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Stochastic forcing of the Lamb–Oseen vortex

J. FONTANE, P. BRANCHER AND D. FABRE

Institut de Mécanique des Fluides de Toulouse (IMFT), Université Paul Sabatier,
2 Allée du Professeur Camille Soula, 31400 Toulouse, France

The aim of the present paper is to analyse the dynamics of the Lamb–Oseen vortex
when continuously forced by a random excitation. Stochastic forcing is classically used
to mimic external perturbations in realistic configurations, such as variations of atmo-
spheric conditions, weak compressibility effects, wing-generated turbulence injected in
aircraft wake, or free-stream turbulence in wind tunnel experiments. The linear response
of the Lamb–Oseen vortex to stochastic forcing can be decomposed in relation to the
azimuthal symmetry of the perturbation given by the azimuthal wavenumber m. In the
axisymmetric case m = 0, we find that the response is characterised by the generation
of vortex rings at the outer periphery of the vortex core. This result is consistent with
recurrent observations of such dynamics in the study of vortex-turbulence interaction.
When considering helical perturbations m = 1, the response at large axial wavelengths
consists of a global translation of the vortex, a feature very similar to the phenomenon
of vortex meandering (or wandering) observed experimentally, corresponding to an er-
ratic displacement of the vortex core. At smaller wavelengths, we find that stochastic
forcing can excite specific oscillating modes of the Lamb–Oseen vortex. More precisely,
damped critical-layer modes can emerge via a resonance mechanism. For perturbations
with higher azimuthal wavenumber m > 2, we find no structure that clearly dominates
the response of the vortex.

1. Introduction

From the large hurricanes developing in the atmosphere to the well-known Kelvin-
Helmholtz billows in shear layers, vortices are ubiquitous in fluid flows. They are notably
major actors of turbulence as they are involved in the energy cascade, entrainment and
mixing. The understanding of their dynamics is then of considerable interest. In the con-
text of aeronautics, the will to reduce the aircraft wake and the associated hazards to
forthcoming planes has motivated the study of the stability of columnar vortices. Since
the early works of Crow (1970), Moore & Saffman (1975) and Tsai & Widnall (1976),
many studies have shown the sensitivity of the wing-tip vortex pair to both long- and
short-wave cooperative instabilities, see Leweke & Williamson (1998) or Billant et al.
(1999) amongst others. Conversely, a single vortex is asymptotically stable but it sup-
ports various families of oscillating and damped modes amongst which are the so-called
Kelvin waves (Fabre et al. 2006). Although commonly used, the standard modal stabil-
ity approach fails to fully predict the vortex linear dynamics. Indeed, transient growth
can occur when specific perturbations are introduced in the flow. Antkowiak & Brancher
(2004) have calculated such disturbances for the Lamb–Oseen vortex and evidenced a
core contamination mechanism combining Orr (1907a,b) and induction effects. The as-
sociated energy amplification can reach levels high enough to activate the nonlinearities
and eventually lead to another equilibrium state or trigger a so-called “bypass” transition



to turbulence. In the axisymmetric case, Pradeep & Hussain (2006) (cited as PH06 in the
following) recently encountered similar transient amplifications. Antkowiak & Brancher
(2007) (hereinafter referred to as AB07) completed the picture with the identification of
a physical mechanism specific to vortices leading to the generation of vortex rings in the
potential region around the vortex core.

The inability of modal analysis to prefigure such transient energy amplification was pre-
viously keyed out in wall-bounded shear flows, see Butler & Farrell (1992, 1993), Reddy
& Henningson (1993) and Farrell & Ioannou (1993a). Thus both Couette and Poiseuille
plane flows experience energy amplification even in their modal stability domain when
aroused with the adequate perturbation. The physical mechanism involved consists in
the emergence of strong streamwise velocity streaks emanating from streamwise vortices
in the flow.

This general occurrence of transient growth in asymptotically stable flows is intimately
related to the non-normality of the associated linear dynamical operator (Trefethen et al.
1993; Farrell & Ioannou 1994). Let us consider a flow represented by the following dy-
namical system for the state vector x

dx

dt
= Ax , (1.1)

where A is the operator corresponding to the Navier-Stokes equations linearised around a
given basic state. The base flow is said to be asymptotically stable if all the eigenvalues of
A have a negative real part. When the dynamical operator is non-normal – i.e. AHA 6=
AAH with (.)H denoting the Hermitian transpose (Farrell & Ioannou 1993b, 1994) –
this approach does not address the issue of the flow energetics for finite times. Indeed,
the stability analysis of a non-normal operator results in a set of modes that decay
individually but that do not form an orthogonal basis. As a result, one can construct
a perturbation on this basis with expansion coefficients that are large but with modes
cancelling each other to give an initial energy of order one. Since each eigenmode evolves
independently, the initial cancellation may not persist. The energy of the disturbance
can thus increase substantially before decaying ultimately to zero. Schmid (2007) gives
an illustrative two-dimensional geometric example of this scenario in his recent review
on nonmodal stability analysis. This mathematical property of non-normal operators is
revealing of physical mechanisms that lead to transient energy amplification. The lack
of orthogonality corresponds to the potential for energy extraction from the basic flow
by a subspace of perturbations leading to transient growth despite the absence of modal
(i.e. exponential) instability, a result already pointed out in the seminal work of Orr
(1907a,b).

This specificity of non-normal operators can be explained in a more formal way by
considering the equation governing the instantaneous rate of energy change

dE

dt
=

d

dt

(

xHx
)

= xH
(

AH + A
)

x, (1.2)

where the energy of the system is defined by E = xHx in the H2 norm. Energy growth
occurs when the right-hand side of equation (1.2) is positive. This is mathematically
equivalent to requiring that a portion of the numerical range of A, defined by N(A) =
{

z ∈ C, z = xHAx,xHx = 1
}

, lies in the right half-plane (Reddy et al. 1993). This can
be turned into a condition on the spectrum of the energy operator K = AH + A, since
the largest eigenvalue of 1

2K, referred to as the numerical abscissa (Schmid 2007), is the
supremum of Re [N(A)]. Transient growth of energy is likely to occur if K has at least
one eigenvalue with a positive real part.



For flows experiencing such transient growth, it is of interest to find the “most dan-
gerous initial condition” through a process of optimisation. It consists in identifying the
initial condition that maximises its energy growth at a fixed time τ . Such a disturbance
is referred to as an optimal perturbation. A second optimisation can be conducted with
respect to time, leading to the optimal time τopt that defines the most amplified optimal
perturbation, often called the global optimal perturbation. Besides, in some cases, it is
also relevant to look at the other disturbances experiencing transient energy amplifi-
cation. They are termed sub-optimal perturbations. Among them, short-term optimals
correspond to optimal perturbations for fixed times τ < τopt (Corbett & Bottaro 2001).

