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Species-Specific Contribution of the Four C-Terminal Amino Acids of

Influenza A Virus NS1 Protein to Virulence’

Sébastien M. Soubies,'* Christelle Volmer,"? Guillaume Croville,"* Josianne Loupias,'~
Brigitte Peralta,'* Pierrette Costes,"* Caroline Lacroux,'~
Jean-Luc Guérin,"? and Romain Volmer!?*

INRA, UMR 1225, Ecole Nationale Vétérinaire de Toulouse, F-31076 Toulouse, France,' and
Université de Toulouse, ENVT, UMR 1225, F-31076 Toulouse, France>

Large-scale sequence analyses of influenza viruses revealed that nonstructural 1 (NS1) proteins from avian
influenza viruses have a conserved C-terminal ESEV amino acid motif, while NS1 proteins from typical human
influenza viruses have a C-terminal RSKV motif. To test the influence of the C-terminal domains of NS1 on
the virulence of an avian influenza virus, we generated a wild-type H7N1 virus with an ESEV motif and a
mutant virus with an NS1 protein containing a C-terminal RSKV motif by reverse genetics. We compared the
phenotypes of these viruses in vitro in human, mouse, and duck cells as well as ir vivo in mice and ducks. In
human cells, the human C-terminal RSKV domain increased virus replication. In contrast, the avian C-
terminal ESEV motif of NS1 increased virulence in mice. We linked this increase in pathogenicity in mice to
an increase in virus replication and to a more severe lung inflammation associated with a higher level of
production of type I interferons. Interestingly, the human C-terminal RSKV motif of NS1 increased viral
replication in ducks. H7N1 virus with a C-terminal RSKV motif replicated to higher levels in ducks and
induced higher levels of Mx, a type I interferon-stimulated gene. Thus, we identify the C-terminal domain of

NS1 as a species-specific virulence domain.

Interspecies transmission of influenza viruses can lead to the
introduction of new subtypes of influenza virus into the human
population (31). The emergence of a new influenza virus that
is able to spread efficiently between humans can cause a pan-
demic, as evidenced by the recent introduction of the swine-
origin 2009 A/H1N1 virus to humans (10). The spread of avian
influenza A viruses from birds to humans could also lead to the
introduction of a new viral subtype with pandemic potential
(22). Fortunately, the efficient replication of avian influenza A
viruses in humans and interhuman transmission are generally
limited and require further adaptations of the virus to humans.
One determinant of host adaptation lies in the receptor bind-
ing specificity of hemagglutinin (HA) (52). In addition, several
reports have underlined the role of amino acid 627 of the PB2
polymerase subunit in determining viral host range and viru-
lence (15, 36, 44, 45). Large-scale sequence analyses of viruses
isolated from different bird and mammalian species have been
performed in order to identify previously unrecognized deter-
minants of host adaptation and virulence (2, 32). Those studies
have identified a 4-amino-acid motif in the C-terminal domain
of NS1 that could represent a previously unnoticed host adap-
tation motif. Indeed, the vast majority of avian influenza vi-
ruses have an NS1 protein with a C-terminal ESEV domain,
while typical human viruses have a conserved RSKV domain.
The conservation of these species-specific motifs in the NS1
protein despite important sequence variability in the rest of the
protein suggests that these four C-terminal amino acids are
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under strong selection pressure in their respective natural
hosts (3, 5, 25).

NS1 is a multifunctional protein implicated in the regulation
of viral gene expression and in the inhibition of the host anti-
viral response (12). In order to test the role of these newly
identified NS1 domains, Jackson et al. previously introduced
various C-terminal motifs into NS1 of the mouse-adapted hu-
man influenza virus A/WSN/33 strain by use of reverse genetics
(24). Mice inoculated with a virus containing an avian C-ter-
minal ESEV NS1 domain had high viral loads in the lungs and
decreased survival compared to mice inoculated with a virus
containing a C-terminal RSKV domain. These results showed
that the C-terminal ESEV motif found in avian NS1 proteins
increases virulence in mice when introduced into a human
strain of influenza virus. Whether this finding also applies to
avian influenza viruses remains unknown. Moreover, whether
the C-terminal ESEV domain of NS1 increases replication in
human cells remains unknown. Finally, how the C-terminal
domains of NS1 modulate virulence in nonmammalian hosts,
such as birds, is also unknown.

Here, we assessed the contribution of the C-terminal do-
mains of NS1 to the pathogenicity of an avian influenza virus.
By using reverse genetics, we generated H7N1 viruses contain-
ing an NS1 protein with a C-terminal avian ESEV domain or
a C-terminal human RSKV domain. The replications of these
viruses in human, mouse, and duck cell were compared. In
addition, we assessed their pathogenicity in mice and ducks.
Our results show that the C-terminal RSKV domain increases
the replication of an avian influenza virus in human cells. To
our surprise, we observed that the C-terminal RSKV domain
increases replication in ducks. In contrast, the C-terminal
ESEV domain increases virulence in mice. Thus, we identify
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FIG. 1. NS segments of ESEV and RSKV and of NEPS70 and NEPG70. The NS segment of influenza A viruses encodes two proteins, named
NS1 and NEP. The differences between the ESEV virus and the RSKV virus are underlined. The NEPS70 virus and the NEPG70 virus have a
224-amino-acid-long NS1 protein and differ from each other solely by the S70G mutation in NEP.

the C-terminal domain of NS1 as a species-specific virulence
domain.

MATERIALS AND METHODS

Cells and reagents. Primary duck embryonic fibroblasts (DEF) were obtained
from 10-day-old Pekin duck (Anas platyrhynchos) embryos. All cells, including
human embryonic kidney (HEK) 293T cells, human A549 alveolar epithelial
cells, mouse embryonic NIH 3T3 cells, and Madin-Darby canine kidney (MDCK)
cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) supple-
mented with penicillin (10* U/ml), streptomycin (10 mg/ml), and 10% fetal
bovine serum at 37°C and 5% CO,. The following antibodies were used: poly-
clonal rabbit serum directed against NS1 (kindly provided by D. Marc [INRA,
Tours, France]), polyclonal rabbit anti-type A influenza virus nucleoprotein (NP)
(kindly provided by G. Whittaker [Cornell University, Ithaca, NY]), mouse
monoclonal antibody directed against type A influenza virus NP (Argene), and
mouse monoclonal antibody directed against glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH) (clone MAB 374; Chemicon).

