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From a Model of Lossy Flared Pipes to a General
Framework for Simulation of Waveguides

Rémi Mignot, Thomas Hélie, Denis Matignon

Abstract—This paper deals with the theory and application framework) is derived. This framework contains delays for
of waveguide modeling of lossy flared acoustic pipes, relyin wave propagation and coefficients for reflexion at junctiohs
on the Webster-Lokshin equation. This model describes the cylinders. In [11], theKelly-Lochbaunframework is derived

propagation of longitudinal waves in axisymmetric acoust pipes . . .
with a varying cross-section, visco-thermal losses at thealls, and for a refined model of connection of lossless cones (with

without assuming planar waves or spherical waves. Solvinhts ~continuity of radius at junctions). In [12] and [14], visco-
model for a piece of pipe leads to a two-port system made of thermal losses are taken into account for connections of

four transfer functions which mimic the global acoustic efects. cylinders and cones respectively. In [16], connection sjo
Moreover, introducing some relevant physical interpretaions cones with discontinuity of section is considered. In [178 t

makes it possible to separate elementary effects due to the . T
geometry of the piece of pipe (section, slope, and curvatuye sameKelly-Lochbaunframework is recovered by considering

and isolate corresponding elementary transfer functionsFrom @ more refined model of connectio_n of lossy fla_red pipes,
this decomposition a framework is obtained which allows to using theWebster-Lokshiequation. It is a 1D-acoustic model,

recover some digital waveguide models introduced earlierni which describes the propagation of longitudinal waves in

the literature. This work contributes to the standardization of axisymmetric acoustic pipes, involving visco-thermalses
some different waveguide models, and brings a higher levelfo . .
at the wall and a varying cross-section.

refinement that is visco-thermal losses combined with cuntare A .
effects. In the present work, starting from th&/ebster-Lokshin

model for a piece of pipe, solutions in terms of traveling
waves lead to a new framework in which each effect of
the geometry of the pipe can be isolated. In spite of the
. INTRODUCTION apparent complexity of this framework at first glance, all
Whereas signal processing approaches describe soumfisments are already known and well understood. Thanks to
physical modeling describes internal acoustic or mechanfe remarkable symmetry of this framework, connecting @sec
phenomena of the modeled system. For sound synthesis ¢bfpipe with a particular order of discontinuity (of section
musical instruments or speech production, for example), slope, or curvature) makes it possible to recover all thevabo
faithfully reproduces the behavior of the system, espBcialmentioned waveguide models (cf. eg. [10]-[18]).
during transient states. Moreover, parametric models\atto This paper is organized as follows. In section I, the adoust
obtain new virtual systems and explore new sounds, togetimeodel is presented and the analytic solution for the acousti
with physical validation. However, digital time simulati® pressure is given in the Laplace domain. Then, pieces of
sometimes require intensive computation from computeysipe are modeled, deriving two-port systems in admittance
That is why special care must be taken on the algorithmamd impedance convention, and finally for traveling waves.
complexity to perform real-time sound synthesis. In section Ill, a physically inspired decomposition of two-
The aim of the present work is to build the model and thgort systems is performed. It allows the isolation of the
simulation of a varying cross-section pipe using the steshde'elementary” acoustic effects of the pipe on traveling wave
“Digital Waveguide Network” approach (see eg. [1], [2]).tWi according to the chosen acoustic model. Then, a general
this technique, a whole virtual resonator is built by cortimec  framework for simulation of digital waveguides is obtainéa
several systems which mimic the acoustic of pieces of pipsection IV, connecting two-ports systems, the model of alevho
The difficulty and the novelty is to include subtle, thouglpipe can be built with a refined model. Moreover this model
perceptible, phenomena due to visco-thermal losses atalie vallows to recover former models of waveguides (concatenati
and continuously varying cross-sections (see eg. [3],[Bl], of cylinders or cones). In section V are briefly presented the
[6], [71, [8], [9D). building of the discrete-time system, and some comparisons
In [10], a resonator is represented by the connection of digital simulations. Finally, section VI concludes tiiaper
pieces of lossless cylinder to model vocal tract. For lowtcoand opens some perspectives.
digital simulation, a scattering network (th&elly-Lochbaum
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A. Webster-Lokshin model model remains valid fof < 1000 Hz. Note that, multi-modal
1) Equations for acoustic pressure and volume fliine approaches_ allow to simL_JIate transversal modes (cf. eg)._[21
Webster-Lokshimodel is a mono-dimensional model, which 3) Equations for traveling wavesn sec. II-Al the acoustic
characterizes linear longitudinal waves propagation isyar- PressureP’(Z, s) and volume flow/ (¢, s) are used to describe
metric pipes, assuming the quasi-sphericity of isobars tea 2COUStiCS. Another description, more adapted to the wadegu
inner wall (cf. [8], [19]), and taking into account viscoetimal simulations, consists in using the traveling waves defined b
losses (cf. [5], [3], [4]) at the wall. The acoustic pressirand ot (e, s)] v (1 Z()] [P(,s) 4
the volume flowU are governed by the following equations, [¢— (¢, s)] - [1 _Z(g)} {U(@,s)} )
given in the Laplace domain:

2

( where Z(¢) := 1/Y(¢) := poco/ A(¢) is the equivalent of
s\? s\ 2 ) acoustic impedance for planar waves traveling inside dgin
(C_o) +240) (c_o) +X(0)| 9 {r(ﬁ)P(ﬁ, S)} = 0,(1) of (constant) section area = A(¢).

