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Predicting the onset of rafting of c 0 precipitates by channel
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The growth or shrinkage, normal to {001}, of the interfaces between the
� matrix and cuboidal � 0 precipitates is examined for a Ni-base superalloy,
by considering the force acting on the interfaces. The force is produced by
the precipitate coherency misfit and the stress produced by plastic
deformation in channels of the � matrix. A simple expression, which
directly addresses the origin of the surface force, is given. The plastic
deformation within the initially active � matrix channels exerts the force to
cause rafting. The subsequent activation of other types of channels also
promotes the rafting in the same direction as the first active channels, when
the plastic strain of the former channels increases. These issues are also
discussed in terms of analysis based on those dislocations caused by the
precipitate misfit and those produced by the plastic deformation.
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1. Introduction

It is well known that Ni-base superalloys can exhibit rafting after creep deformation
whereby the � 0 precipitates, which are cuboidal before deformation, change to a flat
shape. Rafting was also reported in specimens plastically deformed at a low
temperature and subsequently annealed at a high temperature [1]. In this case plastic
deformation occurs only in the � matrix. This suggests that it is the internal stress
produced by the matrix deformation combined with the stress field induced by the
precipitate misfit strain that causes rafting. It is also recognized that plastic
deformation occurs only in selected channels in the early stage of deformation [2,3].
When a single crystal is uniaxially loaded along [001], three types of matrix channels
exist, namely those parallel to (001), (100) and (010). For example, when the
precipitate misfit of � 0 is negative as in most engineering �-� 0 alloys and the loading
is tensile, only (001) channels (horizontal channels) are active plastically at the
beginning of plastic deformation [4,5].

This observation suggests that rafting geometry should be discussed in
conjunction with channel deformation. In fact, Socrate and Parks analyzed creep
deformation by a finite element method and found channel deformation. They also

*Corresponding author. Email: nicolas.ratel@ensiacet.fr



calculated a force acting on the �-� 0 interface, using an energy-momentum tensor
expression in order to examine the rafting geometry [6]. There are many other studies
which have treated the case of rafting under uniaxial stress. The pioneering work of
Pineau [7] treated the case of an isolated spherical particle in the frame of isotropic
elasticity. This work was further extended to anisotropic elasticity and to the case of
several particles with good accuracy [8]. Diffusion phenomena and cross-diffusional
creep involved in rafting have been described previously [9]. In the latter, the
calculations involved finite element analysis.

However, in the present paper, the application of an external stress is not
considered. Instead, plastic deformation resulting from the application of an external
stress is introduced in some matrix channels. This is because simple annealing under
no external stress after prior plastic deformation also leads to rafting [1]. This
experimental result is the starting point of the present study. Using an analytical
approach based on an inclusion method and based on energy evaluation, we have
confirmed the occurrence of channel deformation [10]. This requires the calculation
of the internal stress developed by the specific channel type deformation. From this
we can evaluate the force acting on �-� 0 interfaces analytically. Accordingly, the
direction of the rafting geometry can also be inferred in a simple manner. The present
study is intended to show these points.

Instead of the energy-momentum tensor, we will use a different expression to
calculate the force on a �-� 0 interface. Of course the two methods are equivalent, but
the present method is easier to use and can directly address the causes of the force,
as shown later.

2. Analysis

The � 0 precipitates have the precipitate misfit (stress-free strain)

"Tij ¼ "0�ij: ð1Þ

The present study examines the case of

"0 5 0, ð2Þ

even though the case of "040 can be dealt with in a similar manner, as briefly
discussed later. It should be noted that the former case applies to most engineering
Ni-base superalloys.

2.1. Review of a previous analysis of stress

It is assumed that the � 0 particles are cuboidal, are nearly periodically arranged and
are quasi-coherent with the � matrix on {001}. It has been shown that when a tensile
load is applied to [001], only the matrix channels, parallel to (001), undergo plastic
deformation at the beginning of deformation [10]. This is because the interaction
energy for plastic deformation within (001) channels with the precipitate misfit (2) is
negative while that for plastic deformation within (100)/(010) channels is positive,
when plastic strain of elongation occurs along [001].