Virus and reverse genetics. The low-pathogenicity avian influenza (LPAI)
virus A/Turkey/Italy/977/1999 (H7N1) was a kind gift of I. Capua (Istituto
Zooprofilattico Sperimentale Delle Venezie, Legnaro, Italy). The viral genome
was extracted from allantoic fluid of embryonated chicken eggs infected with the
LPAI A/Turkey/Italy/977/1999 (H7N1) virus (third egg passage) by using the
QIAamp viral RNA minikit (Qiagen) according to the manufacturer’s protocol.
Each viral segment was cloned into vector pHW 2000, kindly provided by R.
Webster (St. Jude Children’s Research Hospital, Memphis, TN), as described
previously (19, 20). In order to generate a mutant virus, site-directed mutagen-

esis was performed on the NS segment by using the QuikChange II kit (Strat-
agene) according to the manufacturer’s protocol. The plasmid was then verified
by sequencing.

HEK 293T cells were transfected with 0.3 pg of each of the eight pHW 2000
plasmids corresponding to the viral segments using the lipophilic transfection
reagent LTX with Plus reagent (Invitrogen). To avoid multicycle replication in
HEK 293T cells, no trypsin was added to the culture medium at this step. Three
wells were transfected for each rescue and were respectively scraped at 24, 36,
and 48 h posttransfection. Scraped cells and culture medium were then trans-
ferred onto DEF grown in Opti-MEM supplemented with 2 pg/ml L-(tosylamido-
2-phenyl)ethyl chloromethyl ketone (TPCK) trypsin (Pierce). In order to pro-
duce viral stocks, viruses were further inoculated into 10-day-old embryonated
chicken eggs. Titers of viral stocks were measured by standard plaque assay on
MDCK cells. We verified the identity of amplified viruses by sequencing of
amplicons of each viral gene segment using reverse transcription (RT)-PCR.

Infections and virus titration. All infections were performed with DMEM
supplemented with 0.2% bovine serum albumin (BSA). TPCK trypsin (1 pg/ml)
was added in the case of multiple-cycle growth analysis. The 50% tissue culture
infectious dose (TCIDs,) values were calculated by the Reed-Muench method
with MDCK cells grown in 96 wells.

Mouse type I interferon (IFN) receptor blockade. Mouse 3T3 cells were
infected at a multiplicity of infection (MOI) of 0.05 PFU per cell. After incuba-
tion for 1 h, the infection inoculum was replaced with fresh medium containing
TPCK trypsin and 5 pg/ml of neutralizing anti-mouse alpha/beta interferon
receptor 1 (IFNAR-1) antibodies (clone MAR1-5A3; Leinco Technologies) (8).
Viral titers in the supernatant were measured by standard plaque assay on
MDCK cells.
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FIG. 2. Western blot analysis of human, mouse, and duck cells infected with ESEV and RSKV. Human A549 cells (A), mouse 3T3 cells (B),
and primary duck fibroblasts (DEF) (C) were infected at an MOI of 3 with ESEV or RSKV. Cell lysates were collected at 4 and 8 h p.i. and
analyzed by Western blotting against NS1 (top) and NP (middle). Western blotting with a GAPDH antibody (bottom) was used to show that
equivalent amounts of protein were loaded. NI, noninfected cells used as controls.
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FIG. 3. Immunostaining of human, mouse, and duck cells infected with ESEV and RSKV. Human A549 cells (A), mouse 3T3 cells (B), and
primary duck fibroblasts (DEF) (C) were infected at an MOI of 3 with ESEV or RSKV. Cells were fixed at 4 h p.i. (left) and 8 h p.i. (right).
Immunostaining was performed with rabbit anti-NS1 and mouse anti-NP antibodies and revealed with appropriate secondary antibodies.

Western blots. Cells extracts and Western blot assays were performed as
described previously (50). Nitrocellulose membranes were incubated with rabbit
anti-NS1 polyclonal serum (1/1,0000 dilution), rabbit anti-NP polyclonal serum
(1/5,000 dilution), and mouse anti-GAPDH (1/20,000 dilution). Horseradish
peroxidase (HRP)-conjugated secondary antibodies were added; the chemilumi-
nescent substrate Supersignal West Dura (Thermo scientific) was added, and the
signal was imaged by using Bio-Rad Chemidoc XRS (Bio-Rad).

Immunostaining. Cells were fixed with 4% paraformaldehyde, permeabilized
with phosphate-buffered saline (PBS)-0.5% Triton X-100, and incubated for 1 h

in PBS-0.1% Triton X-100 and 2% BSA. Antibody incubation was performed
overnight at 4°C by using polyclonal anti-NS1 rabbit serum (1/400 dilution) and
monoclonal mouse anti-NP antibody (1/200 dilution). After washing, cells were
incubated with rhodamine X-conjugated anti-mouse IgG (1/200 dilution; Jackson
Immunoresearch) and fluorescein isothiocyanate (FITC)-conjugated anti-rabbit
IgG (1/200 dilution; Jackson Immunoresearch) secondary antibodies. Coverslips
were mounted in Vectashield (Vector Laboratories). FITC fluorescence and
rhodamine X fluorescence were acquired sequentially with an Olympus confocal
microscope.
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FIG. 4. Immunostaining of human, mouse, and duck cells infected with NEPS70 and NEPG70. Human A549 cells (A), mouse 3T3 cells (B),
and primary duck fibroblasts (DEF) (C) were infected with ESEV or RSKV at an MOI of 3. Cells were fixed at 4 h p.i. (left) and 8 h p.i. (right).
Immunostaining was performed with rabbit anti-NS1 and mouse anti-NP antibodies and revealed with appropriate secondary antibodies.

In vivo experiments. All animals used in in vivo experiments were treated
according to European Economic Community (EEC) recommendations for an-
imal welfare and under the supervision of the local INRA Ethics Committee.

Two-week-old Pekin ducks (Anas platyrhynchos domesticus) were obtained
from a commercial hatchery of controlled sanitary status (Couvoir de la Sei-
gneurtiére, Vieillevigne, France). We verified that animals had no anti-H7 anti-
bodies prior to inoculation. Animals were inoculated with 107 PFU of virus
diluted in PBS to reach a final volume of 500 pl, of which 250 wl was adminis-
tered via the intrachoanal cleft route and 250 wl was administered via the oral

route. Control animals were administered allantoic fluid from noninfected em-
bryonated eggs that was diluted in PBS. Animals were maintained in HEPA-
filtered isolation units. On days 1 and 6 postinfection (p.i.), six to seven animals
in each group were euthanatized, and tissue samples were collected during
necropsy. In a second experiment, 11 animals were infected as described above,
and cloacal sampling was performed on days 2, 4, 6, 8, 10, 12, 14, and 18 p.i.
Four-week-old female BALB/c mice were obtained from Elevage Janvier
(France). Animals were anesthetized with an intramuscular injection of ketamine
and xylazine and inoculated intranasally with the indicated amount of virus
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FIG. 5. Multiple-cycle growth analysis of human, mouse, and duck cells. (A and B) Human A549 cells (A) and mouse 3T3 cells (B) were
infected at an MOI of 0.001. (C) Primary duck fibroblasts (DEF) were infected at an MOI of 0.0005 in the presence of TPCK trypsin to allow
multiple-cycle virus growth. Supernatants were collected at the indicated times p.i., and viral titers were determined with MDCK cells. The results

are representative of at least three independent experiments.

diluted in PBS to reach a final volume of 50 pwl. Control animals were inoculated
with allantoic fluid from noninfected embryonated eggs diluted in PBS. Body
weight and clinical signs were monitored daily. Mice which had lost 25% of their
initial body weight were euthanized according to the study protocol. On days 3
and 6 p.i., five animals under each condition were euthanatized, and tissue
samples were collected during necropsy.

