piloting a
pure integrator in � after a short time. As it is preferred to have
positive dropback values instead of negative ones, this comes with
some significant overshoots in the pitch rate q response.
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