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From a Model of Lossy Flared Pipes to a General
Framework for Simulation of Waveguides

Rémi Mignot, Thomas Hélie, Denis Matignon

Abstract—This paper deals with the theory and application
of waveguide modeling of lossy flared acoustic pipes, relying
on the Webster-Lokshin equation. This model describes the
propagation of longitudinal waves in axisymmetric acoustic pipes
with a varying cross-section, visco-thermal losses at the walls, and
without assuming planar waves or spherical waves. Solving this
model for a piece of pipe leads to a two-port system made of
four transfer functions which mimic the global acoustic effects.
Moreover, introducing some relevant physical interpretations
makes it possible to separate elementary effects due to the
geometry of the piece of pipe (section, slope, and curvature)
and isolate corresponding elementary transfer functions.From
this decomposition a framework is obtained which allows to
recover some digital waveguide models introduced earlier in
the literature. This work contributes to the standardization of
some different waveguide models, and brings a higher level of
refinement that is visco-thermal losses combined with curvature
effects.

Pacs:43.20.Mv, 43.75.Zz

I. I NTRODUCTION

Whereas signal processing approaches describe sounds,
physical modeling describes internal acoustic or mechanic
phenomena of the modeled system. For sound synthesis (of
musical instruments or speech production, for example), it
faithfully reproduces the behavior of the system, especially
during transient states. Moreover, parametric models allow to
obtain new virtual systems and explore new sounds, together
with physical validation. However, digital time simulations
sometimes require intensive computation from computers.
That is why special care must be taken on the algorithmic
complexity to perform real-time sound synthesis.

The aim of the present work is to build the model and the
simulation of a varying cross-section pipe using the standard
“Digital Waveguide Network” approach (see eg. [1], [2]). With
this technique, a whole virtual resonator is built by connecting
several systems which mimic the acoustic of pieces of pipe.
The difficulty and the novelty is to include subtle, though
perceptible, phenomena due to visco-thermal losses at the wall
and continuously varying cross-sections (see eg. [3], [4],[5],
[6], [7], [8], [9]).

In [10], a resonator is represented by the connection of
pieces of lossless cylinder to model vocal tract. For low-cost
digital simulation, a scattering network (theKelly-Lochbaum

Rémi Mignot and Thomas Hélie are with IRCAM & CNRS, UMR 9912,
1, place Igor Stravinsky, 75004 Paris, France
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framework) is derived. This framework contains delays for
wave propagation and coefficients for reflexion at junctionsof
cylinders. In [11], theKelly-Lochbaumframework is derived
for a refined model of connection of lossless cones (with
continuity of radius at junctions). In [12] and [14], visco-
thermal losses are taken into account for connections of
cylinders and cones respectively. In [16], connection of lossy
cones with discontinuity of section is considered. In [17] the
sameKelly-Lochbaumframework is recovered by considering
a more refined model of connection of lossy flared pipes,
using theWebster-Lokshinequation. It is a 1D-acoustic model,
which describes the propagation of longitudinal waves in
axisymmetric acoustic pipes, involving visco-thermal losses
at the wall and a varying cross-section.

In the present work, starting from theWebster-Lokshin
model for a piece of pipe, solutions in terms of traveling
waves lead to a new framework in which each effect of
the geometry of the pipe can be isolated. In spite of the
apparent complexity of this framework at first glance, all
elements are already known and well understood. Thanks to
the remarkable symmetry of this framework, connecting pieces
of pipe with a particular order of discontinuity (of section,
slope, or curvature) makes it possible to recover all the above-
mentioned waveguide models (cf. eg. [10]-[18]).

This paper is organized as follows. In section II, the acoustic
model is presented and the analytic solution for the acoustic
pressure is given in the Laplace domain. Then, pieces of
pipe are modeled, deriving two-port systems in admittance
and impedance convention, and finally for traveling waves.
In section III, a physically inspired decomposition of two-
port systems is performed. It allows the isolation of the
“elementary” acoustic effects of the pipe on traveling waves,
according to the chosen acoustic model. Then, a general
framework for simulation of digital waveguides is obtained. In
section IV, connecting two-ports systems, the model of a whole
pipe can be built with a refined model. Moreover this model
allows to recover former models of waveguides (concatenation
of cylinders or cones). In section V are briefly presented the
building of the discrete-time system, and some comparisons
of digital simulations. Finally, section VI concludes thispaper
and opens some perspectives.

II. PROPAGATION IN A LOSSY FLARED ACOUSTIC PIPE

This section presents theWebster-Lokshinmodel of a pipe,
from which scattering matrices and equivalent two-port sys-
tems are derived. Two-ports are input/output systems related
to the standard acoustic state (acoustic pressure and volume
flow) or to traveling waves.
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A. Webster-Lokshin model

1) Equations for acoustic pressure and volume flow:The
Webster-Lokshinmodel is a mono-dimensional model, which
characterizes linear longitudinal waves propagation in axisym-
metric pipes, assuming the quasi-sphericity of isobars near the
inner wall (cf. [8], [19]), and taking into account visco-thermal
losses (cf. [5], [3], [4]) at the wall. The acoustic pressureP and
the volume flowU are governed by the following equations,
given in the Laplace domain:
([(

s

c0

)2

+2 ε(ℓ)

(
s

c0

)3
2

+Υ(ℓ)

]
−∂2

ℓ

){
r(ℓ)P (ℓ, s)

}
= 0, (1)

ρ0 s
U(ℓ, s)

A(ℓ)
+ ∂ℓP (ℓ, s) = 0, (2)

wheres∈C is the Laplace variable (ℑm(s) = ω is the angular
frequency),ℓ is the space variable measuring the arclength of
the wall, r(ℓ) is the radius of the pipe,A(ℓ) := πr(ℓ)2 is the
section area,ε(ℓ) :=κ0

√
1−r′(ℓ)2/r(ℓ) quantifies the visco-

thermal losses andΥ(ℓ) := r′′(ℓ)/r(ℓ) denotes the curvature
of the wall. Equation (1) is calledWebster-Lokshinequation,
and (2) isEuler equation satisfied outside the visco-thermal
boundary layer.

Note that the standard horn equation (cf. [6]) corresponds to
(1) with no losses (ε(ℓ) = 0) and assuming planar waves (ℓ is
replaced by the axis coordinatez). Straight and conical pipes
are characterized byΥ(ℓ) = 0. In the following,Υ is assumed
to be non-negative, corresponding to straight, conical or flared
pipes. The negative case would require special treatments for
deriving stable versions of waveguides (cf. [7]), which areout
of the scope of this paper.

Denotingr(z) the radius of the pipe for thez-ordinate, the
arclength of the wall from0 to z is

ℓ(z) =

∫ z

0

√
1 + r′(z)2 dz (3)

andr(z) := r(ℓ(z)). In consequence,|r′(ℓ)|<1 andr′(ℓ) → 1
whenr′(z) → +∞.