Tissue samples were snap-frozen for virological analyses, snap-frozen in
TRIzol reagent (Invitrogen) for RNA analyses, or kept in 10% neutral buffered
formalin for histological analyses.

RNA extraction and quantitative PCR (qPCR). For in vitro experiments, RNA
was extracted by use of the Nucleospin RNA II kit (Macherey Nagel).

RNA from organ samples conserved in TRIzol reagent (Invitrogen) was ex-
tracted according to the manufacturer’s protocol. For each sample, 5 pg of RNA
was further purified by use of the Nucleospin RNA II kit. Retrotranscription was
performed by use of the SuperScript II reverse transcriptase kit (Invitrogen) and
random primers (Invitrogen) according to the manufacturer’s protocol. Quanti-
tative PCR was performed with a final volume of 25 pl by using 5 wl of cDNA
(diluted 10 times), each primer at 400 nM, and 12.5 pl of iTaq Sybr green
supermix with ROX (Bio-Rad). All primers are available upon request.

Quantitative PCR was performed with Abi Prism 7000 SDS (Applied Biosys-
tems) using the following program: initial denaturation (2 min at 95°C) followed
by 40 cycles (15 s at 98°C and 1 min at 60°C) and a melting-curve analysis. To rule
out genomic contamination, control PCR was performed in the absence of
reverse transcriptase. For quantification, the AC; was determined by comparing
the cycle threshold numbers (C7) required to reach a defined threshold value for
the target gene versus a housekeeping gene (GAPDH). The relative amount of
mRNA was then expressed as 2~ 2¢7.

In order to quantify viral RNA load, we used a QIAamp viral RNA minikit
(Qiagen) followed by one-step RT-PCR (Quantitect; Qiagen) according to the
manufacturer’s protocol. Prior to RNA extraction, feces were weighed and di-
luted 1/10 in PBS, the ileum and colon were weighed, their mucosae were
scraped away with a scalpel blade, and cloacal swabs were diluted in 500 pl PBS.
Data were quantified by using standards consisting of 10-fold dilutions of a
plasmid containing the viral sequence at a known concentration.

Histological analysis and immunohistochemistry. After 48 h of fixation in
10% neutral buffered formalin, tissues were routinely processed and embedded
in paraffin. Sections were cut at 3 um and stained with hematoxylin and eosin
(H&E). Viral staining was performed with a mouse monoclonal antibody di-
rected against NP (Argene) diluted 1/50 and incubated overnight at 4°C. A goat
anti-mouse peroxidase polyclonal serum (Dako) was used as a secondary anti-
body. Diaminobenzidine (DAB) was used as the substrate chromogen, and slides
were counterstained with hematoxylin.

A histopathological analysis was done by a veterinary pathologist who was
blinded to the experimental conditions. In mice, the extent of inflammation and
necrosis in the respiratory tract was graded as follows: 0 (no lesion), 1 (<10% of
trachea, bronchi, and bronchioles affected and rare alveoli affected), 2 (<50% of
trachea, bronchi, and bronchioles affected and alveolar areas affected), and 3
(>50% of trachea, bronchi, and bronchioles affected and alveolar areas af-
fected). In ducks, the extent of inflammation in the ileum and the colon was
graded as follows: 0 (no increase in cellularity in the lamina propria), 1 (scattered
groups of inflammatory cells in the lamina propria), 2 (thickening of the lamina

propria and separation of crypts by more than five strata of inflammatory cells),
and 3 (diffuse and severe thickening of the lamina propria and separation of
crypts by more than 10 strata of inflammatory cells). In ducks, the extent of
necrosis in the ileum and the colon was graded as follows: 0 (normal mucosa), 1
(focal epithelial cell desquamation), 2 (more marked epithelial injury with
eroded areas), and 3 (ulceration of epithelium). The histological score presented
is the sum of the inflammatory and necrotic scores.

Reporter gene assays to measure human and duck type I IFN production. The
titration of human type I IFN was performed by transfecting HEK 293T cells
with a plasmid encoding firefly luciferase under the control of the interferon-
stimulated response element (ISRE) enhancer (pISRE; Stratagene) and a plas-
mid containing the sequence of Renilla luciferase under the control of the herpes
simplex virus TK promoter (TK-RLuc; Promega). At 16 h posttransfection, cells
were stimulated with supernatants from infected cells (virus in the supernatant
was inactivated by acid treatment at pH 2) or recombinant human IFN-a2a
(HumanZyme) for 16 h. The activity of firefly luciferase was then measured with
an Infinite 200 96 plate reader (Tecan) using the Dual-Glo luciferase assay
system (Promega) and was normalized to the Renilla luciferase activity.

Titration of duck type I IFN was performed by transfecting DEF with a
plasmid containing the sequence of firefly luciferase under the control of a
chicken Mx promoter (Mx-FFLuc), kindly provided by P. Stacheli (Universitat
Freiburg, Freiburg, Germany) (38) and TK-RLuc, as previously described (42).

Sequence analysis of viruses in ducks and mice. Viral RNA was extracted
from duck cloacal swabs or from mouse lung homogenates by using the QIAamp
viral RNA minikit (Qiagen) according to the manufacturer’s protocol. Retro-
transcription and PCR were performed with NS-specific primers. PCR products
were then cloned into vector pSC-B (Strataclone blunt PCR cloning kit; Strat-
agene). Four to thirteen clones of each virus were sequenced.

Data analysis. Data are presented as means =+ standard errors of the means
(SEM). For experiments analyzing the effect of type I IFN pretreatment on virus
replication, statistical significance was assessed by using an unpaired, one-tailed
Student’s ¢ test. For the other data, statistical significance was assessed by using
an unpaired, two-tailed Student’s ¢ test.