According to (1), (2) and (4), these traveling waves are

00 U(fv‘;) +9,P(,s) = 0,(2) 9overned by the coupled system
A e Y Y .
wheres e C is the Laplace variabl€fm(s) = w is the angular (i + 8¢) (L, 5) = £C(0)FT(L, 5) — e(£) (i) (L, s),
frequency)/ is the space variable measuring the arclength of \© co (5)

the wall, r(¢) is the radius of the pipeA(¢) := =r(¢)? is the
section areaz (¢) := ko+/1—7'(£)2/r(¢) quantifies the visco-
thermal losses an.d“(é) = r”(¢)/r(¢) denotes thg curvature jescribes the coupling due td¢) and losses.

of the wall. Equation (1) is calletVebster-Lokshirequation, o planar waves traveling inside a lossless straight pipe
and (2) isEuler equation satisfied outside the wsco—thermzﬂ:(@) — 0 and((¢) = 0), the acoustic staté* corresponds to

boundary layer. decoupled progressive waves. For the Wester-Lokshin model

Note that the standard horn equation (cf. [6]) correspoadsese waves are still progressive insofar as they presérve t
(1) with no losses4(¢) = 0) and assuming planar wavesi§ causality principle.

replaced by the axis coordinat§. Straight and conical pipes
are characterized by (¢) = 0. In the following,Y is assumed
to be non-negative, corresponding to straight, conicalased _ ) ) _ o
pipes. The negative case would require special treatments f [N this paper, a pipe with varying cross-section is approx-
deriving stable versions of waveguides (cf. [7]), which az¢ IMmated by a concatenation of pieces of pipe with constant

where ¢ := ¢+ + ¢~ = rP, and( := r'/r. The operator
(s/coiag) is the traveling operator and the right-hand side

B. Piece of pipe and general solution

of the scope of this paper. parameters. So, a piece of pipe is defined as a finite pipe with
Denotingr(z) the radius of the pipe for the-ordinate, the Igngth L, and with constant _curvature and losses parame_ters
arclength of the wall frono to z is (i.,e Y(¢)=7 ande(¢)=¢). This allows to preserve the conti-
B nuity of radiusr(¢) and sloper’(¢) that isC!-regular shapes.
0(z) = / 1+1(2)2 dz (3) Junctions are characterized by discontinuities of cuneatu
0 Remark that, except for a cylindéY,(¢) ande(¢) cannot be

andr(z) := r(¢(z)). In consequencéy’ (¢)| <1 andr’(¢) — 1  Simultaneously constant. In pratice, pieces of pipe with-co
whenr’/(z) — +oc. stant curvature are considered, anid chosen as the mean of

For numerical computations, the physical constants até/)- This approximation makes sense, at least for physically
chosen for standard conditions. They are: the mass dendRglistic lengths and curvatures for wind instruments.

po = 1.2 kg.m™®, the speed of sound, = 344 m.s™!, the In a such piece of pipeY( and ¢ contant), the general
coefficientso = /7, + (v — 1)v/In ~3.5 1074 m~2, solution of the acoustic pressuf&?, s) for (1) is:

2) Limitations of the model:The Webster-Lokshirmodel ol(s)f o—T(s)
only considers axisymmetric pipes. Consequently, theipless P(L,s) = A(S)W + B(S)W’ (6)

bends (of a trombone slide for example) have to be virtually N
straightened. Moreover, two other limitations appear heea Where A(_S) and B(s) depend on boundary conditions, and
of the visco-thermal losses model and because only longitutiw) = ik(w) for which k(w) is the usual complex wavenum-

dinal propagations are considered. ber.T" is given in the Laplace domain by:

With I/ and i, the characteristic lengths of viscouk & 2 3
410~8m) and thermal I, ~ 610~®m) effects (cf. [20]), I(s) = (i) +25<i> + . 7)
this model of losses is valid for “large tubes” given by Co o

T > y/2col,/w and r > \/2colp/w. For example, with  In (7) /- denotes an analytical continuation of the positive
r =5 mm, the model is valid foif =w/(27) >0.25 Hz. square root ofR* on a domain compatible with the one-sided
For a lossless cylinder with radius the first transversal Laplace transform, namelg§ = {s € C/Re(s) > 0} (see [9]
mode appears af =1.84cy /(277). In the case of a varying for more details). InC{, T' is proved to be analytical and

cross-section pipe, transversal modes appear with fregeen Re(I'(s)) > 0 if € > 0.
higher thanl.84 cq /(277 ), wherer,, is the maximalradius If Y > 0 and e = 0, the unique positive solution
of the pipe. For example, with,,, = 10 cm, the Webster w. = \/T/ co of I'(iw)? = 0, corresponds to the cutoff angular
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_— |mpedance

frequency of a lossless pipe with positive constant curgatu
- - position ofw,

Indeed, ifw > w,, T'(iw) € iR, it corresponds to propagating
waves, and ifw is such that0 < w < w,, I'(iw) € RT, it
corresponds to evanescent waves.

Now, if Y > 0 ande > 0, a similar behavior is obtained

o

) 20 tog, (k= )
E 8

for w. = Sm(s.) > 0 where(s.,s:) are the unique solutions > % . : :

of T'(s)2 = 0; they satisfyRe(s.) < 0 (cf. [9]). £ OMWW\/W
More details of the effects of visco-thermal losses andg_g ;

curvature on transfer functions are given in appendix C. " " Proportional to frequencyt/(2\) = wL/(r o)

Fig. 2. Impedance of open piece of p||oHrll .7y =5mm,r. =1cm,

C. Scattering matrices and equivalent two-port systems ol Sl T

In the following, Py and P, are defined as the acoustic
pressure at the left end & 0) and at the right endl(= L)
of a piece of pipe withY'(£) = T ande(() = . In the same |t results in the following relation between the scattering
way Uy, Uy, are defined as the volume flow at the left anghatrices:G = H~'. The corresponding two-port system (not
the rlght ends, reSpeCtlvely. represented) is namdQUP_

1) Scattering matrix with admittance representatiofrit- Remark: UL (s)=0 leads toPy = G110y, so thatGy; can
ing [Up, U] as functions of [%, P.], the piece of pipe iS pe interpreted as the left input impedance of a closed lossy
modeled by thex2 scattering matrix{(s). Figure 1 represents fiared pipe with constant curvature (cf. Fig. 3).
the corresponding two-port syste@ ;.

Uo _ F _ Hyy Hp| | P . (8) o * : T |nggﬁ%ar11ng?w ‘ ‘
Uy Py| = |Ho Ha |Pr ‘ o N P :
Po(s) UL(s) of

|
N
o

H“ sz
Up(s) * Hia Pr(s)

Fig. 1. Two-port systenQ p;;, with admittance representation.