For numerical computations, the physical constants are
chosen for standard conditions. They are: the mass density
ρ0 = 1.2 kg.m−3, the speed of soundc0 = 344 m.s−1, the
coefficientκ0 =

√
l′v + (γ − 1)

√
lh ≈3.5 10−4 m− 1

2 .
2) Limitations of the model:The Webster-Lokshinmodel

only considers axisymmetric pipes. Consequently, the possible
bends (of a trombone slide for example) have to be virtually
straightened. Moreover, two other limitations appear because
of the visco-thermal losses model and because only longitu-
dinal propagations are considered.

With l′v and lh the characteristic lengths of viscous (l′v ≈
4 10−8m) and thermal (lh ≈ 6 10−8m) effects (cf. [20]),
this model of losses is valid for “large tubes” given by
r ≫

√
2c0l′v/ω and r ≫

√
2c0lh/ω. For example, with

r = 5 mm, the model is valid forf=ω/(2π)≫0.25 Hz.
For a lossless cylinder with radiusr, the first transversal

mode appears atf =1.84 c0 /(2πr). In the case of a varying
cross-section pipe, transversal modes appear with frequencies
higher than1.84 c0 /(2πrm), whererm is the maximal radius
of the pipe. For example, withrm = 10 cm, the Webster

model remains valid forf < 1000 Hz. Note that, multi-modal
approaches allow to simulate transversal modes (cf. eg. [21]).

3) Equations for traveling waves:In sec. II-A1 the acoustic
pressureP (ℓ, s) and volume flowU(ℓ, s) are used to describe
acoustics. Another description, more adapted to the waveguide
simulations, consists in using the traveling waves defined by:

[
φ+(ℓ, s)
φ−(ℓ, s)

]
:=

r(ℓ)

2

[
1 Z(ℓ)
1 −Z(ℓ)

] [
P (ℓ, s)
U(ℓ, s)

]
, (4)

whereZ(ℓ) := 1/Y (ℓ) := ρ0 c0 /A(ℓ) is the equivalent of
acoustic impedance for planar waves traveling inside cylinder
of (constant) section areaA = A(ℓ).

According to (1), (2) and (4), these traveling waves are
governed by the coupled system
(
s

c0
± ∂ℓ

)
φ±(ℓ, s) = ±ζ(ℓ)φ∓(ℓ, s) − ε(ℓ)

(
s

c0

)1
2

φ(ℓ, s),

(5)
whereφ := φ+ + φ− = rP , and ζ := r′/r. The operator(
s/c0 ± ∂ℓ

)
is the traveling operator and the right-hand side

describes the coupling due toζ(ℓ) and losses.
For planar waves traveling inside a lossless straight pipe

(ε(ℓ) = 0 andζ(ℓ) = 0), the acoustic stateφ± corresponds to
decoupled progressive waves. For the Wester-Lokshin model,
these waves are still progressive insofar as they preserve the
causality principle.

B. Piece of pipe and general solution

In this paper, a pipe with varying cross-section is approx-
imated by a concatenation of pieces of pipe with constant
parameters. So, a piece of pipe is defined as a finite pipe with
lengthL, and with constant curvature and losses parameters
(i.e Υ(ℓ)=Υ andε(ℓ)=ε). This allows to preserve the conti-
nuity of radiusr(ℓ) and sloper′(ℓ) that isC1-regular shapes.
Junctions are characterized by discontinuities of curvature.

Remark that, except for a cylinder,Υ(ℓ) andε(ℓ) cannot be
simultaneously constant. In pratice, pieces of pipe with con-
stant curvature are considered, andε is chosen as the mean of
ε(ℓ). This approximation makes sense, at least for physically
realistic lengths and curvatures for wind instruments.

In a such piece of pipe (Υ and ε contant), the general
solution of the acoustic pressureP (ℓ, s) for (1) is:

P (ℓ, s) = A(s)
eΓ(s)ℓ

r(ℓ)
+ B(s)

e−Γ(s)ℓ

r(ℓ)
, (6)

whereA(s) and B(s) depend on boundary conditions, and
Γ(iω) = ik(ω) for whichk(ω) is the usual complex wavenum-
ber. Γ is given in the Laplace domain by:

Γ(s) =

√(
s

c0

)2

+ 2 ε

(
s

c0

) 3
2

+ Υ. (7)

In (7) √. denotes an analytical continuation of the positive
square root ofR+ on a domain compatible with the one-sided
Laplace transform, namelyC+

0 = {s ∈ C/ℜe(s) > 0} (see [9]
for more details). InC

+
0 , Γ is proved to be analytical and

ℜe(Γ(s)) ≥ 0 if ε ≥ 0.
If Υ ≥ 0 and ε = 0, the unique positive solution

ωc =
√

Υ/ c0 of Γ(iω)2 = 0, corresponds to the cutoff angular
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frequency of a lossless pipe with positive constant curvature.
Indeed, ifω > ωc, Γ(iω) ∈ iR, it corresponds to propagating
waves, and ifω is such that0 ≤ ω < ωc, Γ(iω) ∈ R+, it
corresponds to evanescent waves.

Now, if Υ ≥ 0 and ε > 0, a similar behavior is obtained
for ωc = ℑm(sc) > 0 where(sc, sc) are the unique solutions
of Γ(s)2 = 0; they satisfyℜe(sc) < 0 (cf. [9]).

More details of the effects of visco-thermal losses and
curvature on transfer functions are given in appendix C.

C. Scattering matrices and equivalent two-port systems

In the following, P0 and PL are defined as the acoustic
pressure at the left end (ℓ = 0) and at the right end (ℓ = L)
of a piece of pipe withΥ(ℓ) = Υ andε(ℓ) = ε. In the same
way U0, UL, are defined as the volume flow at the left and
the right ends, respectively.

1) Scattering matrix with admittance representation:Writ-
ing [U0, UL] as functions of [P0, PL], the piece of pipe is
modeled by the2×2 scattering matrixH(s). Figure 1 represents
the corresponding two-port systemQPU .

[
U0

UL

]
= H

[
P0

PL

]
=

[
H11 H12

H21 H22

] [
P0

PL

]
. (8)

H11(s) H22(s)

H21(s)

H12(s)

QPU
U0(s)

UL(s)P0(s)

PL(s)

Fig. 1. Two-port systemQPU , with admittance representation.

Solving (1) and (2) leads to the following closed forms of
elements ofH (cf. [19]):

H11(s) =
Al

ρ0

Γ(s) cosh( Γ(s)L ) + ζl sinh( Γ(s)L )

s sinh( Γ(s)L )
, (9)

H22(s) =
Ar

ρ0

Γ(s) cosh( Γ(s)L ) − ζr sinh( Γ(s)L )

s sinh( Γ(s)L )
,(10)

H12(s) = − rl
rr

Al

ρ0

Γ(s)

s sinh( Γ(s)L )
, (11)

H21(s) = −rr
rl

Ar

ρ0

Γ(s)

s sinh( Γ(s)L )
, (12)

whereΓ(s) is defined by (7), and the following notations are
introduced (with indexesi= l and i=r, which meanleft and
right): ri = r(ℓi) (radius),Ai =πr2i (section area),r′i = r′(ℓi)
(slope),ζi =r′i/ri, with ℓl =0 andℓr =L.