RESULTS

Rescue of recombinant H7N1 viruses. We used the low-
pathogenic avian influenza (LPAI) virus A/turkey/Italy/977/
1999 (H7N1) strain to study the role of the recently identified
conserved C-terminal domains of the NS1 protein (32). Plas-
mid-driven reverse genetics were used to recover wild-type
virus that contains an NS1 protein with a typical avian ESEV
C-terminal motif. We called this virus ESEV. In parallel, we
mutated the NS segment to introduce the C-terminal RSKV
domain into the NS1 protein (Fig. 1). The recovered mutant
virus had an NS1 protein with a typical human C terminus and
was designated RSKV. It should be noted that the E227R
mutation in NS1 inevitably introduces a mutation in the amino
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acid sequence of the nuclear export protein (NEP), which is
encoded in a +1 reading frame from an alternatively spliced
NS transcript. Thus, in conjunction with the E227R mutation
in NS1, we also introduced an S70G mutation into NEP.
Large-scale sequence analyses of influenza virus genomes have
highlighted this coding constraint (2, 32). Indeed, a coselection
of NS1 E227 and NEPS70 is apparent in avian influenza vi-
ruses, whereas a coselection of NS1 R227 and NEPG70 is
apparent in human influenza viruses.

To test the impact of the S70G mutation on NEP, we used
reverse genetics to rescue two other H7N1 viruses that differ
only by the S70G mutation in NEP (Fig. 1). These viruses have
a 224-amino-acid-long NS1 protein whose coding sequence is
not affected by the S70G mutation in NEP. We called these
viruses NEPS70 and NEPG70.

Analysis of NS1 and NP expression in human, mouse, and
duck cells. As a first step toward the characterization of the
ESEV and RSKYV viruses, we analyzed the expression of NS1
and NP in human A549 alveolar epithelial cells, in mouse
embryonic 3T3 fibroblasts, and in DEF infected at an MOI of
3 PFU per cell.

In all cell types tested, the levels of NP or NS1 expression
analyzed by Western blotting at 4 h and 8 h p.i. did not differ
significantly between ESEV and RSKV (Fig. 2). The NP and
NS1 proteins were expressed at a lower level in human and
mouse cells at 4 h p.i. than in duck cells. These results indicate
that ESEV and RSKV are both able to infect human and
mouse cells but with slower replication kinetics than those for
duck cells. Importantly, the intracellular localizations of NP
assessed by immunofluorescence analysis were also similar for
both viruses. In human cells, NP was nuclear at 4 h p.i. and was
found concentrated in the cytoplasm at 8 h p.. (Fig. 3A). In
mouse cells, NP was nuclear at 4 h p.i. and was also found in
the cytoplasm at 8 h p.. (Fig. 3B). In duck cells, NP was
nuclear and cytoplasmic at 4 h p.i. and was concentrated below
the cytoplasmic membrane at 8 h p.i. (Fig. 3C). These results
suggest that the S70G mutation introduced into NEP does not
impair the nuclear export of viral ribonucleoprotein complexes
detected with the NP antibody. In human and mouse cells, the
intracellular localizations of NS1 were similar for both viruses:
NS1 localized mostly in the nucleus at 4 h p.i. and localized in
the nucleus and cytoplasm at 8 h p.i. (Fig. 3A and B). Inter-
estingly, the intracellular localizations of NS1 differed between
the two viruses in duck cells. NS1 of ESEV localized mostly in
the nucleus at 4 and 8 h p.i., whereas NS1 of RSKV appeared
to be more cytoplasmic than nuclear (Fig. 3C). In addition,

bright cytoplasmic foci of NS1 were detected in the cytoplasm
of ESEV-infected duck cells at 4 h and 8 h p.i. These foci were
reminiscent of previously described virus-induced cytoplasmic
inclusions that remain of uncertain identity (34). Taken to-
gether, these results suggest that ESEV and RSKV do not
differ in their abilities to infect human, mouse, and duck cells
and that both viruses initiate replication with similar kinetics.
However, the intracellular localizations of NS1 differ between
ESEV and RSKV in duck cells.

Similar experiments were performed with the NEPS70 and
the NEPG70 viruses. No difference in NS1 and NP immuno-
fluorescence staining patterns was observed between these vi-
ruses, further suggesting that the S70G mutation does not
significantly modify the functions of NEP in human, mouse,
and duck cells (Fig. 4).

Multiple-cycle growth analysis of human, mouse, and duck
cells. We next compared the growth properties of ESEV and
RSKYV in human, mouse, and duck cells infected at a low MOI.
In human cells infected at an MOI of 0.001, RSKV replicated
better than ESEV, reaching titers 60 times higher by 48 h p.i.
(Fig. 5A). In contrast, ESEV virus replicated better than
RSKYV virus in mouse cells infected at an MOI of 0.001, reach-
ing titers 107 times higher by 48 h p.i. (Fig. 5B). Finally, in duck
cells infected at an MOI of 0.0005, RSKV replicated better
than ESEV, reaching titers 10* times higher by 24 h p.i. (Fig.
5C). Altogether, these results indicate that the C-terminal do-
main of NS1 modulates viral growth in a host-specific way: in
the context of an H7N1 avian influenza virus strain, the typical
avian C-terminal ESEV domain enhances viral growth in
mouse cells, whereas the typical human RSKV domain en-
hances viral growth in human and duck cells.

Analysis of single-cycle growth and type I interferon pro-
duction in human, mouse, and duck cells. The level of repli-
cation during multiple-cycle growth results from the interplay
between the intrinsic growth speed of the virus and its sensi-
tivity to host-dependent antiviral effectors (11). Growth speed
was analyzed by measuring viral titers during single-cycle
growth. In parallel, we measured type I IFN production.

In human cells, RSKV reached significantly higher titers
than ESEV during single-cycle growth (Fig. 6A). Titers ob-
tained at 24 h p.i. were more than 40 times higher for RSKV
than for ESEV. In order to measure type I IFN production, we
used a biological assay that allows the measurement of any
human type I IFN. The level of type I IFN at 24 h p.i. was
significantly higher in the supernatants from RSKV-infected
human cells than in supernatants from ESEV-infected cells, as

FIG. 6. Single-cycle growth analysis and type I IFN production in infected human, mouse, and duck cells. (A to C) Human A549 cells (A),
mouse 3T3 cells (B), and primary duck fibroblasts (DEF) (C) were infected with ESEV or RSKV at an MOI of 3. Supernatants were collected
at the indicated times p.i., and viral titers were determined with MDCK cells. (D) pISRE-Firefly luciferase activity (pISRE-FFLuc) normalized to
TK Renilla luciferase activity (TK-Rluc) was measured in cells stimulated with supernatant from ESEV- or RSKV-infected human A549 cells (MOI
of 3; supernatant collected 24 h p.i.) (left) or increasing concentrations of recombinant human IFN-«a2a (right). (E) 3T3 cells were infected with
ESEV or RSKV at an MOI of 3. At 12 and 24 h p.i., cells were lysed, RNAs were extracted, and IFN-B and GAPDH mRNAs were quantified
by RT-qPCR. Levels of IFN-B mRNAs were normalized to GAPDH mRNA. (F) Mx-Firefly luciferase activity (Mx-FFLuc) normalized to TK
Renilla luciferase activity (TK-Rluc) was measured in cells stimulated with supernatant from ESEV- or RSKV-infected DEF (MOI of 3;
supernatant collected 20 h p.i.) (left) or increasing concentrations of recombinant duck IFN-a (right). (G) Human A549 cells, mouse 3T3 cells,
and primary duck fibroblasts (DEF) were infected with NEPS70 or NEPG70 at an MOI of 3. Supernatants were collected at 24 h p.i., and viral
titers were determined with MDCK cells. Results are expressed as means = SEM of data from at least three independent experiments. *, P < 0.05;

%, P < (0.01; %%, P < 0.001 (by unpaired ¢ test).
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revealed by the higher signals obtained with this biological
assay (Fig. 6D). Altogether, these results show that RSKV
replicates to higher titers than ESEV during single-cycle
growth in human cells and that this higher level of replication
is associated with higher levels of type I IFN production.