Given the existence of such optimal disturbances in columnar vortices (Antkowiak
& Brancher 2004; Pradeep & Hussain 2006; Antkowiak & Brancher 2007), the point
is to know if they can naturally emerge from uncontrolled perturbations as diverse as
atmospheric turbulence, background noise in wind tunnel experiments or turbulence ge-
nerated by the aircraft wings. Indeed, while the potential for substantial transient growth
of properly defined initial perturbations certainly exists, recurrent critics against optimal
perturbation analyses concern the particular structure of these disturbances. These can
be quite intricate and unlikely to occur spontaneously in real conditions since there is
no apparent mechanism to excite such specific perturbations. This issue is theoretically
addressed in the present paper to some extent. The general technique is to linearise the
Navier-Stokes equations of small perturbations to a particular mean flow and then to
augment these linear dynamics with stochastic forcing, which is uncorrelated in time
(i.e., “white noise”) and also possibly uncorrelated in space. This general maintained
forcing can be interpreted as a crude way to mimic perturbations arising incessantly in
real transitioning flows due to background turbulence or any kind of uncontrolled (in
space and time) ambient fluctuations. But it should be kept in mind that the main ob-
jective of the present work is to understand the role played by the transiently growing
disturbances found in the previous optimal perturbation analyses when the forcing lacks
the bias of any specific forcing function. In that context, while this analysis may not
necessarily apply directly to, say, real-life turbulent vortical flows where only certain
types of disturbances may be introduced, it will nevertheless lend insight into the impor-
tance of the physical mechanisms of transient growth uncovered by the previous optimal
perturbation analyses.

The associated dynamical equations can be thought of as a system where background
noise is regarded as an “input” and the resulting random velocity field representing the
response of the flow as the “output”. The ratio of the output energy or variance to that of
the input noise gives the energy amplification or gain of the system (Schmid 2007). This
analysis was successfully applied to wall-bounded shear flows (Farrell & Ioannou 1993b;
Bamieh & Dahleh 2001) and to two-dimensional vortices with radial inflow derived from
geophysical applications (Nolan & Farrell 1999). In atmospheric sciences this approach is
indeed a classical tool of investigation for the prediction of the statistics of meteorological
flows such as the long- and short-term deviations of the hurricane tracks from that
prescribed by the surrounding flow. For instance, Whitaker & Sardeshmukh (1998) used
such a stochastic forcing analysis to recover successfully the observed variances of the
winter Northern Hemisphere flow (in particular the location and structure of the storm
tracks). Not only are these previous works in good agreement with the results issued from
optimal perturbation analyses, pointing out the robustness of the growth mechanisms
uncovered by these latter, but they also show to be complementary to them.

The paper is organised as follows. The stochastic forcing formulation is introduced
for any general linear dynamical system in §2. Then its derivation for the Navier-Stokes
equations is considered. The results are presented in §3, classically ordered with increasing



azimuthal wavenumbers. The results are discussed and interpreted in §4. The paper ends
with the conclusions and perspectives to this work in the last section §5.

2. Numerical formulation

2.1. Stochastically driven linear dynamical systems

The formalism employed in this section is classical in control theory and we only give a
brief synthesis of the main steps for the sake of completeness. We consider an asymptoti-
cally stable linear dynamical system of the form (1.1) under the influence of an external
forcing ξ. The system of governing equations can be conveniently written in the following
state-space form classically used in the control literature (Jovanovic & Bamieh 2005)

dx

dt
= Ax + Bξ, (2.1a)

y = Cx, (2.1b)

where x is the state vector with initial condition x0 and y is the output vector. The matrix
B and C denote the input and output operators. The forcing considered is stochastic in
nature and is assumed to be a temporal Gaussian white noise process with zero mean

〈ξ〉 = 0, (2.2a)
〈

ξ(t)ξH(t′)
〉

= Rδ(t − t′), (2.2b)

where 〈 〉 is the ensemble averaging operator and R the spatial covariance matrix. For
purpose of representativeness of a specific configuration, the matrix R can be imple-
mented with respect to experimental data. In the absence of such information it can be
set equal to the identity matrix, i.e. , Rij = δij , leading to a spatio-temporal Gaussian
white noise. Some refinements may be included in the forcing term in order to represent
more specific perturbation fields. For instance, one can let the forcing amplitude peak
near the walls to take into account their influence in wind tunnel experiments as done by
Jovanovic & Bamieh (2005) for wall-bounded shear flows. We limit here the statistical
properties of the forcing terms to the above-mentioned so as to mimic the most generic
free stream disturbances occurring in real conditions without favouring any particular re-
gion of the flow. As claimed by Farrell & Ioannou (1993b), this forcing is not intended to
reproduce the full complexity of turbulence observed in experiments. Its aim is to retain
the essential physics underlying the maintained variance from any external continuous
perturbation field. In that sense, the analysis will give an insight into the receptivity of
the flow without introducing any a priori bias through the characteristics of the forcing
in the physical or spectral space.

As a response to this forcing, the emerging state y is a stochastic process with second-
order statistics given by the covariance matrix

〈

y(t)yH(t)
〉

= C

∫ t

0

eA(t−s)BBHeAH(t−s)ds CH = CQ(t)CH , (2.3)

where Q(t) is referred to as the controllability Gramian. If the dynamical operator A
does not vary in time, the system will reach a statistical steady state where the matrix
Q∞ = limt→∞ Q(t) is solution of a Lyapunov equation

AQ∞ + Q∞AH = −BBH . (2.4)

The mean energy corresponds to the variance of the output stochastic process and can
be extracted from the covariance, i.e. 〈E(t)〉 =

〈

yH(t)y(t)
〉

= trace
[

BHQ(t)B
]

. As



classically done in the control literature (Zhou et al. 1995; Schmid 2007), this quantity
can be interpreted as the H2-norm of the transfer function H(ω) = C(iωI − A)−1B
associated to the linear system (2.1). To obtain the energy amplification denoted as
G∞ = 〈E∞〉 / 〈Einp〉, one has to determine the input energy introduced by the stochastic
forcing. It comes from the variance equation which reads

d

dt
〈E(t)〉 =

〈

xH(AHCHC + CHCA)x
〉

+
〈

xHCHCBξ
〉

+
〈

ξHBHCHCx
〉

. (2.5)

Using (2.1b) and (2.2b), the input energy appearing on the left-hand side of (2.5) becomes

〈Einp〉 =
〈

xHCHCBξ
〉

+
〈

ξHBHCHCx
〉

= 2 trace
[

BH(CHC)2B
]

. (2.6)

The extraction of coherent structures from the random flow field resulting from the
forcing can be obtained through the computation of the eigenmodes of the controllability
Gramian. The eigenvalue decomposition of Q∞, known as the Karhunen-Loève (KL)
or proper orthogonal decomposition (POD), will provide with the flow patterns that
participate to the response, ordered according to their contribution to the variance of
the statistically steady state (Schmid 2007)

Q∞z(p) = γ(p)z(p). (2.7)

These distributions will be referred to as output structures hereinafter. It is also of interest
to know which coherent structures from the input noise participate the most to the
excitation of the system. This issue can be addressed by considering the adjoint dynamical
system† (AH , BH , CH) forced with a similar Gaussian white noise. The second-order
statistics of the adjoint output stochastic process are contained in the covariance matrix
BHP (t)B where P (t) is the observability Gramian defined as

P (t) =

∫ t

0

eAH(t−s)CHCeA(t−s)ds . (2.8)

Its long-time value is also solution of a Lyapunov equation

AHP∞ + P∞A = −CHC. (2.9)