Remark: If PL(s) = 0, equation (8) givesU0 = H11P0.
Hence,H11 can be interpreted as the left input admittance of
a lossy flared pipe with constant curvature which is ideally
open at the right end. Conversely, the impedance of such a
pipe is given by1/H11(s) (cf. Fig. 2). Its comparisons for
some values ofΥ are given in appendix C.

2) Scattering matrix with impedance representation:Sim-
ilarly to sec. II-C1, now the piece of pipe is modeled by the
scattering matrixG(s) where[U0(s), UL(s)]

T is the input and
[P0(s), PL(s)]

T is the output.
[
P0

PL

]
= G

[
U0

UL

]
=

[
G11 G12

G21 G22

] [
U0

UL

]
. (13)
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Fig. 2. Impedance of open piece of pipe,H−1
11 . rl = 5 mm, rr = 1 cm,

L = 1 m, Υ = 15 m−2. Yl = Al /(ρ0 c0).

It results in the following relation between the scattering
matrices:G = H−1. The corresponding two-port system (not
represented) is namedQUP .

Remark: UL(s)=0 leads toP0 = G11U0, so thatG11 can
be interpreted as the left input impedance of a closed lossy
flared pipe with constant curvature (cf. Fig. 3).
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Fig. 3. Impedance of closed piece of pipe,G11. rl = 5 mm, rr = 1 cm,
L = 1 m, Υ = 15 m−2. Yc = Al /(ρ0 c0).

3) Scattering matrix for the traveling waves(φ+, φ−):
Now traveling wavesφ± defined by (4) are considered. The
piece of pipe is modeled by a system, where inputs are
φ+

0 (s) := φ+(ℓ=0, s) andφ−L (s) := φ−(ℓ=L, s) (incoming
waves atℓ=0 and ℓ=L), and outputs areφ−0 (s) andφ+

L(s)
(outgoing waves).

This system is represented by the scattering matrixMφ and
the two-portQφ of Fig. 4.

[
φ−0
φ+

L

]
= Mφ

[
φ+

0

φ−L

]
=

[
Rl

g T−
g

T+
g Rr

g

] [
φ+

0

φ−L

]
. (14)

Rl
g(s) Rr

g(s)

T+
g (s)

T−
g (s)

Qφ
φ−0 (s)

φ+
L (s)φ+

0 (s)

φ−L (s)

Fig. 4. Two-portQφ, with traveling waves.

The closed form expressions of elements ofMφ are not
detailed in this paper, but can be found eg. in [19].

Remark: Transfer functionsRl
g andRr

g represent left (index
l) and right (indexr) global (index g) reflexions of the pipe
(with length L) on traveling waves. “Global” means that
every internal effects of the pipe are mixed in these transfer
functions. An analysis of internal effects is detailed in sec. III.
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T+
g andT−

g represent global transmissions of traveling waves
through the pipe.

4) Conversion two-port systems:The three different two-
ports represented in sections II-C1, II-C2 and II-C3 can be
intertwined using conversion two-ports given in Fig. 5, which
are deduced from (4). These conversion two-ports are denoted
Ca,b, wherea is the left acoustic state (PU,UP or φ) and b
is the right state.

For example to deduce the two-portQφ from QPU , the
two-port Cφ,PU has to be connected on the left side ofQPU

andCUP,φ on the right side.
That means:Qφ ≡ Cφ,PU ⊙ QPU ⊙ CUP,φ, where≡ is

the equivalent relation and⊙ is the connection operator. See
appendix A where global interconnection laws of 2 two-ports
are given, or see [22] for a state-space representation.

1 −Z(ℓ)

2
r(ℓ)

−Z(ℓ)r(ℓ)

Cφ,PU

P (ℓ, s)

φ−(ℓ, s) U(ℓ, s)

φ+(ℓ, s)

Z(ℓ) 1

Z(ℓ)r(ℓ)

2
r(ℓ)

CUP,φ

P (ℓ, s)

φ+(ℓ, s)U(ℓ, s)

φ−(ℓ, s)

−1 −Y (ℓ)

2Y (ℓ)
r(ℓ)

r(ℓ)

Cφ,UP

U(ℓ, s)

φ−(ℓ, s) P (ℓ, s)

φ+(ℓ, s)

Y (ℓ) −1

r(ℓ)

−2Y (ℓ)
r(ℓ)

CPU,φ

U(ℓ, s)

φ+(ℓ, s)P (ℓ, s)

φ−(ℓ, s)

Fig. 5. Conversion two-portsCφ,PU , CUP,φ, Cφ,UP andCPU,φ.

III. PHYSICALLY INSPIRED DECOMPOSITION OF THE

TWO-PORT

The scattering matricesH, G and Mφ derived from the
Webster-Lokshinmodel characterize the global acoustic be-
havior of a piece of pipe. In this section, their decompo-
sition into elementary two-port systems is performed. First,
delayse−iωL/ c0 representing an ideal propagation are isolated
from other operators without internal delays. Second, in the
latter operators, effects of the shape due to radius, slope
and curvature can be isolated ones from the other. These
decompositions are not purely algebraic manipulations: they
rely on physically based reasoning and yield straightforward
interpretations. Moreover, they will allow to improve the
corresponding digital waveguide implementation.

A. Separating delays and acoustic effects

Defining

T (s) := e−Γ(s)L = D(s) e
−s L

c0 , (15)

with D(s) := e−
(
Γ(s)− s

c0

)
L, (16)

in [9], D(s) is proved to be causal and stable, so that
T (s) represents the delay (e−iωL/c0) of the wave propagation
through the piece of pipe, and the associated effect (D(s)) due
to curvature and visco-themal losses.

This section is dedicated to isolate pure delay operators
which are contained inT (s) = e−Γ(s)L and to deduce a
framework which isolates them.

1) Decomposition ofQφ: In Fig. 4, the transfer functions
Rl

g, Rr
g, T+

g andT+
g represent global effects of a piece of pipe

on the traveling wavesφ±. Nevertheless, some elementary
effects can be isolated using the following relevant interpreta-
tions (see Fig. 6): At the left end(ℓ = 0), the incident wave
φ+

0 is partially reflected in the opposite direction (modeled in
Fig. 6 by the transfer functionRle) and is partially transmitted
into the piece of pipe (Tle). Then, this transmitted part travels
inside the pipe until the right end located atℓ = L (T+),
before being partially reflected (Rri) and partially transmitted
(Tri) outside the pipe. Symmetrically, the incident waveφ−L
undergoes similar phenomena.

φ+
0

φ−0 φ−L

φ+
L

q+0

q−0

q+L

q−L

Ql
φ

Qr
φRle Rli

Tli

Tle

Rre
Rri

Tri

Tre

T+

T−

φ+
0

φ−0 φ−L

φ+
Lq+0

q−0

q+L

q−L

Fig. 6. Decomposition of the two-portQφ.

Figure 6 compiles these phenomena and includes all the
contributions (the indexesi ande meaninternal andexternal,
respectively; the functionsT+ andT− represent the forward
and backward transmissions through the pipe, respectively).