(Gu(iw)) 20 logw(
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T
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Proportional to frequencyL/(2)\) = wL/(7 co)
Solving (1) and (2) leads to the following closed forms o;,g 3. Impedance of closed piece of pip. r; = 5 mm, rr = 1 cm,

elements ofH (cf. [19]): L=1mY=15m2 Y. =A; /(poco)-
Hu(s) = Ay INy) cosh(Ils)L) 4 ¢ sinh(I(s)L) ©) 3) Scattering matrix for the traveling wavegt, ¢~ ):
M o ssinh(I()L) ’ Now traveling wavesy™ defined by (4) are considered. The

A, Iy cosh(I(9L ) — ¢, sinh(I'(s) L) piece of pipe is modeled by a system, where inputs are
Hals) = == ssinh( 9L (10) i (s) == ¢*(£=0,5) and¢; (s) := ¢~ ({=L,s) (incoming
waves at! =0 and /= L), and outputs are, (s) and ¢} (s)

A
Hio(s) = —:—l = m, (11) (outgoing waves).
T’” f;o %) This system is represented by the scattering mafix and
H = r-r_ - 12) the two-portQ, of Fig. 4.
21(5) r. po s sinh(DEL)’ (12) porQ g

whereT'(s) is defined by (7), and the following notations are [QE] = M, [d’ﬂ — [Rjgr Tg;] F’ﬂ ) (14)
introduced (with indexes=1 andi=r, which meanleft and ) oL Ty Ryl oo
right): r; =r(¢;) (radius),A; =nr? (section area)y. =1'(¢;)
(slope),(; =7 /r;, with £,=0 and ¢, = L. g (5) 971 (s)

Remark: If Pr(s) =0, equation (8) gived/y = Hy1 F. Rl 7
Hence,H;; can be interpreted as the left input admittance of %0 (s) |73 (T_(é)jR o1 (5)

a lossy flared pipe with constant curvature which is ideally

open at the right end. Conversely, the impedance of sucl]:a 4. Two-portQ,, with traveling waves.

pipe is given byl/H1(s) (cf. Fig. 2). Its comparisons for ¢

some values off" are given in appendix C. . The closed form expressions of elements./ef, are not
2) Scattering matrix with impedance representati®im-  yetailed in this paper, but can be found eg. in [19].

llarly to sec. 1I-C1, now the piece of pipe is modeled by the pemark: Transfer functiong?!, andR?, represent left (index

scattering matrixg(s) where(Us(s), Ur (s )" is the input and l) and right (indexr) global (index g) reflexions of the pipe

[Po(s), Pr(s)]" is the output. (with length L) on traveling waves. “Global” means that
Pl L |Uo|  |Gi1 Giz| |Us (13) every internal effects of the pipe are mixed in these transfe
Pr| Ul |Ga1 Gao| (ULl functions. An analysis of internal effects is detailed ic.98.



T, andT, represent global transmissions of traveling waves 1) Decomposition 0Q,: In Fig. 4, the transfer functions
through the pipe. ng, Ry, Tg+ andT; represent global effects of a piece of pipe
4) Conversion two-port system&he three different two- on the traveling waves)™. Nevertheless, some elementary
ports represented in sections 1I-C1, 1I-C2 and II-C3 can leffects can be isolated using the following relevant intets-
intertwined using conversion two-ports given in Fig. 5, ehi tions (see Fig. 6): At the left en(f = 0), the incident wave
are deduced from (4). These conversion two-ports are denotg, is partially reflected in the opposite direction (modeled in
Ca.b, Wherea is the left acoustic statePU, UP or ¢) andb Fig. 6 by the transfer functiofr;.) and is partially transmitted
is the right state. into the piece of pipeT}.). Then, this transmitted part travels
For example to deduce the two-pd@, from Qp;, the inside the pipe until the right end located &t= L (T),
two-portC, py has to be connected on the left side@f,,, before being partially reflected?.;) and partially transmitted
andCyp,4 on the right side. (T7;) outside the pipe. Symmetrically, the incident wayg
That meansQ, = Cy pu © Qpy © Cup,g, Where= is undergoes similar phenomena.
the equivalent relation and is the connection operator. See
appendix A where global interconnection laws of 2 two-ports ¢j __|
are given, or see [22] for a state-space representation.

 P(Ls) U(t,s)

9t ()

Fig. 6. Decomposition of the two-po®,,.

Figure 6 compiles these phenomena and includes all the
contributions (the indexesande meaninternal andexternal
respectively; the functiong+ and7~ represent the forward
and backward transmissions through the pipe, respec}ively

This decomposition enlights two smaller two-port systems,
be and Q (cf. Fig. 6), which models left and right semi-
interfaces, respectively.

The scattering matrice$, G and M, derived from the  The two-ports described in Fig. 4 and Fig. 6 are equivalent
Webster-Lokshirmodel characterize the global acoustic bgs the following algebraic equations hold:
havior of a piece of pipe. In this section, their decompo-

Fig. 5. Conversion tWO-pOI't§¢’pU, CUP,¢v C¢’Up andeU’(,).

IIl. PHYSICALLY INSPIRED DECOMPOSITION OF THE

TWO-PORT

sition into elementary two-port systems is performed. tFirs T. T, T+

delayse—*L/ <o representing an ideal propagation are isolated T, = T Rel ;4 =T+ 17)
from other operators without internal delays. Second, ia th T”"LTZ./LT_

latter operators, effects of the shape due to radius, slope T, = re liZ - (18)
and curvature can be isolated ones from the other. These 1= R Ry T T P
decompositions are not purely algebraic manipulationsy th R — R+ Ry T T, T7T 7 (19)
rely on physically based reasoning and yield straightfodva 7 1— Ry R TJ: T

i i . i i r Rli Tre Tri 0T~
interpretations. Moreover, they will allow to improve the R = R+ (20)

corresponding digital waveguide implementation. 1—-Ry Ry T-T+
Equations (17-20) do not lead to a unique identification of

(Tli, Rlii EEl Rl81 T+l Til TT’L! RTil T?”el Rre) from (Rél

Ry, T; andT}"). Nevertheless, the following hypotheses with

good sense yield a unique identification:

(15) (H1) Pressure continuity,+¢; = ¢+ ¢, for i € {0,L} is

(16) required (see Fig. 6). This hypothesis implies teaery
reflectionr and every transmission fed by the same

A. Separating delays and acoustic effects
Defining
T(s) := e TOL = D(s) e_S%,
with D(s) := e_(r(s)_%) L

in [9], D(s) is proved to be causal and stable, so that
T(s) represents the delay(*%/°) of the wave propagation(H2)
through the piece of pipe, and the associated effe¢t)) due
to curvature and visco-themal losses.

This section is dedicated to isolate pure delay operai$i8)
which are contained ifl'(s) = e "*)L and to deduce a
framework which isolates them.

input are such that=1+r-.

The left-hand side functions (o@fb) depend only on
the left parameter(;. Respectively, the right-hand side
functions (of Q;,) depend on theight parameterg, .