Finally, the eigenvalue decomposition of P∞, coined the back Karhunen-Loève decom-
position by Farrell & Ioannou (1993b), will provide with the coherent forcing structures
(referred to as input structures in the sequel) hierarchised according to their contribution
to the system excitation

P∞ζ(p) = β(p)ζ(p). (2.10)

2.2. Stochastic forcing applied to Navier-Stokes equations

The base flow considered in this paper is the Lamb–Oseen vortex. Its non-dimensional
azimuthal velocity field is

V (r) =
1

r

(

1 − e−r2
)

, (2.11)

where the characteristics scales used are the vortex dispersion radius r0 and the angular
velocity at the axis Ω0. In the following, Ω(r) = V (r)/r = (1 − e−r2

)/r2 and Z(r) =

(1/r)∂r(rV (r)) = 2e−r2

will represent respectively the angular velocity and the axial

† A specific notation, say A
+, should have been used for the adjoint operator as its definition

strictly depends on the chosen inner product. In the present case the adjoint operator A
+

coincides with the Hermitian transpose A
H since the standard inner product of the Hilbert

space H with identity weighting is used (Hoepffner 2006).



vorticity of the columnar vortex. We now consider infinitesimal disturbances expanded
in a modal form

[ûr, ûθ, ûz, p̂ ](r, θ, z, t) = [u, v, w, p ](r, t)eimθ+ikz + c.c. , (2.12)

where c.c. stands for the complex conjugate, m is the azimuthal wavenumber and k the
axial wavenumber. The linearisation of the incompressible Navier-Stokes equations gives
the following set of equations

1

r
∂r(ru) +

im

r
v + ikw = 0 , (2.13a)

∂tu + imΩu − 2Ωv = −∂rp +
1

Re

[(

∆m,k − 1

r2

)

u − 2im

r2
v

]

, (2.13b)

∂tv + imΩv + Zu = − im

r
p +

1

Re

[(

∆m,k − 1

r2

)

v +
2im

r2
u

]

, (2.13c)

∂tw + imΩw = −ikp +
1

Re
∆m,kw , (2.13d)

where the Reynolds number is Re = Ω0r
2
0/ν = Γ/(2πν) and

∆m,k ≡ ∂rr +
1

r
∂r −

m2

r2
− k2 . (2.14)

The set of variables is reduced to the three velocity components by eliminating the
pressure with the Poisson equation. The state variables correspond to the primitive ones,
i.e. x = [u, v, w], and both the input and output operators B and C of §2.1 simply reduce
to the identity operator. A Chebyshev spectral collocation method with an algebraic
mapping identical to that described by Fabre & Jacquin (2004) and Fabre et al. (2006) is
used for the spatial discretisation of the problem. The energy of the perturbation, which
defines a weighted inner product, is defined classically by

E = (x,x)E =
1

2

∫

∞

0

(u∗u + v∗v + w∗w) rdr, (2.15)

where ∗ denotes the complex conjugate. The use of the energy-based inner product re-
quires a coordinate transform to convert the statistics measures into the more standard
Hermitian H2 norm (Hoepffner 2006; Schmid 2007). From the Choleski factorisation of
the symmetric definite positive weight operator W = MHM , the relation between the
two norms is ||x||E = ||Mx||2 and ||A||E =

∣

∣

∣

∣MAM−1
∣

∣

∣

∣

2
.

The calculations are carried out with Matlab using the DMSuite package developed
by Weideman & Reddy (2000). The convergence of the numerical procedure depends on
both the truncation level N and the radial domain extent rmax. We tested the results sen-
sitivity to both parameters and converged calculations were obtained for N ∈ [150, 300]
and rmax ∈ [5000, 20000], according cases.

3. Results

3.1. The axisymmetric case (m = 0)

The presentation of the results starts with the axisymmetric case. Figure 1 shows the
energy amplification as a function of the axial wavenumber for Reynolds numbers varying
from 500 to 10000. As in optimal perturbation analyses (PH06, AB07), high levels of
amplification are observed. The plot also confirms that the largest amplifications occur for
small axial wavenumbers. The amplification levels reach higher values than those found by
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Figure 1. Energy amplification reached for the statistical steady-state in the axisymmetric
case (m = 0) as a function of the axial wavenumber k for various Reynolds numbers.

optimal perturbation analyses, which can be easily understood since the system is excited
by a constant input and not solely by an initial condition (Bamieh & Dahleh 2001). This
difference in the level of amplification between these two approaches is systematic.

For the k = 1 case, we consider the hierarchy of both the input and output structures
according to their contribution to the sustained variance of the steady state. The spectra
resulting from the eigenvalue problems (2.7) and (2.10) are plotted in figure 2. The energy
amplification essentially results from the contribution of the few first structures as the
eigenvalues rapidly decrease to negligible values. The first input structure is responsible
for 62% of the vortex excitation and dominates the forcing field. In the same manner, the
first ouput structure prevails in the vortex response by contributing to 61% of the variance
sustained by the flow. Figure 3 gives the spatial distribution of these two dominant
structures. They are very similar to the optimal perturbation at initial and optimal times
found in the optimal perturbation analyses of PH06 and AB07. The forcing structure
consists of azimuthal velocity streaks located in the quasi-potential region in the outer
periphery of the vortex. The physical mechanism leading to the azimuthal vortex rings of
the figure 3(b) has been previously explained by AB07. It has been called “anti-lift-up” in
reference to the so-called “lift-up” mechanism occuring in planar shear flows, though it is
radically different in nature. Briefly, the azimuthal velocity streaks induce a local Coriolis
force field yielding to a radial displacement of the fluid particules. Its potential part is
balanced by the pressure gradient to ensure the flow incompressibility. Its rotational
part feeds the tori of azimuthal vorticity that constitute the vortex response displayed
in figure 3(b). AB07 established this original mechanism with the assumption of zero
base vorticity. This is a good approximation since the velocity streaks are localised in
the quasi-potential region of the base-flow. The essential trends are correctly captured
by this scenario. Nevertheless, the residual base vorticity in the outer periphery of the
Lamb–Oseen vortex is at the origin of a small deviation from this idealized view when
approaching the vortex core. Indeed, one can identify weak secondary rolls in figure 3(b)
located closer to the vortex core. Antkowiak (2005) showed that they are the signature of
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Figure 2. (a) Contribution of the output structures to the response of the system. (b) Contri-
bution of the input structures to the excitation of the system. The case shown corresponds to
m = 0, k = 1 and Re = 1000.
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Figure 3. (a) Structure of the first input (forcing) function for m = 0, Re = 1000 and k = 1
(isocontours of azimuthal velocity). (b) Structure of the first output (response) function for
the same parameters values (isocontours of azimuthal vorticity). Eight equally spaced levels are
displayed and dashed contours correspond to negative values.

waves generated in the region of non-zero epicyclic frequency of the base-flow κ defined
by κ(r)2 = 2Ω(r)Z(r) (Rayleigh discriminant). Mathematically, this comes from the
coupling term associated with the base vorticity Z(r) in the equation for the azimuthal
velocity, see equation (2.13c).