This decomposition enlights two smaller two-port systems,
Ql

φ and Qr
φ (cf. Fig. 6), which models left and right semi-

interfaces, respectively.

The two-ports described in Fig. 4 and Fig. 6 are equivalent
if the following algebraic equations hold:

T+
g =

Tle Tri T
+

1 −Rri Rli T− T+
, (17)

T−
g =

Tre Tli T
−

1 −Rri Rli T− T+
, (18)

Rl
g = Rle +

Rri Tle Tli T
+ T−

1 −RriRli T− T+
, (19)

Rr
g = Rre +

Rli Tre Tri T
+ T−

1 −RriRli T− T+
. (20)

Equations (17-20) do not lead to a unique identification of
(Tli, Rli, Tle, Rle, T+, T−, Tri, Rri, Tre, Rre) from (Rl

g,
Rr

g, T+
g andT−

g ). Nevertheless, the following hypotheses with
good sense yield a unique identification:

(H1) Pressure continuityφ+
l +φ−l = q+l + q−l for l ∈ {0, L} is

required (see Fig. 6). This hypothesis implies thatevery
reflection r and every transmissiont fed by the same
input are such thatt=1+r.

(H2) The left-hand side functions (ofQl
φ) depend only on

the left parameterζl. Respectively, the right-hand side
functions (ofQr

φ) depend on theright parameterζr.
(H3) The propagation transfer functionsT± include a pure

delay operator:T±(s)=D±(s) e−sL/c0, whereD±(s) are
causal and stable.
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Then, the unique solution is proved to be (cf. [17])

T+(s) = T−(s) = T (s) = e−Γ(s)L, (21)

Rre(s) = −
Γ(s) − s

c0
− ζL

Γ(s) + s
c0

− ζL
= 1 − Tre(s), (22)

Rle(s) = −
Γ(s) − s

c0
+ ζ0

Γ(s) + s
c0

+ ζ0
= 1 − Tle(s), (23)

Rri(s) =
Γ(s) − s

c0
+ ζL

Γ(s) + s
c0

− ζL
= 1 − Tri(s), (24)

Rli(s) =
Γ(s) − s

c0
− ζ0

Γ(s) + s
c0

+ ζ0
= 1 − Tli(s). (25)

2) Decomposition ofQPU andQUP : A similar decompo-
sition of two-ports with acoustic state(P,U) is obtained in
Fig. 7. For instance,Ql

PU is obtained by connectingCPU,φ

with Ql
φ (which meansQl

PU ≡ CPU,φ ⊙ Ql
φ), following the

process detailed in sec. A.

P0

U0 PL

UL

q+0

q−0

q+L

q−L

Qr
PUQl

PU
H l

11 H l
22

H l
12

H l
21

Hr
11

Hr
22

Hr
12

Hr
21

T

T

U0

P0 UL

PL

q+0

q−0

q+L

q−L

Qr
UPQl

UP
Gl

11 Gl
22

Gl
12

Gl
21

Gr
11

Gr
22

Gr
12

Gr
21

T

T

Fig. 7. Decomposition of the two-portQPU andQUP .

Transfer functionsHx
ij andGx

ij of Fig. 7 (with x ∈ {l, r})
are rational functions ofs andΓ(s).

Note that two-portsQl
PU , Qr

PU , Ql
UP andQr

UP , of Fig. 7,
can be interpreted as conversion two-ports to new variables,
q+(ℓ, s) andq−(ℓ, s) , which are decoupled.

Remark: Sinceℜe(Γ(s)) > 0, for all s ∈ C such that
ℜe(s) ≥ 0 (see [9]), then

T (s) = e−Γ(s)L → 0 whenL→ +∞. (26)

ConsequentlyP0(s) ≈ Gl
11(s)U0(s) (whenL→ ∞), and the

transfer functionGl
11 is interpreted as the left input impedance

of a lossy semi-infinite pipe with constant curvature (cf. Fig.
8). H l

11 is its corresponding admittance. The expressions of
Gl

11 andH l
11 are

Gl
11(s) =

1

H l
11(s)

=
Zl

c0

s

Γ(s) + ζl
. (27)

B. Separating effects of pipe geometry

This section now focuses on separating contributions on the
acoustics due to the radiusr, the sloper′ and the curvature
r′′/r, and their possible discontinuities. The different orders
of discontinuity of the shape are introduced:

• The0-order corresponds to a discontinuity of radiusr at
junctions,

• The 1-order corresponds to a discontinuity of sloper′,
• The 2-order corresponds to a discontinuity of curvature

Υ = r′′/r.

0 500 1000 1500
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Fig. 8. Impedance of semi-infinite piece of pipe,Gl
11(s = 2iπf) for

rl = 5 mm, Υ = 15 m−2, ε = 0.0525 m− 1
2 , ζl = 0 m−1.

Contrarily to connections of straight or conical pipes, the
Webster-Lokshinmodel enables connections of pipes preserv-
ing C1-regularity, which means the continuity of section and
slope, and discontinuity of curvature (2-order of discontinuity).

1) Change of variables at interfaces of pipe:In order not
to “hide” some effects of the geometry of the piece of pipe
inside conversion two-ports, it is useful to define a change of
variables independent from the pipe under interest. Thus, a
reference pipeis introduced, which is a lossless cylinder with
radiusrc, and defined variables correspond to planar traveling
waves for this reference pipe. Its characteristic impedance is
Zc = 1/Yc = ρ0 c0 /Ac (with Ac = πr2c ), and planar traveling
waves are, forℓ ∈ {0, L}:

[
p+(ℓ, s)
p−(ℓ, s)

]
=

1

2

[
1 Zc

1 −Zc

] [
P (ℓ, s)
U(ℓ, s)

]
. (28)

For lossy varying cross-section pipes, (p+, p−) are neither
decoupled nor perfectly progressive inside the pipe. Netherthe-
less, they keep “physical meaning” at interfaces of pipe, asthe
decomposition detailed below enlights.

In sec. IV-B will be shown that variablesp± disappear after
connection of two pieces of pipe, so that the value ofrc (or
Zc) is arbitrary and does not affect the modeling.

2) Decomposed framework:Figure 9 presents the frame-
work where effects of geometry are separated into some two-
ports: two-portsQl

a andQr
a for the effects of section at left

and right ends respectively,Ql
s andQr

s for slope,Ql
cl andQr

cl

for curvature.
With C′

PU,p the conversion two-port from(P,U) to p±

and C′
p,UP its reciprocal conversion, this framework proves

to be equivalent toQPU (see sec. II-C1). The proof uses
interconnection laws of two-port systems (see appendix A).

Note that this framework naturally enlights 4 consecutive
change of variables:

p±: variables defined by (28),
φ±: traveling waves defined by (4),
ψ±: symmetrical traveling waves defined in [9],
q±: decoupled variables.

The remarkable thing of the framework of Fig. 9, is that
it isolates a central part for wave propagation and 6 cells of
the Kelly-Lochbaumjunction type (cf. [10]), of which 4 are
well-known (effects of section and slope) and 2 are new as far
as we know.
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r
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Fig. 9. Decomposed framework, where effects of the pipe geometry are separated.