The propagation transfer functios* include a pure
delay operatorT*(s) = D*(s) e /0, where D* (s) are
causal and stable.



Then, the unique solution is proved to be (cf. [17]) oz i ‘ —impedance |
= -~ position ofw,
TH(s) = T (s) = T(s) = e W (21) =k
Iy — & —CL
R,(s) = — = = 1—"Tr(s), 22 =
f( ) HS)+ i —(r ( ) ( ) Eﬂ
O — = +¢o =
R e = - o =1-1T s 23 1000 1500
1 (5) HS) + % +<-0 le(s) ( ) //_:\ : : .
s — =+ &
R.i(s) = M = 1—-"T.(s), (24) <= '
Iy + 2 — (o g ' i : :
9 — ; _ 0 SOOFre uenc HéOOO 1500
Ri(s) = M;O =1—Ti(s). (25) quency (12)
Is) + o T Go Fig. 8. Impedance of semi-infinite pie?e of pip&l,(s = 2inf) for

2) Decomposition 0Q »;; and Q p: A similar decompo- ™ =5 MM T =15m"% & =0.0525m"2, G =0m".
sition of two-ports with acoustic stateP, U) is obtained in

Fig. 7'1F0r mstanctePUl IS Sbtamed by lconnectlpgpu(b Contrarily to connections of straight or conical pipes, the
with Q, (which meansQp,; = Cru.s © Q). following the o1 okshimodel enables connections of pipes preserv-
process detailed in sec. A. ing C'-regularity, which means the continuity of section and

Py > UL slope, and discontinuity of curvature (2-order of discouiiy).

Hy, (To*[ r 1) Change of variables at interfaces of pipk1 order not
Qe |Hi, to “hide” some effects of the geometry of the piece of pipe
Uo L X | HL, . Pr inside conversion two-ports, it is useful to define a chanige o
Uo__| P variables independent from the pipe under interest. Thus, a
G T reference pipés introduced, which is a lossless cylinder with
Gii| by radiusr., and defined variables correspond to planar traveling
Po. LXNG, UL waves for this reference pipe. Its characteristic impedasc
Z.=1/Y. = poco /A (With A. = 7r2), and planar traveling
Fig. 7. Decomposition of the two-pof p;; and Q- waves are, for € {0, L}:
+
Transfer functiond?; and Gf; of Fig. 7 (withx € {I,7}) {p_ (& S)] 1 [1 Ze } {P(&s)} . (28)
) ) i i p (£, s) 211 —=Z.| |U,s)
are rational functions of andI'(s).

Note that two-porthPU, Qhy QlUP andQy, p, of Fig. 7, For lossy varying cross-section pipeg; ( p~) are neither
can be interpreted as conversion two-ports to new variablelecoupled nor perfectly progressive inside the pipe. Nétee
qt(¢,s) andqg (¢, s) , which are decoupled. less, they keep “physical meaning” at interfaces of pipghas

Remark: Since Re(T'(s)) > 0, for all s € C such that decomposition detailed below enlights.

Re(s) > 0 (see [9]), then In sec. IV-B will be shown that variables® disappear after
R AY) connection of two pieces of pipe, so that the value-ofor
T(s)=e — 0 whenL — +oo. (26) 7 ) is arbitrary and does not affect the modeling.

ConsequentyPy(s) ~ G%, (s)Uy(s) (whenL — oo), and the ~ 2) Decomposed frameworkigure 9 presents the frame-
transfer function!, is interpreted as the left input impedanc&vork where effects of geometry are separated into some two-
of a lossy semi-infinite pipe with constant curvature (cfg.Fi POrts: two-portsQ;, and Q;, for the effects of section at left
8). H!, is its corresponding admittance. The expressions 8fd right ends respectivel@,, and Q;, for slope,Q;; and O,

G', and H{, are for curvature. .
With Cpy;,, the conversion two-port fron{P,U) to p*

Gli(s) = ll _A__s _ (27) andC, yp its reciprocal conversion, this framework proves
Hiy(s)  col(s) +G to be equivalent toQ,; (see sec. II-C1). The proof uses
interconnection laws of two-port systems (see appendix A).

B. Separating effects of pipe geometry Note that this framework naturally enlights 4 consecutive
of variables:

, , . - hange
This section now focuses on separatllng contributions on thié pg: variables defined by (28),
acoustics due to the radius the sloper’ and the curvature = raveling waves defined by (4)
r” /r, and their possible discontinuities. The different orders *: symmetrical traveling waves defined in [9],

of discontinuity of the shape are introduced: ¢*: decoupled variables.
o The0-order corresponds to a discontinuity of radiusat The remarkable thing of the framework of Fig. 9, is that
junctions, it isolates a central part for wave propagation and 6 cells of

o The 1-order corresponds to a discontinuity of slopg  the Kelly-Lochbaumjunction type (cf. [10]), of which 4 are
o The 2-order corresponds to a discontinuity of curvaturevell-known (effects of section and slope) and 2 are new as far
YT =r"/r. as we know.
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Fig. 9. Decomposed framework, where effects of the pipe gtomare separated.

3) Interpretation of cells: For a systematic point of view, it is interesting to recover a

. Cells Q) and Q" symmetric general framework containing elementary cells o
Qfl and Q! with coefficientsk; andk,., take into account theKelly-Lochbaunjunction type. Moreover, as it is explained
sections of pipeA; = nr? and A, = 772, at ends. The in sec. 1V, this general framework makes possible to recover
index “a” means ‘area of section”. They are similar to some former lossless waveguide models (cf. eg. [10], [11]),
cells of theKelly-Lochbaunframework after connection and some other lossy waveguide models by adding losses in
with a lossless cylinder of radius. (cf. eg. [10], [13]). Propagation functior’(s) (cf. eg. [12], [14]). But in addition

Ao— A Z.— 2, it takes into account both the curvature of the shape of pipe
k= A° v —Z“ A (29) and the visco-thermal losses, according to the refined gicous
el v model of Webster-Lokshin
- — C T - _ C T . (30)
Act+ A, Ze+ Zy IV. NETWORK OF PIPES
o Cells Q! and Q" In this section two-port systems of pieces of pipe are

Q! and Q}, with transfer functions; and R;, take into connected in order to build the model of a complete resonator
account slopes of pipg = 7/(¢{=0) andr; = r'({=L) Using variables *,p~), it is necessary to study how the
at left and right sides. The indes*means dlope”. They connection must be done.

are similar to cells of the framework d€elly-Lochbaum

+ +
after connection of cones (cf. eg. [11], [14]). | D1 P2,
s Q) H Co r Ql — ? — Qz
Rl (S) = 5 W|th o] = —7#7 (31) <£1 pL
s — !
Ri(s)= —2 witha, =+97. (32) _ . .
T s —ay’ ! 2 rr Fig. 10. Connecting 2 two-port with variableg™(, p~).