In mouse cells, RSKV grew to significantly higher titers than
ESEV during single-cycle growth (Fig. 6B), in sharp contrast
with the results obtained during multiple-cycle growth experi-
ments (Fig. 5B). This prompted us to analyze whether the
reduced viral load observed for RSKV during multiple-cycle
growth could be due to a higher level of type I IFN production.
We therefore quantified IFN-B mRNA transcripts by RT-
gPCR in mouse cells infected at an MOI of 3 at 12 h and 24 h
p-i. Unexpectedly, IFN-B mRNA transcript levels were signif-
icantly elevated in ESEV-infected mouse cells compared to
those in RSKV-infected cells (Fig. 6E). Thus, our results do
not support the hypothesis that the reduced level of growth of
RSKYV during multiple-cycle growth in mouse cells could be
due to a higher level of type I IFN induction.

In duck cells, RSKV reached significantly higher titers than
ESEV during single-cycle growth (Fig. 6C). Titers obtained at
20 h p.i. were more than 200 times higher for RSKV than for
ESEV. In order to measure type I IFN production, we used a
biological assay that allows the measurement of any avian type
I IFN (38). Supernatants from duck cells infected with the
RSKYV virus collected at 20 h p.i. exhibited an enhanced pro-
duction of type I IFN compared to noninfected cells, as re-
vealed by the higher signals obtained with this biological assay
(Fig. 6F). However, no significant differences in type I IFN
production were observed between ESEV- and RSKV-in-
fected duck cells. Altogether, these results show that RSKV
replicates more efficiently than ESEV during single-cycle
growth in duck cells and that this higher level of replication is
associated with a modest increase in the levels of type I IFN
produced.

To assess whether the S70G mutation in NEP contributes to
the differences in growth speed, we compared the single-cycle
growth properties of the NEPS70 and NEPG70 viruses. The
NEPS70 virus and the NEPG70 virus reached similar titers at
24 h p.i. in human, mouse, and duck cells (Fig. 6G). This result

further suggests that the S70G mutation does not significantly
modify the functions of NEP in human, mouse, and duck cells.

Impact of type I IFN pretreatment on virus replication in
human, mouse, and duck cells. ESEV and RSKYV could also
differ in their sensitivities to type I IFN-induced antiviral ef-
fectors. We therefore evaluated virus growth in cells pretreated
with type I IFN. Cells were pretreated for 24 h with 500 IU/ml
of recombinant type I IFN and subsequently infected at an
MOI of 0.1. In human and duck cells, type I IFN pretreatment
led to a significant decrease in both ESEV and RSKYV titers at
24 h p.i. (Fig. 7A and B). In mouse cells, type I IFN pretreat-
ment also significantly inhibited RSKV replication (Fig. 7C).
In contrast, ESEV replication was not inhibited, suggesting
that ESEV was less sensitive to type I IFN pretreatment than
RSKYV in mouse cells (Fig. 7C). To further test how type I IFN
sensitivity modulates viral growth in mouse cells, we compared
the growth properties of ESEV and RSKV in mouse cells
infected at an MOI of 0.05 and treated or not with saturating
amounts of a neutralizing antibody against the murine type I
IFN receptor IFNARI. In untreated mouse cells, ESEV
reached higher titers than RSKV. In contrast, in mouse cells
treated with IFNAR1-neutralizing antibodies, RSKV reached
higher titers than ESEV (Table 1). Altogether, these results
suggest that in type IFN-competent mouse cells, ESEV reaches
higher titers than RSKV during multiple-cycle growth because
it is less sensitive to type I IFN than RSKV.

TABLE 1. Replication of ESEV and RSKYV in mouse cells treated
or not with neutralizing antibodies to mouse type I IFN receptor

Neutralizing antibody
to mouse type I

Virus titer at 48 h p.i. (PFU/ml)*

IFN receptor - +
ESEV 3.3 x 10? 1.0 x 10°
RSKV 1.5 X 10? 6.5 x 10°

“ Mouse 3T3 cells were infected at an MOI of 0.05 in the presence of TPCK
trypsin to allow multiple-cycle virus growth and treated with saturating amounts
of a neutralizing antibody against murine IFNARI or left untreated. Results are
representative of two independent experiments and are expressed as the means
of duplicate titrations.



Impact of the ESEV and RSKV domains of NS1 on viral
growth and pathogenicity in mice. We next evaluated the
pathogenicity of ESEV and RSKV in vivo. We infected
BALB/c mice intranasally with serial dilutions of ESEV and
RSKV. Both viruses were rapidly lethal when inoculated at 107
PFU per mouse (Fig. 8A). However, ESEV appeared to be
more virulent than RSKV at lower doses, causing a higher
mortality rate when used at 10° PFU (Fig. 8A) and significantly
more weight loss when used at 10° PFU (Fig. 8B). Histopatho-
logical analysis of the respiratory tract confirmed that ESEV
was more pathogenic than RSKV (Fig. 8C and E). ESEV-
infected mice had severe tracheobronchitis and bronchioloal-
veolitis, characterized by large areas of sloughed necrotic ep-
ithelial cells and extensive infiltrates of neutrophils and
mononuclear cells. In ESEV-infected mice, alveolar spaces
were filled with neutrophils, macrophages, cellular debris, and
edema fluid. Pulmonary lesions in RSKV-infected mice were
less severe and restricted to tracheobronchial and peribron-
chiolar areas. Immunohistochemical analysis revealed that the
localization of NP-positive cells did not differ between ESEV-
and RSKV-infected mice at day 6 p.i. (Fig. 8D). Viral antigen
was located principally in the tracheal, bronchial, and bron-
chiolar epithelial cells. NP staining was also present in
sloughed epithelial cells, in macrophages, and in a few small
cuboidal cells lining alveoli that were reminiscent of type II
pneumocytes. In order to test whether this increase in patho-
genicity was due to a higher level of replication of ESEV, we
measured viral titers in lungs of mice infected with 10° PFU.
Viral titers were higher in ESEV-infected mice than in RSKV-
infected mice at day 3 p.i. (Fig. 8F). At day 6 p.i., viral titers
decreased in ESEV-infected mice, reaching levels similar to
those found for RSKV-infected mice. Thus, viral pathogenic-
ity, assessed by the extent of weight loss and the histological
score, was not directly correlated with viral load. Instead, we
could correlate pathogenicity to the level of type I IFN tran-
scripts in the lungs of infected mice. ESEV induced signifi-
cantly higher levels of IFN-B and IFN-a« mRNA transcripts
than RSKYV at days 3 and 6 p.i. (Fig. 8G). Importantly, viral
sequence analysis performed on three mice per group at day
6 p.i. revealed that no virus had acquired mutations affecting
the coding sequence of the C-terminal domain of NS1 (Ta-
ble 2). Together, our results show that the higher pathoge-
nicity of ESEV in mice is associated with an increase in virus
replication at day 3 p.i. and correlates with an increase in
lung inflammation and a higher level of type I IFN induc-
tion.