3) Interpretation of cells:
• CellsQl

a andQr
a

Ql
a andQr

a, with coefficientskl andkr, take into account
sections of pipeAl = πr2l and Ar = πr2r , at ends. The
index “a” means “area of section”. They are similar to
cells of theKelly-Lochbaumframework after connection
with a lossless cylinder of radiusrc (cf. eg. [10], [13]).

kl =
Ac −Al

Ac + Al
= −Zc − Zl

Zc + Zl
, (29)

kr =
Ac −Ar

Ac + Ar
= −Zc − Zr

Zc + Zr
. (30)

• CellsQl
s andQr

s

Ql
s andQr

s, with transfer functionsRs
l andRs

r, take into
account slopes of piper′l = r′(ℓ=0) andr′r = r′(ℓ=L)
at left and right sides. The index “s” means “slope”. They
are similar to cells of the framework ofKelly-Lochbaum
after connection of cones (cf. eg. [11], [14]).

Rs
l (s) =

αl

s− αl
, with αl = −c0

2
r′

l

rl
, (31)

Rs
r(s) =

αr

s− αr
, with αr = +c0

2
r′

r

rr
. (32)

If the slope is0 (for cylinders for instance), these cells
become identity (φ±ℓ = ψ±

ℓ ).
• CellsQl

cl andQr
cl

Ql
cl and Qr

cl, with the transfer functionR, take into
account the constant curvature and losses of the pipe.
The indexes “cl” means “curvature andlosses”.

R(s) =

s

c0
− Γ(s)

s

c0
+ Γ(s)

. (33)

In the case of lossless cones or cylinders (Υ = ε = 0),
R = 0, thus these cells are identity (ψ±

ℓ = q±ℓ ).
Using (26), in [23], the transfer functionR(s) is interpreted

as the reflection at junction (with continuity of section and
slope) between a lossless cone and an anechoic lossy flared
pipe (with constant curvature). In [24], a similar interpretation
has been done forRs

l andRs
r in the case of lossless cones.

4) Interest of this framework:For acoustic reasons, the
framework of Fig. 9 is interesting because the effects of the
curvature and losses are isolated from the others (section and
slope), and it makes their study easier. Because of the square
roots of the functionΓ (cf. (7)), the study requires special
treatments (see sec. V-A).

For a systematic point of view, it is interesting to recover a
symmetric general framework containing elementary cells of
theKelly-Lochbaumjunction type. Moreover, as it is explained
in sec. IV, this general framework makes possible to recover
some former lossless waveguide models (cf. eg. [10], [11]),
and some other lossy waveguide models by adding losses in
propagation functionT (s) (cf. eg. [12], [14]). But in addition
it takes into account both the curvature of the shape of pipe
and the visco-thermal losses, according to the refined acoustic
model ofWebster-Lokshin.

IV. N ETWORK OF PIPES

In this section two-port systems of pieces of pipe are
connected in order to build the model of a complete resonator.
Using variables (p+, p−), it is necessary to study how the
connection must be done.

p+
1

p−1

p+
2

p−2
?Q1 Q2

Fig. 10. Connecting 2 two-port with variables (p+, p−).

The right side of two-portQ1 is connected to left side
of two-port Q2. The variables which are associated toQn

for n ∈ {1, 2}, are named(p+
n , p

−
n ). Flow and pressure

continuity assume thatP = p+
1 + p−1 = p+

2 + p−2 and
U = Yc

(
p+
1 − p−1

)
= Yc

(
p+
2 − p−2

)
, which leads to:

p+
1 = p+

2 and p−1 = p−2 .

In consequence, the connection of 2 two-ports with variables
(p+, p−) is made by branching the output ofQ1 (p+

1 ) to input
of Q2 (p+

2 ), and reciprocally.

A. Junction of any pieces of pipe

Using the framework of Fig. 9, it is possible to model,
and then to simulate, the connection of two pieces of pipe,
Q1 and Q2, with discontinuities of section, slope, curva-
ture (and losses). The resulting two-port,Q1,2

j , of such a
junction is the connection of six cells, that is:Q1,2

j ≡
Qr,1

cl ⊙Qr,1
s ⊙Qr,1

a ⊙Ql,2
a ⊙Ql,2

s ⊙Ql,2
cl .

With hypothesis on the order of discontinuity and on the
shape of the pipe, this framework enables to recover some
former waveguide models of the literature, using simplifica-
tions.
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B. Junction of cylinders

Two lossless cylinders are considered. two-portsQ1 andQ2

represent them, with section areaA1,r andA2,l.
For lossless cylinders, cellsQs andQcl are identity systems

and only cellsQa are present. The resulting two-port of such
a junction is the connectionQ1,2

j,a ≡ Qr,1
a ⊙Ql,2

a . This junction
is presented on top of Fig. 11.

T1(s)

T1(s)

T1(s)

T1(s)

T2(s)

T2(s)

T2(s)

T2(s)
Q1 Q2

k(1,2)

p+

p−
−k1,r

1+k1,r

k1,r

1−k1,r

k2,l

1−k2,l

−k2,l

1+k2,l

Fig. 11. Junction of lossless cylinders (withTi(s) = e−sτi )

Merging two-ports at interface leads to an equivalent two-
port which represents the junction of cylinders (cf. bottom
of Fig. 11). Using the algebraic laws of interconnections (cf.
appendix A) and the expressions ofk1,r and k2,l (cf. sec.
III-B3 §1), the coefficient of reflexion is given by

k(1,2) =
A1,r −A2,l

A1,r + A2,l
. (34)

The Kelly-Lochbaumframework for networks of lossless
cylinders is recovered (see eg. [10]). This model corresponds
to the0-order of discontinuity.

Remark that variablesp+ and p− have now disappeared
after merging, andk(1,2) does not depend onZc.

C. Junction of cones

Consider two lossless cones represented by two-portsQ1

andQ2, with slopesr′1,r and r′2,l, connected with continuity
of section.

The continuity of section (or radius) impliesr1,r = r2,l =
rj and k(1,2) = 0. And for lossless cones, cellsQcl are
identity systems. Consequently, only the effect of difference
of slopes remains. The resulting two-port of such ajunction
is the connectionQ1,2

j,s ≡ Qr,1
s ⊙Ql,2

s (see Fig. 12) where

Rs
(1,2)(s) =

α(1,2)

s− α(1,2)
, (35)

with α(1,2) = α1,r + α2,l = + c0
2

(
r′
1,r−r′

2,l

rj

)
. (36)

T1(s)

T1(s) T2(s)

T2(s)

T1(s)

T1(s)

T2(s)

T2(s)
Q1 Q2

Rs
(1,2)

φ+

φ−
Rs

1,r

1+Rs
1,r

Rs
1,r

1+Rs
1,r

Rs
2,l

1+Rs
2,l

Rs
2,l

1+Rs
2,l

Fig. 12. Junction of lossless cones (withTi(s) = e−sτi )

The Kelly-Lochbaumframework is recovered for networks
of lossless cones (see eg. [11]). It corresponds to the1-order
of discontinuity, withC0-regularity of the shape of pipe.