If the slope isO (for cylinders for instance), these cells ) ) ) )
become identity@t _ Et)- The right side of two-portQ, is connected to left side

Cells @', and Q' of two-port Q,. The variables which are associated @,
0!, and Q",, with the transfer function®, take into for » € {1,2}, are named(ng,p;)._ Flow f”d pressure
account the constant curvature and losses of the pig@ntinuity | assume tha®’ TP TP = P TP and
The indexes ¢I” means ‘turvature andosses”. U=Yc(p{ —pr)="Ye(p3 —py ), which leads to:

2 1(s) pi =pf and p; =p;.
C|

R(s) = ——. (33)  Inconsequence, the connection of 2 two-ports with variable
o +1(s) (p*,p~) is made by branching the output &, (p;") to input

+ .
In the case of lossless cones or cylindéfs=€ ¢ = 0), of Q, (pz). and reciprocally.

R =0, thus these cells are identityf = ¢7°).

Using (26), in [23], the transfer functioR(s) is interpreted i ) o _
as the reflection at junction (with continuity of section and USing the framework of Fig. 9, it is possible to model,
slope) between a lossless cone and an anechoic lossy fl&8 then to simulate, the connection of two pieces of pipe,
pipe (with constant curvature). In [24], a similar interfiion Q1 and Q. with discontinuities of section, ‘slope, curva-
has been done foks and R? in the case of lossless cones, e (and losses). The resulting two-pog,”, of Slufh a

4) Interest of this framework:For acoustic reasons, thejunction is the connection of six cells, that i€;” =
framework of Fig. 9 is interesting because the effects of the’,' © Q™' © Q7' © Q4?0 Q4% o Qif )
curvature and losses are isolated from the others (sectidn a With hypothesis on the order of discontinuity and on the
slope), and it makes their study easier. Because of the squsttape of the pipe, this framework enables to recover some
roots of the functionl’ (cf. (7)), the study requires specialformer waveguide models of the literature, using simplifica
treatments (see sec. V-A). tions.

A. Junction of any pieces of pipe



B. Junction of cylinders

Two lossless cylinders are considered. two-p@tsandQ,

represent them, with section arég , and Ay ;.

For lossless cylinders, cell3; andQ.; are identity systems
and only cellsQ,, are present The resulting two-port of suc
0%?. This junction

ajunction is the connectlo@
is presented on top of Fig. 11.

=ortoe

The Kelly-Lochbaumframework is recovered for networks
of lossless cones (see eg. [11]). It corresponds toltheder
of discontinuity, withC°-regularity of the shape of pipe.

Remark: In [12], [14] the damping due to visco-thermal

rllosses in propagation operators is taken into account, tipeto

same order of approximation (with T = 0) of the acoustic
model: T'(s) = e~ D(s) where

D(s) = e~ = Vo/eoL (37)
—{T1(s)] 1k1, 1,+ (1o, 75 (To(s)]
Q, Q. . .
Ti(s)) +l<1, - (1—k2) (Ta(s) D. Junction of constant-curvature pipe
Now a junction is considered with continuity of section
= L & (A1, = Ag) and continuity of sloperf , = ry;), and
1(s) L0 B Io(s) two lossy flared pipes with different parameters are coretect
Ty (s) et Ty(s) (Ty # Ty 0r ey # e9).
C'-regularity implies ka2 = 0 and R4 = 0. The
Fig. 11. Junction of lossless cylinders (wilf)(s) = e=*7i) resulting two-port of such punction is the connectlo@] =

_ . ) Qzll © ch . This junction is presented in Fig. 13, where
Merging two-ports at interface leads to an equivalent two-
port which represents the junction of cylinders (cf. bottom Ra2y(s) = ['y(s) —Ta(s) (38)

I'i(s) +'a(s)’

of Fig. 11). Using the algebraic laws of interconnectionfs (c
2 b
with Fn(s):\/(%) 2, (—) 4, Vne{l,2}. (39)

appendix A) and the expressions bf , and ky; (cf. sec.
I11-B3 §1), the coefficient of reflexion is given by

Al,’r‘ - A2,l
A+ Ay

ka2 = (34)

- T 1 {17R1\ . 1/;+ {1+R2\ . ( Ts
ar [ ]l g
\17R21

The Kelly-Lochbaumframework for networks of lossless
cylinders is recovered (see eg. [10]). This model corredgon
to the 0-order of discontinuity.

Remark that variableg™ and p~ have now disappeared
after merging, and:(; ») does not depend o4...

Fig. 13.
Ti(s)=e

Junction of lossy flared pipes with constant cumeat(where

C. Junction of cones ~Ti(s)Li),

Consider two lossless cones represented by two-pQyts

: , ) . el The framework ofKelly-Lochbauntor networks of flared
and Q,, with slopesr} , andrj ;, connected with continuity

pipes with constant curvature is recovered (see [17]).

of sr?ctlon. inuity of ) i imoli By comparing with former waveguide models, the improve-
The continuity o secﬂc;n (cl)r ral ius) implies, T 20 = ment of this new model is that it allows junctions with
r; and ka2 = 0. And for lossless cones, cell®.; are continuity of section and slope, that is it can take into acto

identity systems. Consequently, only the effect of differe
of slopes remains. The resulting two-port of suchuaction
is the connectior?;’> = Q7' © Q” (see Fig. 12) where

the 2-order of discontinuity, withr(¢) C!-regular.

The analytical model of a network of some pieces of
pipe with constant curvature per piece and with continuity o
section and slope at junctions is proved to be stable. Tlisfpr

RS, (s) = ——2LD) (35) . " g
(1,2) §—a(1,2)’ is done by analyzing stability and passivity for one twotpor
. co [Thr—Th of piece of pipe. Then by induction reasoning, the passity
With — aq) = i, +az =+3 ( KZ ) - B8 ihe connexion of a two-port of piece of pipe with any passive
system, leads to the passivity and the stability of the whole
_ _ network. No details are given in the present paper, but a next
—(T1(s) Rt LR}, T 2 Rt 1+R;, = Tr(s)] ~ article will be devoted to this proof.
1 1,r Ri_j 2,1 R3, 2
Ty(s) A 1+Ry o o K 14Ry 4 (Ta(s)
— V. DIGITAL WAVEGUIDES AND SIMULATION
A. Diffusive representation, approximation and digitatista-
Ta(s) G5 <12 (s) tion
o) = I(s) Because of the square rootsIifs), some involved transfer
functions are irrational, and so they are not standard. &hes
Fig. 12. Junction of lossless cones (With(s) = e~ ") transfer functions have continuous lines of singularitres,



—

pointg and the infinity. - 0
If T = 0, the functionT' has one branching point at Pe po

s = 0. The cutR~ is chosen to preserve hermitian symmetry.