When varying the axial wavenumber, the radial location of both the azimuthal velocity
streaks and the resulting azimuthal vortex rings increases with increasing wavelengths
(data not shown). This is in agreement with the results of PH06 who related the increasing
radial position of the optimal perturbation (and consequently the associated optimal
time) with increasing k to the radial distribution of the vorticity-to-strain ratio in the
base flow. The anti-lift-up mechanism is observed to dominate the flow dynamics even
more as the axial wavenumber decreases. Indeed, contribution of the dominant structures
to the variance of the response is found to shrink at large k. For k = 0.1, the output
(resp. input) structure accounts for 78% (resp. 79%) of the energy amplification, whereas



10
2

10
3

10
4

10
5

10
6

10
7

10
2

10
4

10
6

10
8

10
10

10
12

Re

G∞

(a) 

Re3 

10
−2

10
−1

10
−5

k

lo
g(

G
∞

k2 /R
e3 )

 Re = 500
 Re = 1000
 Re = 2000
 Re = 5000
 Re = 10000

(b) 

Figure 4. (a) Influence of the Reynolds number on the energy amplification factor for k = 1 and
m = 0. The cross markers represent calculations and the dashed-dotted line is the theoretical
scaling derived from Antkowiak (2005) analysis. For this axial wavenumber, the linear regression
from the numerical data gives a gain scaling as G∞ = O(Re2.77). (b) Scaling law for small k.

for k = 2.5 the output (resp. input) structure only participates for 32% (resp. 32%) of
the gain.

The next point to be discussed is the influence of the Reynolds number. From figure 1,
it is obvious that larger Reynolds numbers result in larger energy amplifications by the
flow. This is not surprising because of the energy balance between the extraction of energy
from the background flow by the stochastic forcing, on the one hand, and the viscous
dissipation on the other hand. When looking more precisely at the Reynolds number
dependence for the sustained variance, one can obtain a scaling law from a sufficient
collection of calculations, see figure 4(a) for k = 1. For the range of axial wavenumbers
explored here, the scaling was always found to be of the form G∞ = O(Reα) with α
decreasing from 3 for k = 0.1 to 2.5 for k = 3. Antkowiak (2005) showed that a O(Re2)
scaling for the transient energy growth is an upper bound. In the present study, the
system is being continuously excited and the energy accumulates before it dissipates. The
characteristic diffusion time is O(Re). Hence, the upper bound for the energy growth is
O(Re3) here, which is consistent with the results obtained. This scaling has been derived
with the hypothesis of zero base vorticity. The deviation from the predicted scaling law
is explained by the existence of the radially propagating waves mentioned previously,
which are responsible of an outward radiation of energy (Antkowiak 2005). This point
also enlightens on the variation of the exponent α with k in the scaling law found in
this study. As k is decreased, the input structures are located further away from the
core where the zero base vorticity assumption is more accurate (PH06, AB07). Hence for
small wavenumbers, there is no wave generation and the scaling law in O(Re3) becomes
exact.

In addition, variation of the viscous diffusion does not affect the spatial structure of
forcing and response. The velocity and vorticity distributions displayed in figure 3 remain
unchanged when the Reynolds number is varied. The only difference resides in the peaks
of both azimuthal velocity and vorticity that rise to higher values when the Reynolds
number is increased. Finally, we also obtained an empirical scaling law for the energy
amplification when k goes to zero. We found numerically that the gain roughly scales as
O(Re3/k2) as can be seen in figure 4(b).
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Figure 5. Energy amplification in the helical case (m = 1) as a function of the axial
wavenumber k for various Reynolds numbers.

3.2. The helical case (m = 1)

Figure 5 displays the energy gain for the m = 1 helical waves as a function of the axial
wavenumber for different Reynolds numbers. Compared to the optimal perturbation ana-
lyses of Antkowiak & Brancher (2004) and PH06, similar global trends are retrieved and
large amplification levels are found. The large increase of the gain for small k is observed
as well as the peak around k = 1.5 and an emerging one at k = 2.5 although less pro-
nounced than in the optimal perturbation analysis of Antkowiak & Brancher (2004). The
latter point suggests that the dominant structure does not emerge conspicuously in the
vortex response for this range of wavenumber. This is confirmed quantitatively since the
first output structure only contributes to 32% of the sustained variance for k = 1.35 and
Re = 1000. This is the consequence of the coexistence of several perturbations participat-
ing in the energy amplification when the system is stochastically forced. For k = 1.35, the
second emerging structure contributes for 11% to the gain. Hence, the vortex response to
the forcing will be dominated by the first output structure. Its axial vorticity is plotted in
figure 6 as well as the axial vorticity of the input structure that essentially excites it. This
forcing structure is composed of a pair of left-handed spiraling vorticity sheets similar
to the initial shape of the optimal perturbation found by Antkowiak & Brancher (2004).
These two folded vorticity layers located in the quasi-potential region of the flow are of
alternate sign. Their respective velocity induction on the vortex core initially cancel each
other. As time evolves, they progressively uncoil via an Orr mechanism induced by the
base flow differential rotation. Through this process, the reorganisation of the vorticity
sheets promotes an increasing velocity induction in the vortex core that leads to the
emergence of the dominant output structure of figure 6(b). This response corresponds to
the first critical layer mode of Fabre et al. (2006) as can be seen from the comparison of
the velocity radial profiles in figure 7(a).

This phenomenon can be interpreted as a transient resonance mechanism: a Kelvin
wave of the Lamb–Oseen vortex is excited by the perturbation field induced by the
uncoiling of the initial vorticity spirals. This conjecture was first confirmed by Antkowiak
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Figure 6. Isocontours of axial vorticity for the dominant structures for m = 1 and Re = 1000.
The same convention as in figure 3 is used except for (d) where ten equally spaced levels have
been used. The dotted circle corresponds to the location of the maximum azimuthal velocity
of the Lamb–Oseen vortex at r = 1.1209r0. First input structure for (a) k = 1.35 accounting
for 31% of the energy amplification, (c) k = 2.5 and 17%, (e) k = 0.5 and 50%. First output
structure for (b) k = 1.35 accounting for 32% of the flow excitation, (d) k = 2.5 and 16%, (f)
k = 0.5 and 52%.
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Figure 7. (a) Comparison of the velocity radial profiles between the first L1 mode of Fabre
et al. (2006) and the output structure emerging from the stochastic forcing for k = 1.35 and
Re = 1000. The solid, dashed and dotted lines correspond respectively to the radial, azimuthal
and axial velocity of the L1 wave. The cross markers denote the velocity profiles of the output
structure. (b) Influence of the Reynolds number on the energy amplification factor for k = 1
and m = 1. The cross markers represent calculations and the dashed-dotted line the theoretical
scaling derived from Antkowiak (2005) analysis. For this axial wavenumber, the linear regression
from the numerical data gives a gain scaling as G∞ = O(Re

1.8).