Remark: In [12], [14] the damping due to visco-thermal
losses in propagation operators is taken into account, up tothe
same order of approximationε (with Υ = 0) of the acoustic
model:T (s) = e−sτ D̆(s) where

D̆(s) := e− ε
√

s/c0L . (37)

D. Junction of constant-curvature pipe

Now a junction is considered with continuity of section
(A1,r = A2,l) and continuity of slope (r′1,r = r′2,l), and
two lossy flared pipes with different parameters are connected
(Υ1 6= Υ2 or ε1 6= ε2).
C1-regularity implies k(1,2) = 0 and Rs

(1,2) = 0. The

resulting two-port of such ajunction is the connectionQ1,2
j,cl ≡

Qr,1
cl ⊙Ql,2

cl . This junction is presented in Fig. 13, where

R(1,2)(s) =
Γ1(s) − Γ2(s)
Γ1(s) + Γ2(s)

, (38)

with Γn(s)=

√(
s
c0

)2

+2εn

(
s
c0

) 3
2

+Υn, ∀n∈{1, 2}. (39)

T1

T1 T2

T2

T1

T1

T2

T2

Q1 Q2

R(1,2)

ψ+

ψ−

−R1

1+R1

R1

1−R1

R2

1−R2

−R2

1+R2

Fig. 13. Junction of lossy flared pipes with constant curvature (where
Ti(s) = e−Γi(s)Li ).

The framework ofKelly-Lochbaumfor networks of flared
pipes with constant curvature is recovered (see [17]).

By comparing with former waveguide models, the improve-
ment of this new model is that it allows junctions with
continuity of section and slope, that is it can take into account
the 2-order of discontinuity, withr(ℓ) C1-regular.

The analytical model of a network of some pieces of
pipe with constant curvature per piece and with continuity of
section and slope at junctions is proved to be stable. This proof
is done by analyzing stability and passivity for one two-port
of piece of pipe. Then by induction reasoning, the passivityof
the connexion of a two-port of piece of pipe with any passive
system, leads to the passivity and the stability of the whole
network. No details are given in the present paper, but a next
article will be devoted to this proof.

V. D IGITAL WAVEGUIDES AND SIMULATION

A. Diffusive representation, approximation and digital deriva-
tion

Because of the square roots inΓ(s), some involved transfer
functions are irrational, and so they are not standard. These
transfer functions have continuous lines of singularitiesin C,
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which are namedcuts. These cuts join some points (branching
points) and the infinity.

If Υ = 0, the function Γ has one branching point at
s = 0. The cutR− is chosen to preserve hermitian symmetry.
Thereof, associated transfer functions have a continuous line
of singularities onR−. Using the residue theorem, it has
been shown (cf. eg. [25], [26], [27], [28]) that these functions
are represented by a class of infinite-dimensional systems:
Diffusive Representations. For any diffusive representation
H(s), analytic onC\R

−:

H(s) =

∫ ∞

0

µH(ξ)

s+ ξ
dξ, (40)

µ
H

(ξ) =
1

2iπ

(
H(−ξ+i0−)−H(−ξ+i0+)

)
. (41)

For simulation in the time domain, in [29] for exam-
ple, it has been proposed to approximate such diffusive
representations by finite-dimensional approximations, given
by H̃(s) =

∑j=J
j=1

µj

s+ξj
, where J is the number of poles,

−ξj ∈ R− is the position of thejth pole andµj is its weight.
The poles are placed inR− with a logarithmic scale, and

the weightsµj are obtained by a least-square optimization in
the Fourier domain.

If Υ > 0, Γ has two more branching points, which are
complex conjugate. In this case, the diffusive representations
are approximated with a finite sum of first and second order
differential systems:

H̃(s) =

j=J∑

j=1

µj

s+ ξj
+

n=N∑

n=1

(
wn

s+ γn
+

wn

s+ γn

)
. (42)

Transfer functions to approximate are:Rk, R(k,k−1) and
Dk, for any k (see sections III-B3 (§4) and IV-D)1. Note
that in models of [12] and [14], the transfer function̆D(s) =

e− εk

√
s/ c0Lk has to be approximated with poles onR−.

Finally, a digital version of (42) is implemented using
standard numerical approximations (see [30], [31], [9]).

B. Numerical comparisons of three simulations

In this section, digital waveguide simulations of agoalpipe
Pgoal defined in sec. V-B1 are built approximatingPgoal by
straight (M1), conical (M2) or constant-curvature (M3) pieces
of pipe. The sampling frequencyFs or lengthL are adapted
so that no fractional delays are required. The number of pieces
of pipe is chosen such that artefacts due to the discontinuities
of the approximated shapes are rejected (see V-B2). The
input impedances respectively obtained from (M1,M2,M3) are
compared in the Fourier domain to thegoalone (see V-B3).

Note that the three acoustic models take into account
losses and the varying cross-section. By fixing an equivalent
global complexity, the comparison is about the quality of
approximations of the diffusive representations (cf. sec.V-A).

1The order of approximation (J + 2N ) depends on the desired quality:
J mainly tunes the quality of approximation of effects due to visco-thermal
losses, andN , that due to the curvature. For example, in the case of very
large tubes, visco-thermal losses are negligible so that, the choiceJ = 0 can
be done. IncreasingJ andN improves the approximation, and so the quality
of the simulation, and decreasingJ and N reduces the quality. In practice,
choosingJ = 6 andN = 5 leads to fully satisfactory results, in most cases
(which corresponds to a16th order filter).

p+
e

p+
e

p−e p−e

Z=0 hgoal

Fig. 14. The impulse responsehgoal is the reflexion of the virtual pipe.

1) Goalpipe, lengths and sampling frequencies:The
goalpipe is defined byr(ℓ) = R0 + ℓα on ℓ ∈ [0, L], with
R0 = 2.5 mm andα = 4. This pipe is terminated at the
right end by a zero impedance. Here, only digital simulation
of acoustic tubes is studied, and thegoalpipe is ideally open
in order not to introduce a model of sound radiation.

The exact impulse response of the global reflexion function
of the goalpipe is denotedhgoal(t) (see Fig. 14). Moreover,
the input impedanceZgoal(iω) is computed for eachω as
follows: [step 1] for each (fixed)s = iω, numerically solve
the linear Cauchy problem (1), (2) onℓ ∈ [0, L] with the
boundary conditionP (ℓ = L, s) = 0, U(ℓ = L, s) = 1;
[step 2] compute

Zgoal(s) =
P (0, s)

U(0, s)
= −ρ0 s

A0
× P (ℓ=0, s)

∂ℓP (ℓ=0, s)
, (43)

with s = iω. Results are presented in Fig. 15 (curve C0).
For simulations based on (M3) which relies on the curvilin-

ear lengthℓ, the following choice is made to have no fractional
delays: Fs = 44100 Hz and L = K c0 /Fs ≈ 49.9 cm
with K = 64. From (3), the corresponding axial length is
Lz = ℓ−1(L) ≈ 49.0 cm so that the corresponding sampling
rate isFz = K c0 /Lz ≈ 44924 Hz for (M1).