Thereof, associated transfer functions have a continuioes IFig. 14. The impulse respongg,,,, is the reflexion of the virtual pipe.

of singularities onR~. Using the residue theorem, it has

been shown (cf. eg. [25], [26], [27], [28]) that these funos

are represented by a class of infinite-dimensional systemsl) Goalpipe, lengths and sampling frequenciesthe

Diffusive RepresentationgFor any diffusive representationgoalpipe is defined by-(¢) = Ry + (~ on ¢ € [0, L], with

which are nameduts These cuts join some pointsranching P Pe : ]
hgoul

H(s), analytic onC\R™: Ry = 2.5 mm anda = 4. This pipe is terminated at the
() right end by a zero impedance. Here, only digital simulation
H(s) = / ——=2d¢, (40) of acoustic tubes is studied, and tfjealpipe is ideally open
01 s+¢ in order not to introduce a model of sound radiation.
(&) = %im (H({HO*)fH({H‘O*)). (41) The exact impulse response of the global reflexion function

of the goalpipe is denotedh,.,(t) (see Fig. 14). Moreover,

-the input impedanceZ .. (iw) is computed for eachv as

ple, it has. been pr.opose_d o _approximate. suc_h diﬁu.S'Ygllows: [step 1] for each (fixedy = iw, numerically solve
representations by flnlte—dlmen3|_onal approximationsewi . jinear Cauchy problem (1), (2) oh € [0, L] with the
by H(s) = 3j=) sF¢» where J is the number of poles, ., nqary conditionP(¢ = L,s) = 0, U({ = L,s) = 1;
—¢&; € R™ is the position of theth pole andy; is its weight. [step 2] compute

The poles are placed iR~ with a logarithmic scale, and
the weightsy.; are obtained by a least-square optimizationin ) _ P0,s) _ pos = P(t=0,5) (43)
the Fourier domain. goal U(0,s) Ay~ 0P((=0,s)’

If Y > 0, I' has two more branching points, which are . . -
complex conjugate. In this case, the diffusive represemtat with s = iw. Results are presented in Fig. 15 (curve CO).

are approximated with a finite sum of first and second order'r:(l)rnS';nh;J I?;'O?S”bsvsi’ﬁd or? (iMSi) V::'Zh rtellre]svonnth(fercutriV|rl1|nl-
differential systems: €ar lengthY, the following choice is made to have no fractiona

, delays: s = 44100Hz and L = Kco/Fs, =~ 49.9cm
~ =1 1 =N w, W, with K = 64. From (3), the corresponding axial length is
H(s) = S+ & + Z ( ) - (42 L, =(¢Y(L) ~ 49.0cm so that the corresponding sampling
J=1 7on=l rate isF, = K ¢ /L, ~ 44924 Hz for (M1).

Transfer functions to approximate ar&, R 1) and  2) Number of pieces of pipe for models (M1, M2, M3):
Dy, for any k (see sections 11I-B3§4) and IV-D}. Note First, for (M1) with ¢ = 0, the continuous-time impulse

For simulation in the time domain, in [29] for exam-

S+ S+,

that in models of [12] and [14], the transfer functidi(s) = response associated to pieces of pipe with ledgthwrites
e~ =+ Vs/clr has to be approximated with poles &T. e

Finally, a digital version of (42) is implemented using B B
standard numerical approximations (see [30], [31], [9]). I () = Z_:Oa”(;(t 2n.921/ co) (44)
B. Numerical comparisons of three simulations where §(.) denotes the Dirac distribution, and tlg’'s can

In this section, digital waveguide simulations ogealpipe P& deduced from reflexion coefficiertsin (34). Hence, the
Pyout defined in sec. V-BL are built approximatifigy,, by ~Choicedz1 = co /(2F%) yields the digitalized impulse response
straight (M1), conical (M2) or constant-curvature (M3) gas _h(tn) = an which avoids dlspontlnumes due to the ar_t|f|C|aI
of pipe. The sampling frequendy; or length L are adapted mFertwmed “zeros” naturally involved by (M1). Accord!rtg
so that no fractional delays are required. The number ofgsiednis well-known and standard result, the number of pieces of
of pipe is chosen such that artefacts due to the discoritisuitPiP€ i then chosen &8¢ = 128. Note that fore > 0, (44) be-
of the approximated shapes are rejected (see V-B2). THMeES smoqther since the losses introduce d|SS|p§1t|01_Jghro
input impedances respectively obtained from (M1,M2,M®) al? in (37) which corresponds to the slowly 2decreasmg impulse
compared in the Fourier domain to tgealone (see V-B3). esponse (cf. [32i(t) = (3/(2v/nt?)) e~/ for ¢ > 0

Note that the three acoustic models take into accouffith /= ¢ dz1/\/Co. But, this regularization is not sufficient
losses and the varying cross-section. By fixing an equivaldf decrease the numbeK (see Fig.23-(1,2,3) p.14).
global complexity, the comparison is about the quality of Second, for (M2) withe = 0, the corresponding continuous-

approximations of the diffusive representations (cf. 3¢4). time impulse responsé, involves decreasing exponentials
(cf. [24], [33]) and digital versions involve first order 8its

1The order of approximationJJ(+ 2N) depends on the desired quality: so that the Computatlonal cost for one plece of plpe is twice

J mainly tunes the quality of approximation of effects due iscu-thermal f h f lind T imil
losses, andV, that due to the curvature. For example, in the case of ve§'€ater for cones than for cylinders. To preserve a similar

large tubes, visco-thermal losses are negligible so thatchoiceJ = 0 can  global computational cost and since the discontinuityhef
be done. Increasing and N improves the approximation, and so the qualityjs smoothed by exponential responses, the number of pieces

of the simulation, and decreasing and N reduces the quality. In practice, . . .
choosing.J = 6 and N = 5 leads to fully satisfactory results, in most caseOf Pipe is chosen a&’ = 64 so thatéz; = 242. In practice,

(which corresponds to @6t" order filter). this actually yields smooth results (see Fig. 23-(4,5,&4p.