(2005) who made a successful comparison with a forced harmonic oscillator elementary
model. Choosing an adequate forcing term so as to correctly reproduce the influence of
the spiraling vorticity arms, the frequency of the forcing term is found to fit very well
those of the selected waves. PH06 performed a similar analysis on the top-hat (Rankine)
vortex. Their results supported the hypothesis of a resonance-driven excitation of vortex
waves. From the simple harmonic oscillator model, one can obtain an expression for
the energy gain at large time when the forcing term has a constant amplitude: G∞ =
1/(s2 + (ωf − ω)2) where ωf is the pulsation of the forcing term, ω the pulsation of an
eigenmode of the system and s its damping rate. From this first estimation of the energy
growth, one can see that the selection process is based on two aspects. The first criterion
consists in selecting one of the least damped waves – minimising the s term – since it
allows a maximal energy amplification. For the present set of parameters, the first critical
layer mode – referred to as the first L1 mode according to the nomenclature of Fabre
et al. (2006) – has the minimum damping rate, see their figure 6. As a consequence it is
found to be the dominant output structure. Secondly, the disturbance may be in phase
with the wave in order to impose a continuous excitation – minimizing the (ωf − ω)
term. This implies that the rotation rate of the spirals be close to the pulsation of the
mode. In the quasi-potential region of the flow, the rotation rate of the vorticity sheets
is Ω(r) ≈ 1/r2. Hence, the radial position of the spiraling vorticity sheets is imposed by
the mode frequency, i.e. r ≈ 1/

√
ω where ω is the wave pulsation, a criterion previously

established by PH06 with the top-hat vortex model (see their figure 21c). For the k = 1.35
case, the first L1 wave frequency is 0.121, which gives a mean radial position of r = 2.9.
This is consistent with the location of the spiral arms in figure 6(a).

Keeping in mind these two criteria for the resonance phenomenon and considering the
stability results of Fabre et al. (2006), it is expected that the mode selection depends
on the axial wavenumber. Indeed for larger wavenumbers, we found the second L1 mode
as the first output structure, see figure 6(d) for k = 2.5. When k is decreased, the
emerging structure displayed in figure 6(f ) is also of a different nature and corresponds
to the displacement wave of the Lamb–Oseen vortex (referred to as the D wave in the



following). According to the criteria previously mentioned, the emergence of the D mode
is not linked to an exact resonance. This wave being countergrade, i.e. its pulsation
is negative, no disturbance can have a similar rotation rate. In this case, the D wave
emerges only because its damping rate is very small compared to those of the waves
of the L family. It is noteworthy that the spiraling input structure is located far from
the vortex core, at a mean radial position r ≈ 15. This represents a slow time-rotating
disturbance with an associated rotation rate Ω(r) ≈ 0.0044. This point is linked to the
fact that the displacement wave emergence corresponds to an exact resonance in the
two dimensional limit for a steady forcing. For k = 0, the D wave is stationary and the
exciting perturbation can satisfy the in-phase condition if the spiral arms of vorticity
are pushed outwards to an infinite radial position. Obviously, this could not be verified
numerically, but we found that the radial location of the input structure increased when
reducing the axial wavenumber from k = 0.5 to k = 0.1. This exact resonance comes
with an infinite energy growth as revealed by the large increase of the gain when k goes
to zero in figure 5.

The emergence of the displacement wave under continuous external perturbations is a
good candidate for explaining the vortex meandering (or wandering) phenomenon. The
nature of the wave, namely a long wavelength bending wave, is in agreement with the
characteristics of the meandering observed in wind tunnel experiments (Baker et al. 1974;
Devenport et al. 1996). The theoretical approach used here, which takes into account the
external disturbances in the form of a continuous random forcing, is consistent with
real experimental conditions where background noise is constantly exciting the wing-tip
vortex. This point has to be confirmed experimentally by controlling, or at least, quanti-
fying, the perturbation field and by correlating the data with measurements of the vortex
response. Here we only give a physical mechanism that could explain the occurrence of
this phenomenon. But we are still far from a comprehensive and fully predictive descrip-
tion that could help experimentalists to filter out this erratic core displacement. To our
knowledge, the best way to proceed is proposed by Devenport et al. (1996), who used a
Gaussian model for the fluctuations of the vortex core position.

Inspection of the effect of viscosity has been explored numerically and a general power
law has been obtained for the energy amplification, see figure 7(b) for k = 1. For the
range of axial wavenumbers considered here, we found the scaling G∞ = O(Re1.8). This
exponent is considered as valid for any k since very small variations were observed, i.e

1.8 ± 0.02. Antkowiak (2005) showed that the transient energy growth is O(Re) for the
resonance phenomenon while it is O(Re2/3) when only the Orr mechanism is active.
Following the same reasoning as in the axisymmetric case, the theoretical upper bound
for energy amplification under stochastic forcing is O(Re2). The results obtained here
are in good agreement with this scaling law. A decrease in viscous diffusion also affects
the structures. While the vorticity distribution of the Kelvin waves remains practically
unchanged, the spiral arms of the dominant disturbance get thinner as the Reynolds
number increases, a point already noticed by PH06. The peaks of vorticity also reach
larger values, which leads to a stronger velocity induction in the core when the spirals
unfold and a higher level of energy amplification.

3.3. The double-helix case (m = 2) and higher azimuthal wavenumbers

The energy gain of the vortex in response to double-helix perturbations is plotted versus
the axial wavenumber in figure 8 for different Reynolds numbers. The levels of amplifi-
cation are lower than in the axisymmetric case but with similar tendencies. For a given
Reynolds number, the larger the wavelength the larger the amplification. These results
are noticeably different from those of the optimal perturbation analysis (PH06). Not
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Figure 8. Energy amplification reached for the statistical steady-state in the double-helix case
(m = 2) as a function of the axial wavenumber k for various Reynolds numbers.

only are the levels much higher but the dependence on k is completely different. The
amplification maximum occurs for small wavenumbers and the curve does not present
the flat-shaped aspect displayed in figure 19(b) of PH06. The difference in the results
can be explained by two complementary arguments. Firstly, the development of the op-
timal perturbation is completed within few rotation periods of the vortex (Antkowiak
2005). In this case, the transient energy growth of the optimal perturbation may occurs
on too short a timescale, compared to the statistical mean time between two consecutive
excitations of the mode by the external forcing, for being efficiently amplified. After an
excitation of the vortex with the optimal disturbance extracted from the random noise,
the process of energy amplification and decay is likely to be over before another excita-
tion happens. Hence, the energy gain resulting from successive excitations is statistically
unlikely to cumulate. As a result, the optimal perturbation will be less amplified under
a random forcing than a disturbance associated with a less efficient transient mechanism
but occurring on a longer timescale. This point is related to the second argument. In-
deed, strong sub-optimal perturbations competing with the optimal one may exist. They
can eventually dominate the response of the vortex when submitted to stochastic main-
tained forcing if they develop on a larger timescale than the optimal one. Evidence to
this conjecture can be obtained by looking at both the input and output structures.