2) Number of pieces of pipe for models (M1, M2, M3):
First, for (M1) with ε = 0, the continuous-time impulse
response associated to pieces of pipe with lengthδz1 writes

h1(t) =

+∞∑

n=0

anδ(t− 2n δz1/ c0) (44)

where δ(.) denotes the Dirac distribution, and thean’s can
be deduced from reflexion coefficientsk in (34). Hence, the
choiceδz1 = c0 /(2Fz) yields the digitalized impulse response
h(tn) = an which avoids discontinuities due to the artificial
intertwined “zeros” naturally involved by (M1). Accordingto
this well-known and standard result, the number of pieces of
pipe is then chosen as2K = 128. Note that forε > 0, (44) be-
comes smoother since the losses introduce dissipation through
D̆ in (37) which corresponds to the slowly decreasing impulse
response (cf. [32])̃d(t) = (β/(2

√
πt3)) e−β2/(4t) for t > 0

with β = ε δz1/
√

c0. But, this regularization is not sufficient
to decrease the number2K (see Fig. 23-(1,2,3) p.14).

Second, for (M2) withǫ = 0, the corresponding continuous-
time impulse responseh2 involves decreasing exponentials
(cf. [24], [33]) and digital versions involve first order filters
so that the computational cost for one piece of pipe is twice
greater for cones than for cylinders. To preserve a similar
global computational cost and since the discontinuity ofh2

is smoothed by exponential responses, the number of pieces
of pipe is chosen asK = 64 so thatδz2 = 2δz1. In practice,
this actually yields smooth results (see Fig. 23-(4,5,6) p.14).
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Third, (M3) leads to a naturally smooth impulse responseh3

and reducing the number of pieces of pipe does not introduce
artefacts of discontinuity type but only influences the quality
of approximation. In practice, taking only 4 pieces of pipe with
constant curvature yields accurate results (see Fig. 23-(7)).

3) Digital waveguides, input impedances and comparisons:
Each digital simulation based on (M1,M2,M3) is built with
a Kelly-Lochbaum framework derived as in sections IV-B
to IV-D. In these networks, time domain versions ofTi(s)
(see (15), (16) and (37)) are implemented using a circular
buffer for the delay part and using recursive digital filters
straightforwardly deduced from optimisations ofDi(s) and
Ďi(s) following the method presented in sec. V-A. Digital
filters are also obtained forRs

i,i+1, Ri,i+1 in the same way.
From the number of floatting point operations and the CPU

point of view, parametersJ ,N involved in the approximations
(42) of the diffusive representations are chosen in order to
preserve the same algorithmic complexity. Then, theξj ’s and
γn are optimized to have the best results following the method
proposed in [29].

In practice, the simulation network for (M1) involves
2K = 128 delays and reflexion coefficientski,i+1, and D̆i

are approximated using second order filters. The network for
(M2) involvesK = 64 circular buffers for delays, 64 first
order filters for reflexionsRs

i,i+1 and 64 fourth order filters
for approximatingD̆i. Finally, the network for (M3) involves
4 pieces of pipe: 8 circular buffers, 8 filters for approximating
Di, 5 filters for approximatingRi,i+1 with distinct orders but
leading to the same global complexity as previous models
(which are “globally” equivalent to 170th order filters).

The input impedances corresponding to (M1,M2,M3) are
respectively deduced from the discrete-time Fourier transforms
Rglob

1 , Rglob
2 , Rglob

3 of the digital impulse responsesh1, h2 and
h3 of the global input reflexion (similar to Fig. 14) using

Zin(f) =
ZcπR

2
0

ρ0 c0
× 1 +Rglob(f)

1 −Rglob(f)
(45)

wheref denotes the frequency.
These impedances and thegoalimpedance are plotted in

Fig. 15. To help comparisons, their spectral envelopes which
links local maxima are also plotted. Frequency positions of
maxima coincide for all models (with an error±15 Hz),
but not their amplitude. More precisely, for (M1) and (M2),
amplitudes are significantly too high between0 and3000 Hz
and too small in[4000, 6000] Hz. On the contrary, model (M3)
better fits with thegoalimpedance with an accuracy smaller
than2 dB.

The reason is that many pieces of pipe are required (128
for (M1), 64 for (M2)), so to respect the given “global”
algorithmic complexity only low order filters can be used to
approximate thẽD’s which account for losses. On the contrary,
with only 4 pieces of pipe, (M3) allows higher orders for
approximations together with an equivalent global complexity
and a best quality. Moreover, it is possible to adjust complexity
and quality, by adapting the values ofJ and N for each
approximation (cf. sec. V-A).
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Fig. 15. Comparisons between thegoal impedanceZgoal and impedances
obtained from (M1), (M2) and (M3). Curve (C0) is the impedance Zgoal.
It is numerically computed using a standard Runge-Kutta method (cf. [34])
(Matlab c© : ode23 with a relative errorδ = 10−3). Curves (C1,C2,C3) are
deduced from the simulation of 128 cylinders, of 64 cones andof 4 constant-
curvature pipes, respectively. Dotted curves represent envelopes of maxima.

C. Building a virtual instrument

This section deals with the resonator of a virtual trombone
modeled by concatenating seven elements (see Fig. 16, top):a
mouth-piece, five pieces of pipe (1 cylinder and 4 flared pipes
with constant curvature), and a radiation impedance.

The mouthpiece is modeled by an acoustic mass (cf. [35]),
a resistance, and a compliance, and it is simulated by a
second order system. Because of the flaring at the end of the
horn of brass instruments, the radiation model of [36] seems
well adapted for this application; here this model is used.
The cylinder models the slide of the trombone and the four
flared pieces of pipe model the horn. Parameters (lengths and
curvatures) of these pieces of pipe have been empirically tuned
such that the approximated shape fits the radius measured on a
real trombone (see appendix B for details). The measurements
correspond to a Courtois trombone.

Note that, withrmin ≈ 7 mm andrmax ≈ 11 cm (the
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T2 R(3,4)
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p+
0

p+
0

p−0

p−0

p+
rad

p+
rad

Qmp Qrad

Fig. 16. Making a virtual trombone

extreme radii), theWebster-Lokshinmodel is valid at least with
0.13 ≪ f < 915 Hz (for validation of losses and longitunal
propagation). For trombones, this limitation is satisfactory
considering that the coupling of the resonator and the excitator
(the lips, cf. eg. [37]), mainly involves lower modes.

The approximated shape isC1-regular, and so theKelly-
Lochbaumframework is recovered for the whole pipe of the
trombone, leading to Fig. 16 (bottom). Figure 18 compares the
impedance measured on the real trombone to that computed
from the digital time simulation of the impulse response.

Figure 18 shows that the modelisation is globally correct,
but with some significant errors in the spectral envelop around
300 and 600 Hz. This difference comes from the rough
empirical approximation of the original profil. Nevertheless,
some recent works will allow better automatic approximations
of the profile (cf. [38]).
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Fig. 17. Input (top) and output (bottom) impulse responses (digital time
simulation).