Impact of the ESEV and RSKV domains of NS1 on viral
growth and pathogenicity in ducks. We infected Pekin ducks
via the oral and intrachoanal routes with 10’ PFU of ESEV or
RSKYV. As expected for LPAI viruses, ducks did not exhibit any
clinical signs over the whole duration of the experiment. How-
ever, histopathological analysis performed on days 1 and 6 p.i.
revealed a mild to moderate inflammation of the ileum (Fig.
9A) and the colon (data not shown) of ESEV- and RSKV-
infected ducks. Inflammatory infiltrates in the lamina propria
were variably composed of both heterophils and mononuclear
cells or solely of mononuclear cells. A mild necrosis of the ileal
epithelium without any villus atrophy was observed for infected
animals. Histological scores were low for infected animals yet
significantly different from those of the ileum of noninfected

animals (Fig. 9C). No significant differences were observed
between histological scores of ESEV- and RSKV-infected
ducks. Immunohistochemically, viral antigen was detected in
differentiated epithelial cells of the ileum and the colon. No
infected cells were detected in the trachea, indicating that
ESEV and RSKYV have a predominant intestinal tropism. In
the intestine, ESEV-infected ducks had only a few NP-
positive cells per cut at day 6 p.i., and most of them were
found in the ileum (Fig. 9B). In contrast, RSKV-infected
ducks had a higher number of NP-positive cells per cut at
day 6 p.i., and the intensity of NP staining also appeared
stronger.

The level of fecal excretion was quantified by measuring the
amount of infectious viral particles and viral RNA copies per
gram of feces (Fig. 9D and E). ESEV was excreted at higher
levels than RSKYV in the feces at day 1 p.i. In contrast, RSKV
was excreted at higher levels than ESEV at day 6 p.i., but the
difference did not reach statistical significance. We next ana-
lyzed viral load in the ileal and colonic mucosae by RT-qPCR.
At day 1 p.i., no viral RNA was detected in the ileal and colonic
mucosae of ESEV- or RSKV-infected ducks (data not shown).
At day 6 p.i., viral RNA levels were significantly higher in the
ileal mucosa of RSKV-infected ducks than in that of ESEV-
infected ducks (Fig. 9F). Viral RNA levels were also higher in
the colonic mucosa at day 6 p.i., but the difference did not
reach statistical significance (Fig. 9F).

Next, we evaluated whether ESEV and RSKYV induced dif-
ferent levels of type I IFN in vivo. However, the sequence of
duck IFN-B is unknown, and we could not detect any upregu-
lation of duck IFN-a transcription in the ileum and the colon
of infected ducks by RT-qPCR (data not shown). We therefore
measured tissue levels of type I IFN indirectly by quantifying
Mx transcription. Mx is an interferon-stimulated gene and a
good indicator of the level of type I IFN produced in situ (21,
40). RSKYV induced significantly higher levels of Mx transcripts
than ESEV in the ileum (Fig. 9G) and in the colon (data not
shown) at days 1 and 6 p.i., likely reflecting a higher level of
type I IFN production.

Finally, in a second experiment, we evaluated the duration
of virus fecal excretion by detecting viral nucleic acids from
cloacal swabs by RT-qPCR. Eleven ducks per group were mon-
itored for 18 days p.i., and cloacal swabs were taken every 2
days. On day 4 and day 6 p.i., all ESEV- and RSKV-inoculated
animals excreted virus (Fig. 9H). However, the number of
animals excreting virus decreased rapidly from day 6 p.i. in the
RSKV-infected group, whereas all ESEV-infected ducks still
excreted virus until day 10 p.i. After day 10 p.i., the number of
excreting animals also decreased in the ESEV-infected group.
At day 18 p.i., cloacal swabs from RSKV-inoculated animals
were all negative, and only one animal remained positive for
virus in the ESEV-inoculated group. Altogether, the mean
duration of fecal excretion was 12.6 * 0.9 days (mean = SEM)
for ESEV versus 10.9 = 1.0 days for RSKV. Thus, ESEV
appeared to be excreted longer than RSKV. Importantly, viral
sequence analysis of three positive cloacal swabs taken from
each group on day 14 p.i. revealed that no virus had acquired
mutations affecting the coding sequence of the C-terminal do-
main of NS1 (Table 2).



>

% survival

1004

78

-G-1gb
-ﬁ.,lﬂ!.
i*i 1.“_]'
—l—ini
--'lu'

—-—iuf

L]
T
L
L]
L)

-

Y O ~0m0n D= 0= L
L3

# L] L

4 6 A& 10 12 44
days p.i.

ESEV

% of initial body weight

'i "
o R -

=
b o
o
=]
(=]
-
=
-
L5

=Y
3

6o =
oo
o am o
oo —=— 7]
o am m
oo
T ESEV RSKV T ESEV RSKV
Day 3 Day 6
&
g o
g o
g o

tES A

Day3 Day &

B 81
M
2 &4 - [ 1] - mE
3 Tt Taw
3 - .
g 3
=
2 24 -
b I
ESEV RSKV ESEV RSKV
Day3 Day 6
IF N-ce
&
T
<,
3
i— -
g

& &

Day &

S L
Day 3



TABLE 2. Amino acid sequences of the C-terminal domain

of NS1¢
Animal Virus inoculated No. of clones sequ enced/
total no. of animals

Mouse

1 ESEV 10/10 ESEV

2 ESEV 12/12 ESEV

3 ESEV 13/13 ESEV

4 RSKV 11/11 RSKV
Duck

1 RSKV 11/11 RSKV

2 RSKV 5/5 RSKV

3 RSKV 4/4 RSKV

4 ESEV 7/7 ESEV

“ The amino acid sequence of the C-terminal domain of NS1 was determined
as described in Materials and Methods. The number of clones sequenced for
each animal is indicated. Virus was isolated from lungs of mice at day 6 p.i. and
from cloacal swabs from ducks at day 14 p.i.