The structures that dominate the input forcing consist of the same kind of spiralling
structures as the ones identified in the m = 1 helical case (fig. 9). The resonance mech-
anism leading to the selection of a Kelvin wave is active and the first output structure
for k = 2.5 displayed in figure 9(b) corresponds to the flattening wave of Fabre et al.
(2006). This mode being by far the least damped, it is selected on frequency arguments
according to the criteria mentioned in the previous section. The mean radial position
of the entangled vorticity spirals is imposed by the pulsation of the mode. However,
while active, the resonance no longer dominates the flow dynamics since the first input
structure account for only 8% of the sustained variance in this case. The sub-optimals
participate equally to the excitation of the vortex. For smaller wavenumbers, transient
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Figure 9. Isocontours of axial vorticity for the first functions for m = 2 and Re = 1000. The
same convention as in figure 3 is used. First input structure for (a) k = 2.5 accounting for 8% of
the energy amplification, (c) k = 1 and 10%. First output structure for (b) k = 2.5 accounting
for 8% of the flow excitation, (d) k = 1 and 10%.

resonance is not even the dominant mechanism leading to energy amplification. Figure
9(d) shows the first output structure for k = 1. The vortex response is only composed of
the four initial vorticity sheets that have been uncoiled. In this case, the Orr mechanism
gives the largest energy growth and accounts for 10% of the total amplification. The
spiralling vorticity arms of the input structure are located far from the vortex core so
that the timescale of the Orr mechanism is long enough to be efficiently amplified by the
stochastic forcing. Its timescale is given by the duration of the uncoiling of the vorticity
arms which is roughly evaluated by

τOrr ≈ − 2π

e∂rΩ(rh)
, (3.1)

where e and rh are respectively the mean width and the radial position of the spiral
arm. For the perturbation plotted in figure 9(c), τOrr is found to be about 50 rotation
periods of the vortex, which is one order of magnitude larger than the optimal time. As



previously argued, this energy growth mechanism is activated on a longer timescale than
the transient resonance, and it is more efficiently amplified by the maintained forcing.
Inspection of the less dominant structures reveals that the flattening wave is the fourth
preferred response of the flow accounting only for 4% of the variance. For the m = 2
case, there is no structure that clearly dominates the flow response, by contrast to what
has been found for the m = 0 and m = 1 cases. Whatever the axial wavenumber, the
contribution of the most dominant output structure never exceeds 15%.

Finally, our survey ends with the description of the vortex response for higher azimuthal
wavenumbers. We explored the flow behaviour under a continuous stochastic forcing for
m as large as 10 and always found energy amplification. The observed gain levels decrease
with increasing m and are far below those of the three previous cases. The amplification
curves present the same shape as for the m = 2 case with a maximum when k tends
to zero. The dynamics leading to energy growth always consists of the Orr mechanism.
The dominant input structure lies in the spiralling vorticity sheets that uncoil due to
the differential rotation. No transient resonance mechanism has been found as could
have been expected considering the large damping rate of the Kelvin waves (Fabre et al.
2006). This phenomenon is valid for all m > 2. While energy growth is observed, these
cases are of limited interest as they are exceedingly unlikely to prevail over the responses
corresponding to the first three azimuthal wavenumbers.

4. Discussion

The results obtained in the present study show a noticeable similarity between the am-
plification curves for the different azimuthal wavenumbers considered here (m ∈ [0, 10]):
the energy gain is maximum for k = 0 and decreases as k increases. This theoretical lack
of intrinsic axial wavelength selection raises questions regarding the use of the present
results in order to predict the response of the vortex in real-life conditions.

At that stage, we wish to underline that the interpretation of the amplification curves
must be undertaken carefully. If one wants to predict the selection of a particular wave-
length, a direct and hasty extrapolation of the results presented in this paper can prove
completely erroneous when compared to experiments without any caution. Thus, con-
sidering that the most amplified (k,m) modes correspond to m = 0 and k tending to
zero, it could be tempting to predict the systematic and dominant occurrence of very
large axisymmetric vortex rings at the outer periphery of the vortex, as presented in sec-
tion 3.1. But this conclusion, if applied to realistic experiments or observations, must be
balanced by taking into account the departure of the experimental conditions from the
hypothesis that define the framework of the present analysis. It concerns the unbounded
character of the flow, the spectral content of the external forcing and the influence of the
nonlinearities. These points are discussed further in this section.

4.1. Bounded vs unbounded flows

First, the largest amplifications are obtained in the limit of infinite wavelengths (k → 0)
for every azimuthal wavenumber m, suggesting that the response of the vortex should be
systematically quasi-two-dimensional, at least for m > 0, and involve very large struc-
tures. But it must be kept in mind that the input structures triggering the vortex response
(azimuthal streaks for m = 0 and axial vorticity spirals for m > 0) are localised radially
further away from the vortex axis when k decreases, eventually extending to infinity for
k → 0. This singular behaviour questions the validity of the unbounded flow hypothesis
that is implicitly made in the present formulation. It is expected that the predictions
concerning the long-wave response of the vortex put forward in the previous sections will



be distorted by the presence of physical boundaries at finite distance such as the side
walls of the wind tunnel, or by taking into account flow features ignored in the present
model such as other vortices for instance. The present study found no intrinsic wave-
length selection by the vortex and the process of wavelength selection is extrinsic and
therefore case-dependent.

Nevertheless, the present results show that the physical mechanisms of growth involved
in the response of the vortex systematically favour the structures with the largest axial
wavelength admissible as long as their radial extent does not exceed the limit of represen-
tativeness of the vortex flow model used here. We then expect the present results to be
relevant above a critical axial wavenumber kc ∼ 2π/rc corresponding to a characteristic
radial extent rc above which the vortex flow model used here significantly departs from
the real-life conditions.

This discussion can also be supplemented, to a lesser extent, with the validity of the
infinite time limit required in the present formulation to reach theoretically a statistical
steady state. The input structures that are favoured in the k → 0 limit correspond to
infinitely slowly growing disturbances (Pradeep & Hussain 2006; Antkowiak & Brancher
2004, 2007). These perturbations thus may not have enough time to grow significantly
in finite-time experiments. This is a second source of distortion for the large-wavelength
results presented here. If the flow develops on a short or medium timescale, one can
expect the selection of finite-time optimal perturbations which can be radically different
from the structures predicted here for an infinite time horizon.

4.2. Initial turbulence vs. continuous white noise

The linear evolution of perturbations of a vortex flow is formally given by the general
solution of the governing equation (2.1a) which has two components: the homogeneous
solution which describes the evolution of initial conditions and the particular solution
which represents the long-time response of the flow to a continuous external forcing.
As mentioned by Schmid (2007), both parts are complementary and fully describe the
general dynamics of small perturbations.

The studies of perturbed vortices generally focus on the former point, the evolution of
initial conditions, such as temporal modal stability analyses (see Fabre et al. (2006) for
the Lamb–Oseen vortex), optimal perturbation analyses (Antkowiak & Brancher 2004,
2007; Pradeep & Hussain 2006) or theoretical and numerical investigations of the re-
sponse of vortices to initially injected turbulence (Melander & Hussain 1993; Risso et al.
1997; Miyazaki & Hunt 2000; Takahashi et al. 2005; Marshall & Beninati 2005). More
particularly in the latter case, the objective is to understand how the vortex immersed
in an initial turbulent field responds to this perturbation and how in return the initial
turbulence is affected by the presence of the vortex and the associated shear and rotation
which are known to drastically alter the statistics of turbulence on a short time scale.