Third, (M3) leads to a naturally smooth impulse respolse

and reducing the number of pieces of pipe does not introduce g 3

artefacts of discontinuity type but only influences the @gyal
of approximation. In practice, taking only 4 pieces of pipiéw
constant curvature yields accurate results (see Fig. P3-(7

3) Digital waveguides, input impedances and comparisons:

— — () H

(Co)
— = (C2) H

6000

5000

Each digital simulation based on (M1,M2,M3) is built with
a Kelly-Lochbaum framework derived as in sections 1V-B
to IV-D. In these networks, time domain versions Bf(s)
(see (15), (16) and (37)) are implemented using a circular : - :
buffer for the delay part and using recursive digital filters < < B i T
straightforwardly deduced from optimisations &f;(s) and :
D;(s) following the method presented in sec. V-A. Digital
filters are also obtained fak?,; ;, R; i1 in the same way.
From the number of floatting point operations and the CPU
point of view, parameterg, N involved in the approximations
(42) of the diffusive representations are chosen in order to
preserve the same algorithmic complexity. Then, §kis and
~,, are optimized to have the best results following the method
proposed in [29]. e By
In practice, the simulation network for (M1) involves s fa
2K = 128 delays and reflexion coefficients ;;,, and D; L
are approximated using second order filters. The network for | : s
(M2) involves K = 64 circular buffers for delays, 64 first g L
order filters for reflexionsz; ;. ; and 64 fourth order filters i ~ | a
for approximatingDi. Finally, the network for (M3) involves o _ .
4 pieces of pipe: 8 circular buffers, 8 filters for approxiimgt e = .
D;, 5 filters for approximating®; ;11 with distinct orders but - Co
leading to the same global complexity as previous models . :
(which are “globally” equivalent to 170 order filters). L L
The input impedances corresponding to (M1,M2,M3) are ¥ & O N T
respectively deduced from the discrete-time Fourier fianss 20log;o (IZ(ZMM)
RYY, RY", Ry’ of the digital impulse responsés, h, and
hs of the global input reflexion (similar to Fig. 14) using

4000

3000

2000

1000

Fig. 15. Comparisons between thealimpedanceZ,,; and impedances
obtained from (M1), (M2) and (M3). Curve (CO0) is the impedari€, ;.
It is numerically computed using a standard Runge-Kuttahoeet(cf. [34])
(Matlaf®: ode23 with a relative errof = 10~3). Curves (C1,C2,C3) are
deduced from the simulation of 128 cylinders, of 64 cones @l constant-
curvature pipes, respectively. Dotted curves represevelepes of maxima.

_ ZmR3 1+ Ryiop(f)
Zin(f) = 00 Co x 1 — Rgion(f) (49)

where f denotes the frequency.
_These impedances and tlgealimpedance are plotted in_C_ Building a virtual instrument
Fig.15. To help comparisons, their spectral envelopes lwhic
links local maxima are also plotted. Frequency positions of This section deals with the resonator of a virtual trombone
maxima coincide for all models (with an errak15 Hz), modeled by concatenating seven elements (see Fig. 16 aop):
but not their amplitude. More precisely, for (M1) and (M2)mouth-piece, five pieces of pipe (1 cylinder and 4 flared pipes
amplitudes are significantly too high betwe@mand 3000 Hz  with constant curvature), and a radiation impedance.
and too small if4000, 6000] Hz. On the contrary, model (M3)  The mouthpiece is modeled by an acoustic mass (cf. [35]),
better fits with thegoalimpedance with an accuracy smallea resistance, and a compliance, and it is simulated by a
than2 dB. second order system. Because of the flaring at the end of the
The reason is that many pieces of pipe are required (1B8rn of brass instruments, the radiation model of [36] seems
for (M1), 64 for (M2)), so to respect the given “global’well adapted for this application; here this model is used.
algorithmic complexity only low order filters can be used tdhe cylinder models the slide of the trombone and the four
approximate théd’s which account for losses. On the contranyflared pieces of pipe model the horn. Parameters (lengths and
with only 4 pieces of pipe, (M3) allows higher orders foicurvatures) of these pieces of pipe have been empiricallgdu
approximations together with an equivalent global comipyex such that the approximated shape fits the radius measured on a
and a best quality. Moreover, it is possible to adjust coxipte real trombone (see appendix B for details). The measureament
and quality, by adapting the values df and N for each correspond to a Courtois trombone.
approximation (cf. sec. V-A). Note that, withr,,;,, ~ 7 mm andr,,., ~ 11 cm (the
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Fig. 16. Making a virtual trombone

extreme radii), th&Vebster-Lokshimodel is valid at least with
0.13 < f < 915 Hz (for validation of losses and longitunal
propagation). For trombones, this limitation is satisfagt
considering that the coupling of the resonator and the atait -
(the lips, cf. eg. [37]), mainly involves lower modes.

The approximated shape &!'-regular, and so théelly-
Lochbaumframework is recovered for the whole pipe of the
trombone, leading to Fig. 16 (bottom). Figure 18 compares th
impedance measured on the real trombone to that computec |
from the digital time simulation of the impulse response.

Figure 18 shows that the modelisation is globally correct,
but with some significant errors in the spectral envelop adou
300 and 600 Hz. This difference comes from the rough

1200

Measurement
- —  Computation
1000

|
800

|
600

i
400

i
200

empirical approximation of the original profil. Neverthese 5
some recent works will allow better automatic approximasio &)
of the profile (cf. [38]).

Fig. 18.

Time ¢ (seconds)

150 |
145
140 |
135 F
130 F
125

120
1150
110 F

20logy (12(2rif)] )

Measured and computed impedances.

consider junctions with continuity of section and sloped an
discontinuity of curvature, which means ti@é-regularity of

°r 1 the shape.
o 1 Moreover, this model does not impose a number of pieces of
LYl , | pipe, contrarily to models of connections of straight andi€o

o ooi o002 oos ooa oos oos oor oos oos o1  cal pieces of pipe. In sec. V-B, whereas 128 cylinders (M1) or
64 cones (M2) are required to model thealpipe, 4 constant

Fig. 17. Input (top) and output (bottom) impulse respongkgitél time curvature pieces of pipe are enough to get good results (M3).

simulation).