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, theWebster-Lokshinmodel has been used
to build digital waveguides taking into account both visco-
thermal losses at the wall, and curvature of the shape of pipe.

A “generalized” framework has been derived in which
delays and effects due to the shape are separated (section,
slope and curvature). Considering particular cases of regularity
at junctions of pieces of pipe, three kinds of Kelly-Lochbaum
networks are recovered. One of them makes it possible to
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Fig. 18. Measured and computed impedances.

consider junctions with continuity of section and slope, and
discontinuity of curvature, which means theC1-regularity of
the shape.

Moreover, this model does not impose a number of pieces of
pipe, contrarily to models of connections of straight and coni-
cal pieces of pipe. In sec. V-B, whereas 128 cylinders (M1) or
64 cones (M2) are required to model thegoalpipe, 4 constant
curvature pieces of pipe are enough to get good results (M3).
Using this improvement, digital real-time simulations hasbeen
implemented in C/C++ language.

In the particular case ofC1-regularity (with Υ(ℓ) > 0),
the stability and passivity of transfer functions involvedin the
global Kelly-Lochbaum network can be proved analytically (in
the Laplace domain). This specific aspect of the work will be
presented in a future paper.

However, for negative curvatures, some transfer functions
involved in the Kelly-Lochbaum network are unstable. This
phenomenon is quite complicated, but is now well understood
(see eg. [7]). Very similar phenomena appear at junctions
of cones, when the difference of slopes (on both size of
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the junction) is negative (cf. [24], [14]). In [39], the simple
case of a single convergent cone has been studied, and the
corresponding Kelly-Lochbaum network has been proved to be
internally stable if it is represented by its minimal realization,
in the sense of the state-space representations of systems.
Hence, an approach to cope with the problem of negative
curvature could be based on an extension of solutions which
have been proposed for networks of cones.

In this paper, the example of a virtual trombone is presented
to illustrate some results of simulations. The applicationof the
presented model to the simulation of the vocal tract will be
considered after solving the problem of negative curvatures.

APPENDIX A
CONNECTING 2 TWO-PORTS

Connecting 2 two-ports consists in branching output of one
two-port to input of the other, and reciprocally as top of Fig.
19 shows.

Merging these two-ports into a unique equivalent two-port
is interesting for some reasons:

• First, in some cases, the merging allows to simplify the
framework.

• It can be used to prove the equivalence between some
different forms of a two-port system.

• As Fig. 19 shows, there is an instantaneous loop at
interface which cannot be simulated numerically.
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Fig. 19. Connecting two-ports and removing instantaneous loops

In Fig. 19,QC is defined as the equivalent two-port of the
connection of two-portsQA and QB. In [22], the following
notation is defined:QC ≡ QA⊙QB, where≡ is the equivalent
relation and⊙ is the connection operator.

Algebraic expressions of elements ofQC are

C11 = A11 +
A12B11A21

1 −A22B11
, (46)

C12 =
B12A12

1 −A22B11
, (47)

C21 =
A21B21

1 −A22B11
, (48)

C22 = B22 +
B12A22B21

1 −A22B11
, (49)

for which A22(s)B11(s) 6= 1, ∀s/ℜe(s) > 0 is required to
guarantee the stability of the feedback loop.

APPENDIX B
TABLE OF PARAMETERS OF SECTIONV-C

In the following table, the subscriptc means thecup of the
mouth-piece of the trombone andb means itsbackbore. rc and
Vc are the radius and the volume of the cup,Lb and rb are
the length and the equivalent radius of the backbore.Ca is the
acoustic compliance of the cup,Ra andMa are the acoustic
resistance and the acoustic mass associated to the backbore
(see [35]).

Mouthpiece parameters:
rc (m) Vc (m3) Lb (m) rb (m)
14.5 10−3 10.8 10−6 52.5 10−3 4.5 10−3

Ca(m3.P−1
a ) Ma(kg.m−4) Ra(N.s.m−5)

7.59 10−11 990 5.87 10−3

Pieces of pipe parameters:
Number 1 2 3 4 5

rl (mm) 6.9 6.9 10.4 22 43.7
rr (mm) 6.9 10.4 22 43.7 110
r′l 0 0 0.013 0.055 0.5
r′r 0 0.013 0.055 0.5 0.99
L (m) 1.615 0.544 0.352 0.103 0.085
Υ (m−2) 0 3 9 120 60

ε (m− 1
2 ) 0.0507 0.0422 0.0248 0.0116 0.0033

Note that, parametersCa, Ra,Ma, r
′
l, r

′
r and ε are calcu-

lated from the others. For constant curvature,ε(ℓ) varies with
r(ℓ), ε is chosen as the mean ofε(ℓ) along the piece of pipe.

APPENDIX C
EFFECTS OF CURVATURE AND LOSSES ON

WEBSTER-LOKSHIN TRANSFER FUNCTIONS

The input impedance of a cylinder which is ideally open
at right (that isPL = 0) is drawn in Fig. 20 for various
loss coefficients:ε = 0 (no losses),ε = ε∗ computed
from the standard physical values, andε = 3 ε∗ (artificially
overestimated losses).
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Fig. 20. Influence of losses on the impedance of an open cylinder, H−1
11 .

Parameters:r0 = rL = 5mm, L = 1m, Υ = 0m−2 .

Figure 21 compares the effects of the curvature value on
the input impedanceZin = 1/H11 of an ideally open pipe
(see also Fig. 1). Vertical dashed lines represent the cutoff
frequencyωc for each curvature.

Figure 22 compares the effects of the curvature value on the
input impedanceZin = 1/H l

11 of a semi-infinite pipe (see also
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Fig. 21. Influence of the curvature on the impedance of an openpipe,H−1
11 .

Parameters:r0 = 5 mm, rL = 10 mm, L = 1 m. Abscissa:kL/π.
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Fig. 7). Vertical dashed lines represent the cutoff frequency for
each curvature.
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1994.

[14] E. Ducasse, “An alternative to the traveling-wave approach for use in
two-port descriptions of acoustic bores,”J. Acoust. Soc. Am., vol. 112,
pp. 3031–3041, 2002.

[15] ——, “Modélisation et simulation dans le domaine temporel
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[17] T. Hélie, R. Mignot, and D. Matignon, “Waveguide modeling of lossy
flared acoustic pipes: derivation of a Kelly-Lochbaum structure for real-
time simulations,” inIEEE WASPAA, Mohonk, USA, 2007, pp. 267–270.

[18] G. P. Scavone, “An acoustic analysis of single-reed woodwind in-
struments with an emphasis on design and performance issuesand
digital waveguide modeling techniques,” Ph.D. dissertation, Music Dept.,
Stanford University, 1997.
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Fig. 23. Digital impulse responses of simulations in the discrete time domain (cf. sec. V-B2 p. 8): (a) Connection of 8 cylinders, (b) connection of 32 cylinders,
(c) connection of 128 cylinders, (d) connection of 4 cones, (e) connection of 16 cones, (f) connection of 64 cones, (g) connection of 4 constant-curvature
pipes. The dashed curves are the correctly sampled impulse responses for cylinders and cones.