By contrast with these studies, the approach adopted in the present paper is quite
different, as it focuses on the long-time response of the vortex when submitted to a
continuous external forcing. This corresponds formally to the study of the particular so-
lution of equation (2.1a) as stated by Schmid (2007). Physically this particular solution
provides a model for receptivity process, where the external forcing may represent ei-
ther free-stream turbulence, wall roughness or other non smooth geometries, body forces
or even neglected terms such as nonlinearities. This forcing can also be linked to the
deviation from the model base flow, like the faraway presence of other vortices or the
boundary-layer perturbations generated at the side walls of the wind tunnel. In that
context of receptivity analysis, the continuous forcing used in the study is chosen as
generic and unbiased as possible in the form of white noise. Being equally distributed



in space allows to excite all possible regions of the flow and not to favour any specific
wavelength or frequency. Thus, if the wavelength selection is case-dependent (on the
dominant wavelengths or frequencies of the external forcing in real-life conditions for
instance†, see preceding section), the quantification of the amplification is nevertheless
a measure of the intrinsic transfer function of the Lamb–Oseen vortex, and reveals the
intrinsic mechanisms that are favoured by the flow. Here it is shown that the largest
response is observed in forcing scenarios that convert perturbations in the form of azi-
muthal velocity streaks into intense azimuthal vortex rings (for the axisymmetric part
of the flow), and perturbations in the form of spiraling axial vorticity sheets outside the
vortex into large bending (m = 1) and deformation waves (m > 1) within the vortex.
It is noteworthy that these mechanisms are similar to the ones uncovered by nonmodal
studies of the initial-condition problem such as optimal perturbation analyses (PH06,
AB07) and are consistent with the numerical simulations of the interaction of a vortex
with an initial turbulent field. This suggests that such mechanisms are robust and fun-
damental to the dynamics of perturbed vortices. It is expected that they are potentially
active whatever the details of the vortex flow and the perturbations considered.

4.3. Validity of the linear approach

This work has been conducted within the linear approximation and it is important to
figure out how the results obtained here are adjusted by the nonlinearities. The physical
mechanisms of transient energy amplification considered here and in the studies of PH06
and AB07 are linear. As argued by Miyazaki & Hunt (2000), linear analysis correctly
describes these processes or at least their initial development, while the nonlinearities
impact the further evolution of individual structures. This point is currently under in-
vestigation via direct numerical simulations of the nonlinear evolution of the optimal
perturbations. Preliminary results for the m = 0 case show that the azimuthal vorticity
rings of the output structure are self-advected away from the vortex axis, carrying along
the streaks of high azimuthal velocity of the forcing structure. Due to the conservation of
angular momentum, the intensity of the streaks decreases as the structures move radially
outwards. Thus, the axisymmetric mechanism of energy growth is progressively damped
by the nonlinearities. In the case of a maintained forcing, this nonlinear damping effect
is expected to be of minor importance as the streaks of azimuthal velocity would be
statistically regenerated continuously.

Concerning the external forcing from a more general perturbation field, the nonlinear
development of the flow has to be considered for all wavenumbers simultaneously. Nu-
merical simulations including a continuous forcing would be of great interest in order to
know how the amplification factors obtained here are affected by the nonlinear effects
(i.e. , saturation). In the case of a transient forcing induced by an initially homogeneous
isotropic turbulence, Takahashi et al. (2005) performed such analysis. The departure
from the linear regime happens when the bending wave growing in the core reaches a
finite amplitude. They measured quantitatively the impact on nonlinearities through the
time dependence of the axisymmetric axial correlation function. Its temporal growth was
observed to be proportional to t contrary to linear RDT analyses where a quadratic time

† More precisely, as mentioned by one referee, a forcing of the form of a realistic turbulent
signal would inject very low amplitude perturbations at large scales k → 0, and therefore a peak
is expected at some finite wavelength in the response variance for each m. This wavelength selec-
tion will depend on the spectral content of the azimuthal Fourier decomposition of the turbulent
signal, that might be highly sensitive to the particularities of the experimental environment in
the long wave limit.



dependence was found (Miyazaki & Hunt 2000). Thus, the nonlinear terms tend to limit
the energy growth and a similar saturation is expected for any generic random forcing.

5. Conclusions

The goal of the present study is to analyse the dynamics of the Lamb–Oseen vortex
when continuously forced by a random excitation. Considering the existence of transient
growth in vortices when submitted to specific perturbations, this work aims at deter-
mining if the optimal perturbations found by Antkowiak & Brancher (2004, 2007) and
Pradeep & Hussain (2006) could naturally emerge from background noise. For this pur-
pose, the linear Navier-Stokes equations are continuously forced with Gaussian white
noise so as to mimic any perturbations occurring in real transitioning flows. We then
look at the large-time statistical response of the vortex and at the coherent structures
participating to its excitation. Not only this method allows the energy gain of the system
to be quantified but also to find and order the coherent input (resp. output) structures
according to their contribution to the excitation (resp. variance or response) of the flow.

For all azimuthal wavenumbers investigated, energy amplification is always observed
but when m > 2, the levels reached are too small compared to those obtained from
smaller values of m to be significant. Compared to the optimal perturbation analysis,
the levels of amplification obtained here are always higher since it corresponds to energy
growth resulting from a continuous noise input and not from a single initial condition.
This difference in the value of the gain is particularly marked when the optimal pertur-
bation evolves on a short timescale. In such cases, the sub-optimal perturbations have
to be considered as they participate equally in the vortex response. This point has to
be recognised as one advantage of the stochastic forcing approach. Indeed, the optimal
perturbation analysis classically focuses on the most amplified disturbance and can some-
times miss some transitional scenarios. This is what we observe for the m = 2 case where
no prevailing mechanism has been found to dominate the vortex dynamics.

Focusing on the physical mechanisms leading to energy growth, the scenarios leading
to the vortex excitation identified by Antkowiak & Brancher (2004, 2007) and Pradeep
& Hussain (2006) are recovered. This study confirms that the optimal perturbations can
naturally be activated by the background noise present in uncontrolled conditions.

In the axisymmetric case, the mechanism called “anti-lift-up” by AB07 consists in
the emergence at the vortex periphery of strong tori of azimuthal vorticity fed by the
azimuthal velocity streaks of the forcing structure. This scenario gives a theoretical coun-
terpart to the observation of the recurrent development of vortex rings at the periphery
of vortices when submerged in an ambient turbulence (Melander & Hussain 1993; Risso
et al. 1997; Takahashi et al. 2005).

For helical perturbations, the excitation of the vortex is explained by a transient re-
sonance phenomenon. The dominant forcing structure is composed of two left-handed
entangled vorticity sheets located in the quasi-potential region of the flow. As time
evolves, they progressively uncoil under the base flow differential rotation and trigger
the appearance of a Kelvin wave through a process combining induction effects and the
Orr mechanism. The emerging Kelvin mode depends on the axial wavenumber as the
selection is based both on a minimisation of the wave damping rate and a concordance
between the pulsations of both the mode and the vorticity spirals. At large wavelengths
where the gain is maximal, the displacement mode of Fabre et al. (2006) is preferentially
excited. The emergence of the displacement wave under the influence of a maintained
background noise is thus an interesting candidate for the vortex meandering observed in
the experiments (Baker et al. 1974; Devenport et al. 1996).



This mechanism of resonance originating from a localised spiraling vorticity distur-
bance also occurs for m = 2 perturbations with the emergence of the flattening wave.
But it is in competition with other disturbances experiencing transient growth. The sole
disentanglement of the vorticity spirals via the base flow differential rotation leads to
energy amplifications as large as those deriving from the flattening mode resonance. The
existence of sub-optimal perturbations living on a longer timescale than the optimal one
is put forward to explain the discrepancy between the results obtained here and those
of PH06. This point has to be confirmed. It will be investigated in the near future with
the computation of the sub-optimal perturbations of the Lamb–Oseen vortex for m = 2.
For larger wavenumbers, the Orr mechanism becomes the dominant process of energy
amplification from a continuous random excitation of the vortex.