Using this improvement, digital real-time simulations h&en

implemented in C/C++ language.
In the particular case of'-regularity (with Y(¢) > 0),
VI. CONCLUSIONS AND PERSPECTIVES the stability and passivity of transfer functions invohiecthe

In this paper, theWebster-Lokshirmodel has been usedglobal Kelly-Lochbaum network can be proved analyticailty (
to build digital waveguides taking into account both viscathe Laplace domain). This specific aspect of the work will be
thermal losses at the wall, and curvature of the shape of pipgesented in a future paper.

A “generalized” framework has been derived in which However, for negative curvatures, some transfer functions
delays and effects due to the shape are separated (seciimrglved in the Kelly-Lochbaum network are unstable. This
slope and curvature). Considering particular cases oflagigyy  phenomenon is quite complicated, but is now well understood
at junctions of pieces of pipe, three kinds of Kelly-Lochtrau (see eg. [7]). Very similar phenomena appear at junctions
networks are recovered. One of them makes it possible b cones, when the difference of slopes (on both size of
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the junction) is negative (cf. [24], [14]). In [39], the sitep APPENDIXB

case of a single convergent cone has been studied, and the TABLE OF PARAMETERS OF SECTION/-C

corresponding Kelly-Lochbaum network has been proved to bej the following table, the subscriptmeans thesup of the

in the sense of the state-space representations of systepSgre the radius and the volume of the cup, andr, are

Hence, an approach to cope with the problem of negatiyge |ength and the equivalent radius of the backb6teis the

curvature could be based on an extension of solutions whiggoystic compliance of the cug, and M, are the acoustic

have been proposed for networks of cones. resistance and the acoustic mass associated to the backbore
In this paper, the example of a virtual trombone is presentgsee [35]).

to illustrate some results of simulations. The applicatbbthe  Mouthpiece parameters:

presented model to the simulation of the vocal tract will bef 7, (m) | Ve (m3) | Ly (m) | (m)
considered after solving the problem of negative curvature | 14.5 10~3 10.8 10°° 52.5 1073 451073
Co(m3. P71 | My(kgm™?) | Ry(N.s.m™?)
APPENDIXA 759 10_ T 1990 5.8710°°
CONNECTING 2 TWO-PORTS Pieces of pipe parameters:
Connecting 2 two-ports consists in branching output of one Number ” 1 | 2 | 3 | 4 | 0 |
two-port to input of the other, and reciprocally as top of .Fig | 72 (mm) || 6.9 6.9 104 |22 43.7
19 shows. r. (mm) || 6.9 104 22 43.7 110
Merging these two-ports into a unique equivalent two-port "1 0 0 0.013 ]0.055 | 0.5
is interesting for some reasons: Ty 0 0.013 1 0.055 | 0.5 0.99
o First, in some cases, the merging allows to simplify th L (ZL) 1.615 | 0.544 |0.352 | 0.103 | 0.085
framework. T (m 1) 0 3 9 120 60
« It can be used to prove the equivalence between some (m”—2) || 0.0507 | 0.0422 | 0.0248 | 0.0116 | 0.0033
different forms of a two-port system. Note that, parameter§,, R,, M,,r},7,. ande are calcu-
o As Fig. 19 shows, there is an instantaneous loop kited from the others. For constant curvaturg) varies with
interface which cannot be simulated numerically. r(¢), € is chosen as the mean of¢) along the piece of pipe.
+ ——a z3 APPENDIXC
5 | B EFFECTS OF CURVATURE AND LOSSES ON
i (Q% - WEBSTERLOKSHIN TRANSFER FUNCTIONS
o=t Bz ) 2 The input impedance of a cylinder which is ideally open

Il at right (that isP, = 0) is drawn in Fig. 20 for various

+ o loss coefficients:e = 0 (no losses),e = &* computed
g . =G Lo . o
Cxn from the standard physical values, and= 3¢* (artificially
Qc | oy overestimated losses).
Lo Cia Ty
g
:
Fig. 19. Connecting two-ports and removing instantaneoogd o T o A o ]
SN AN AN Y
In Fig. 19, Q¢ is defined as the equivalent two-port of the 2 N R’ |
| | | | | |

1
15 2 25 3 35

connection of two-port€) 4 and Q. In [22], the following . L
notation is definedQ - = Q4©Q g, where= is the equivalent

=T S| [ T T T —1
relation and® is the connection operator. BTN @*%\\ /,&5{4\ =0
. . ok . : | g \\ “te=¢g* |
Algebraic expressions of elements Q- are % ( j/{ g \\%+ o e =3¢
A12B11A21 <;Eoi u‘5 — ‘1 1‘5 ; 2‘5 ; 315
Ciui = A+ 1— AypwByy’ (46) Proportional to frequencyL/(2)\) = wL/(7 co)
C _ Bi2 A2 (47) Fig. 20. Influence of losses on the impedance of an open (leil’fﬁ]il.
2T U T ApBy’ Parametersrg = r, = 5mm, L = lm, T = 0m 2,
C o Ag1 Boy 48 .
2T U T ApBuy (48) Figure 21 compares the effects of the curvature value on
B Aoy Boy the input impedance,;,, = 1/Hy; of an ideally open pipe
Cypp = DBxn+ T ApB (49) (see also Fig.1). Vertical dashed lines represent the fcutof

frequencyw, for each curvature.
for which Asy(s)Biy1(s) # 1, Vs/Re(s) > 0 is required to  Figure 22 compares the effects of the curvature value on the
guarantee the stability of the feedback loop. inputimpedanceZ;,, = 1/H!, of a semi-infinite pipe (see also
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Fig. 21. Influence of the curvature on the impedance of an qmimmHl’ll.
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Fig. 22. Influence of the curvature on the impedance olf a sefinite pipe,

Gl (s = 2irf). Parametersr; = 5 mm, e = 0.0525 m~2, ; =0 m~L.

Fig. 7). Vertical dashed lines represent the cutoff freqydnor
each curvature.
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Fig. 23. Digital impulse responses of simulations in thedite time domain (cf. sec. V-B2 p. 8): (a) Connection of 8nglars, (b) connection of 32 cylinders,
(c) connection of 128 cylinders, (d) connection of 4 cone$,donnection of 16 cones, (f) connection of 64 cones, (gheoction of 4 constant-curvature
pipes. The dashed curves are the correctly sampled impedg®mnses for cylinders and cones.