DISCUSSION

By comparing the virulences of recombinant LPAI H7N1
viruses in mice and ducks, we identified that the C-terminal
domain of NS1 functions as a species-specific virulence do-
main. We show here for the first time that the C-terminal
RSKYV domain of NS1 increases virus replication in duck cells
in vitro and in vivo as well as in human cells in vitro. In contrast,
the C-terminal ESEV domain increases virulence in mice, con-
firming results previously obtained with the human influenza
virus A/WSN/33 strain (24). Moreover, we show for the first
time that the increased virulence is associated with an increase
in levels of type I IFN production in lungs of ESEV-infected
mice.

The E227R mutation in NS1 inevitably introduces an S70G
mutation into NEP. Although we cannot completely rule out
an effect of an NEP mutation, this possibility seems unlikely, as
the NEPS70 and the NEPG?70 viruses, which differ only by the
S70G mutation in NEP, had indistinguishable phenotypes in
human, mouse, and duck cells. This result strongly suggests
that the differences observed between the ESEV and RSKV
viruses can be attributed to amino acid changes in NS1.

Jackson et al. found previously that the C-terminal KSEV
and EPEV domains of NS1 also enhanced virulence in mice
similarly to the ESEV domain (24). NS1 proteins with C-
terminal ESEV, KSEV, and EPEV domains were shown to
bind to PDZ domains containing cellular proteins (32, 47). The
increased virulence of these influenza viruses in mice has been

linked to their ability to interact with PDZ domains of cellular
proteins, although the identity of these cellular proteins and
the cellular pathways affected remain unknown. However, our
findings show that the role of PDZ-containing cellular proteins
in modulating influenza virus virulence may depend on the
host species. Indeed, RSKV, which lacks a PDZ binding do-
main, replicated to higher titers than ESEV in human and
duck cells, suggesting that the ability of NS1 to interact with
PDZ-containing proteins does not contribute to virulence in
these host species.

Our results show that ESEV induced higher levels of type I
IFN than RSKV in mouse cells but that ESEV was less sensi-
tive to type I IFN pretreatment. This property could enable
ESEV to reach higher titers than RSKV during multiple-cycle
growth in mouse cells, even though it replicates to lower titers
during single-cycle growth and induces higher levels of type I
IFN than RSKYV. Insensitivity to IFN pretreatment was previ-
ously described for certain strains of HSN1 viruses and was
correlated with the presence of a glutamic acid at position 92
of NS1 (39). Variation in the sensitivity to IFN pretreatment
has also been attributed to mutations of amino acids 38 and 41
of NS1, which are part of the RNA binding domain of NS1
(28). However, ESEV and RSKYV both have an aspartic acid at
position 92 of NS1 and do not differ from each other at amino
acids 38 and 41. Interestingly, the lack of a correlation between
IFN production and viral growth in mammalian cells in vitro
was previously observed for certain strains of influenza virus
(16, 17). In addition, viral genes other than NS1 have been
shown to modulate sensitivity to type I IFN-induced effectors
(4, 46). Further studies are needed to understand how certain
strains of influenza virus are able to grow in mammalian cells
even though they induce large amounts of type I IFN. ESEV
also induced high levels of type I IFN in the lungs, and we
found that the higher virulence of ESEV in mice in vivo cor-
related with type I IFN levels rather than with viral load. The
strong type I IFN production and the massive amounts of
neutrophil and mononuclear cell infiltrates in the lungs of
ESEV-infected mice are reminiscent of the excessive lung in-
flammation observed with highly pathogenic avian influenza
virus H5N1 or with the reconstructed HIN1 strain from 1918
(1,27, 33). In future studies, it would be interesting to evaluate
the phenotype of the ESEV and RSKYV viruses in mice carrying
functional MxI alleles. MxI is an interferon-stimulated gene
encoding a protein that is a potent inhibitor of influenza vi-
ruses in mice (14, 37, 48). We cannot exclude that ESEV,

FIG. 8. Replication and pathogenesis in mice. (A) Survival of mice inoculated with the indicated amounts of ESEV or RSKV (four mice per
group). (B) Percent change in weight following inoculation with 10° PFU of ESEV or RSKV. *, P < 0.05 by unpaired ¢ test between ESEV- and
RSKV-infected mice (five mice per group). (C) Mouse lung tissue collected at day 6 p.i. from mice inoculated with 10° PFU ESEV or RSKV
(formalin fixation, 3-um sections, H&E staining, and X20 magnification) (bar, 20 wm). NI, no lesion; ESEV, severe bronchioloalveolitis; RSKV,
moderate bronchioloalveolitis. (D) Immunohistochemical anti-NP staining of 3-wm lung sections from the animals presented in C (hematoxylin
counterstaining and X20 magnification) (bar, 20 wm). Shown is the staining of bronchiolar epithelial cells and a few macrophages in ESEV- and
RSKV-infected mice. (E) Histological scoring of H&E-stained lung sections (squares, individual score; bars, mean score). (F) Viral load in lungs
of mice infected with 10° PFU of ESEV or RSKV. Lungs were collected at days 3 and 6 p.i. and titrated with MDCK cells (squares, individual
titer; bars, mean titer; dotted line, detection limit [here 10'%° TCIDs/g]). (G) RT-gPCR analysis of type I IFN produced at days 3 and 6 p.i. in
lungs of mice infected with 10° PFU of ESEV or RSKV. IFN-B and IFN-«a levels are normalized to GAPDH levels, and results are expressed as
fold induction compared with noninfected animals. Results are expressed as means = SEM of data from five mice per group. *, P < 0.05; #*, P <
0.01 (by unpaired ¢ test).
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which is a strong type I IFN inducer, could be partially atten-
uated in MxI*'* mice compared to MxI-deficient mice.
RSKYV replicates to higher titers than ESEV in human and
duck cells, and this increase in viral replication is associated
with an increase in levels of type I IFN production in vitro.
RSKYV also replicates to higher levels in ducks in vivo and
induces higher levels of Mx transcripts, likely reflecting an
increase in levels of type I IFN production in vivo. In contrast
to mouse cells, ESEV and RSKYV did not differ in their sensi-
tivities to type I IFN pretreatment in human and duck cells.
Altogether, these results indicate that NS1 with a C-terminal
RSKYV domain does not increase virus replication by inhibiting
type I IFN synthesis or type I IFN-induced effectors more
efficiently than NS1 with a C-terminal ESEV domain. In con-
trast, our results show that RSKV reached significantly higher
titers than ESEV during single-cycle growth, suggesting that
NS1 with a human C-terminal RSKV domain increases the
intrinsic virus growth speed. NS1 was previously shown to
modulate viral polymerase activity (9, 29). Thus, NS1 with a
C-terminal RSKV domain could increase viral replication in
human and duck cells by regulating viral polymerase activity.
However, further studies are needed to test this hypothesis.
ESEV was excreted at higher levels in duck feces at day
1 p.i., but intriguingly, no viral RNA could be detected in the
ileal and colonic mucosae of these animals. The higher level of
fecal excretion observed for ESEV-infected ducks at day 1 p.i.
could therefore be due to remains of the viral inoculum ad-
ministered orally or due to viral replication upstream in the
intestine. However, the ileum and the colon have been repeat-
edly shown to be the major sites of LPAI virus replication in
duck intestine (26, 51; our unpublished observations). At day
6 p.i., we also found that five of the seven ESEV-infected ducks
excreted viral RNA in the feces, whereas only two of the seven
ESEV-inoculated ducks had detectable amounts of viral RNA
in either the ileal or colonic mucosae (Fig. 9E and F). We
found that differentiated intestinal epithelial cells were the
major site of ESEV and RSKV replication, as shown immu-
nohistochemically with anti-NP staining (Fig. 9B). We there-
fore hypothesize that the higher viral load found in the feces
than in the intestinal mucosa could result from the rapid des-
quamation of infected differentiated intestinal epithelial cells.
Other authors previously identified undifferentiated epithelial
cells in the intestinal crypts as the major site of LPAI virus
replication in ducks (23, 26). However, using virus histochem-
istry, Munster et al. showed that an avian H7N7 virus was able