Finally, the approach conducted here fulfills the interrogations brought by the results of
the optimal perturbation studies of Antkowiak & Brancher (2004, 2007) and Pradeep &
Hussain (2006). This work demonstrates both analyses to be complementary. Such tools
may be applied to asymptotically stable flows whose dynamical operator is non-normal in
order to find out an eventual transient mechanism. For example, Joly et al. (2005) recently
showed that low-density vortices were insensitive to the Rayleigh-Taylor instability. Since
the corresponding dynamical operator does not commute with its Hermitian transpose,
nonmodal stability analysis (both initial value and stochastic forcing formulations) should
be conducted.
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WAKE project under grant number AST4-CT-2005-012238 and the French National
Research Agency as part of the VORTEX project.
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Paul Sabatier (UPS), Toulouse, France.

Antkowiak, A. & Brancher, P. 2004 Transient energy growth for the Lamb-Oseen vortex.
Phys. Fluids 16 (1), L1–L4.

Antkowiak, A. & Brancher, P. 2007 On vortex rings around vortices : an optimal mechanism.
J. Fluids Mech. 578, 295–304.

Baker, G.R., Barker, S.J., Bofah, K.K. & Saffman, P.G. 1974 Laser anemometer mea-
surements of trailing vortices in water. J. Fluid Mech. 65, 325–336.

Bamieh, B. & Dahleh, M. 2001 Energy amplification in channel flows with stochastic excita-
tion. Phys. Fluids 13 (11), 3258–3269.

Billant, P., Brancher, P. & Chomaz, J.M. 1999 Three-dimensional stability of a vortex
pair. Phys. Fluids 11 (8), 2069–2077.

Butler, K.M. & Farrell, B.F. 1992 Three-dimensional optimal perturbations in viscous
shear flow. Phys. Fluids A 4, 1637–1650.

Butler, K.M. & Farrell, B.F. 1993 Optimal perturbations and streak spacing in wall-
bounded turbulent shear flow. Phys. Fluids A 5 (3), 774–777.

Corbett, P. & Bottaro, A. 2001 Optimal linear growth in swept bounday layers. J. Fluid
Mech. 435, 1–23.

Crow, S.C. 1970 Stability theory for a pair of trailing vortices. AIAA Journal 8 (12), 2172–
2179.

Devenport, W.J., Rife, M.C., Liapis, S.I. & Follin, G.J. 1996 The structure and develop-
ment of a wing-tip vortex. J. Fluid Mech. 312, 60–106.

Fabre, D. & Jacquin, L. 2004 Viscous instabilities in trailing vortices at large swirl numbers.
J. Fluid Mech. 500, 239–262.

Fabre, D., Sipp, D. & Jacquin, L. 2006 Kelvin waves and the singular modes of the Lamb-
Oseen vortex. J. Fluid Mech. 551, 235–274.



Farrell, B.F. & Ioannou, P.J. 1993a Optimal excitation of three-dimensionnal perturbations
in viscous constant shear flow. Phys. Fluids A 5 (6), 1390–1400.

Farrell, B.F. & Ioannou, P.J. 1993b Stochastic forcing of the linearized Navier-Stokes equa-
tions. Phys. Fluids A 5 (11), 2600–2609.

Farrell, B.F. & Ioannou, P.J. 1994 Variance maintained by stochasting forcing of non-
normal dynamical systems associated with linearly stable shear flows. Phys. Rev. Lett.
72 (8), 1188–1191.

Hoepffner, J. 2006 Stability and control of shear flows subject to stochastic excitations. PhD
thesis, R. Inst. Tech. (KTH), Stockholm, Sweden.

Joly, L., Fontane, J. & Chassaing, P. 2005 The Rayleigh-Taylor instability of two-
dimensional high-density vortices. J. Fluid Mech. 537, 415–431.

Jovanovic, M. & Bamieh, B. 2005 Componentwise energy amplification in channel flows. J.
Fluid Mech. 534, 145–183.

Leweke, T. & Williamson, C.H.K. 1998 Cooperative elliptic instability of a vortex pair. J.
Fluid Mech. 360, 85–119.

Marshall, J.S. & Beninati, M.L. 2005 External turbulence interaction with a columnar
vortex. J. Fluid Mech. 540, 221–245.

Melander, M.V. & Hussain, F. 1993 Coupling beetwen a coherent structure and fine-scale
turbulence. Phys. Rev. E pp. 2669–2689.

Miyazaki, T. & Hunt, J. 2000 Linear and non-linear interactions between a columnar vortex
and external turbulence. J. Fluid Mech. 402, 349–378.

Moore, D.W. & Saffman, P.G. 1975 The instability of a straigth vortex filament in a strain
field. Proc. R. Soc. London A 346, 413–425.

Nolan, D.S. & Farrell, B.F. 1999 The intensification of two-dimensional swirling flows by
stochastic asymmetric forcing. J. Atmos. Sci. 56 (23), 3937–3962.

Orr, W.M. 1907a The stability or instability of the steady motions of a perfect liquid and of
a viscous liquid. part 1: A perfect liquid. Proc. R. Irish Acad. 27, 9–68.

Orr, W.M. 1907b The stability or instability of the steady motions of a perfect liquid and of
a viscous liquid. part 2: A viscous liquid. Proc. R. Irish Acad. 27, 69–138.

Pradeep, D.S. & Hussain, F. 2006 Transient growth of perturbations in a vortex column. J.
Fluid Mech. 550, 251–288.

Reddy, S.C. & Henningson, D.S. 1993 Energy growth in viscous channel flows. J. Fluid Mech.
252, 209–238.

Reddy, S.C., Schmid, P.J. & Henningson, D.S. 1993 Pseudospectra of the Orr-Sommerfeld
operator. SIAM J. Appl. Math. 53 (1), 15–47.

Risso, F., Corjon, A. & Stoessel, A. 1997 Direct numerical simulations of wake vortices in
intense homogeneous turbulence. AIAA Journal 35 (6), 1030–1040.

Schmid, P.J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129–162.
Takahashi, N., Ishii, H. & Miyazaki, T. 2005 The influence of turbulence on a columnar

vortex. Phys. Fluids 17, 035105.
Trefethen, L.N., Trefethen, A.E., Reddy, S.C. & Driscoll, T.A. 1993 Hydrodynamic

stability without eigenvalues. Science 261, 578–584.
Tsai, C.Y. & Widnall, S.E. 1976 The stability of short waves on a straight vortex filament

in a weak externally imposed starin field. J. Fluid Mech. 73, 721–733.
Weideman, J.A.C. & Reddy, S.C. 2000 A matlab differentiation matrix suite. ACM Trans.

Math. Soft. 26 (4), 465–519.
Whitaker, J. S. & Sardeshmukh, P. D. 1998 A linear theory of extratropical synoptic eddy

statistics. J. Atmos. Sci. 55, 238–258.
Zhou, K., Doyle, J. & K., Glover 1995 Robust and Optimal Control , 1st edn. Prentice Hall.