to attach to differentiated duck colonic epithelial cells, indicat-
ing that these cells express viral receptors (30). Thus, the pre-
cise histological localization of LPAI virus replication in the
duck intestine is likely to be influenced by the viral strain or by
host-dependent determinants.

Large-scale sequence analyses have shown that NS1 is under
strong selection pressure and evolves at a rate similar to those
of HA and NA (3, 5, 32). The existence of a typical human
C-terminal RSKYV domain in NS1 and a typical avian C-termi-
nal ESEV domain in NS1 could be an illustration of this
phenomenon. As they are selected during evolution, these
C-terminal domains are likely to confer a phenotypic advan-
tage, for example, through interactions with specific binding
partners in their respective natural hosts. Our results show
that, indeed, the C-terminal RSKV domain increases virus
replication in human cells. However, unexpectedly, we show
that the typical human RSKV domain also increases virus
replication in ducks. Ducks are the natural reservoirs of avian
influenza viruses and are therefore most likely a species in
which the typical avian C-terminal ESEV domain of NS1 is
selected during virus evolution. If the ESEV domain decreases
virus replication in ducks compared to RSKV, why is the
ESEV domain selected during virus evolution in ducks? One
possible explanation is that a pathogen that is less virulent can
persist longer in its host, for example, by inducing a weaker
immune response. Our data are in accordance with this hy-
pothesis, as ESEV induced fewer type I IFN-stimulated gene
transcripts in ducks than did the human-like RSKV. In addi-
tion, by analyzing cloacal swabs from infected ducks, we show
that ESEV tended to be excreted for a longer period than
RSKYV. Being excreted longer possibly means that the virus can
contaminate more individuals. Valuable information would
certainly be obtained by evaluating the transmissibility of the
ESEV and RSKYV viruses in ducks (35, 43, 49) and in a suitable
mammalian model, such as the ferret (18, 41). Finally, viral
sequence analysis after rounds of natural interhost transmis-
sion could enable the evaluation of the mutation rate of the
sequence encoding the C-terminal domain of NSI1.

The majority of influenza viruses have a 230-amino-acid-
long NS1 protein with a consensus ESEV C-terminal domain
found in 78% of avian influenza virus isolates or a consensus
human RSVK domain found in 85% of the typical human
influenza virus isolates (32). However, NS1 proteins of various
lengths also exist, and C-terminally truncated NS1 proteins
have been isolated, mainly from birds and swine (6, 7). The

FIG. 9. Replication and pathogenesis in ducks. Two-week-old Pekin ducks were inoculated with 107 PFU ESEV or RSKV. (A) Ileum collected
at day 6 p.i. (formalin fixation, 3-pm sections, H&E staining, and X20 magnification) (bar, 20 wm). NI, no lesion; ESEV, mild enteritis; RSKV,
mild enteritis. (B) Immunohistochemical anti-NP staining of 3-pm ileum sections from the animals presented in A (hematoxylin counterstaining
and X40 magnification) (bar, 40 wm). Shown is staining of enterocytes at the tip of the villi in ESEV- and RSKV-infected ducks. (C) Histological
scoring of H&E-stained ileum sections (squares, individual score; bars, mean score). (D) The viral load in the feces of animals autopsied at days
1 and 6 p.i. was titrated with MDCK cells (squares, individual titer; bars, mean titer; dotted line, detection limit [here 10"* TCIDs/g]). (E) Viral
RNA level in the feces of animals autopsied at days 1 and 6 p.i. Viral RNA levels were determined by one-step RT-qPCR (squares, individual level;
bars, mean level; dotted line, detection limit [here 10*® viral RNA copies/g]). (F) Viral RNA level in the ileal and colonic mucosae at day 6 p.i.
Viral RNA levels from scraped mucosae were determined by one-step RT-qPCR (squares, individual level; bars, mean level; dotted line, detection
limit [here 10'- viral RNA copies/g]). (G) RT-qPCR analysis of Mx expression at days 1 and 6 p.i. in the ileum of ducks. Mx levels are normalized
to GAPDH levels, and results are expressed as fold induction compared with noninfected animals. Results are expressed as means = SEM of data
from six noninfected animals and seven infected animals in each group. (H) Duration of viral shedding in droppings. Cloacal swabs collected
following infection were analyzed by one-step RT-qPCR to detect viral nucleic acid. Results are expressed as percent positive animals over time.

%, P < 0.05; #%, P < 0.01 (by unpaired ¢ test).



“classical swine” H1N1 virus has been circulating in pigs since
the mid-1960s, with a 219-amino-acid-long NS1 protein. This
219-amino-acid-long NS1 protein is now present in the novel
2009 HINT strain circulating in the human population world-
wide (10). A recent study has shown that increasing the length
of the 2009 HIN1 NS1 protein to 230 amino acids does not
increase virus replication in human and pig cells (13). Alto-
gether, these results suggest that the contribution of the C-
terminal domain of NS1 to virulence or viral fitness could also
depend on the viral strain. The presence of other virulence
determinants in NS1 or in other viral proteins may compensate
for the lack of a C-terminal domain in NS1. Therefore, further
studies are required to study how the genetic background of a
virus may determine to which extent the C-terminal domain of
NS1 modulates virulence and viral fitness.
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