In Figure 1(a), � 0 particles and (001) and (100) channels are sketched out. It is

important that the widths of the channels are far smaller than the size of the

� 0 particles, since we are examining a situation where the volume fraction of � 0 can
be as large as 0.7, the value in typical engineering Ni-base superalloys.

When a (001) channel plastically deforms by

"P33 ¼ "P, "P11 ¼ "
P
22 ¼ �"P=2, ð"P 4 0Þ ð3Þ

the internal stresses in this channel are calculated as

�111 ¼ �
1
22 ¼
ðC11 þ 2C12ÞðC11 � C12Þ

2C11
"P, �133 ¼ 0, inside a channel ð4Þ

as shown before [10]. Here, the x1, x2 and x3 axes are taken along [100], [010] and

[001], respectively. Eshelby’s inclusion problem is used to calculate these stresses with

the relevant tensors of S3333¼ 1 and S3311¼S3322¼C12/C11. (C11 and C12 are the

relevant components of the elastic stiffness of a cubic material.) Here, a channel is

approximated as a thin disk normal to [001]. The � matrix and � 0 precipitates are

taken to have the same elastic constants for simplicity and without significant error.

The investigations performed in [8] have shown that elastic misfit ceases to be

important in the presence of plastic deformation. Since a channel is assumed flat, the

stress corresponding to (4) vanishes outside the channel:

�1ij ¼ 0, outside a channel: ð5Þ

When all the (001) channels are active, the plastic strain (3) also generates an

average stress throughout the whole body, including (001) channels, the � 0 particles
and (100) and (010) matrix channels. This average stress is calculated as

h�iji ¼ �F3�
1
ij , ð6Þ

using the mean field method [12,13]. Here, F3 is the volume fraction of the (001)

channels. When the volume fraction of the � 0 phase is 0.7 as proposed above, F3 is

Figure 1. (a) Schematic arrangement of � 0 particles and � matrix channels. (b) Arrays of
dislocations after plastic deformation in a (001) channel. An array of surface dislocations
(shown by dotted line symbols) can be used to describe the �-� 0 misfit, while the plastic strain
in a (001) channel can be thought of additional dislocations (shown by solid lines). These
additional dislocations are produced by "P11.



0.11 [10]. Thus, the stress �1ij due to a channel adjacent to a � 0 particle is dominant
over the average stress h�iji. Moreover, the average stress exerts the same force
equally on all the {001} �-� 0 interfaces of a � 0 particle. This is partly due to the
isotropic character of the precipitate misfit, (1). As seen later, the force is determined
by the stress and the precipitate misfit. Thus, when the force on the �-� 0 interfaces is
calculated to assess the direction of rafting, the effect of the average stress can be
safely neglected.

2.2. Force on c-c 0 interfaces due to plastic deformation in one type of matrix
channels

The standard formula to calculate a force on an interface is to use Eshelby’s energy-
momentum tensor

f ¼ ½�ij"ij�=2� �ij½ui, j�: ð7Þ

Although this form is different from that used by Socrate and Parks, the two
expressions are equivalent [14]. Equation (7) is the form used by Su and Voorhees
[15]; however, the expression given in [15] contained a typographical error which is
corrected in the above. This force, per unit area, is normal to the interface and direct
outwards to the outside of a precipitate. Here, �ij is the stress, "ij the elastic strain and
ui,j¼ @ui/@xj is the total distortion. The square brackets mean the difference between
the value just outside an interface and that just inside the interface. For example,

½ui, j� ¼ ui, jðoutÞ � ui, jðinÞ: ð8Þ

In the present study, instead, we will use the expression

f ¼
�ijðoutÞ þ �ijðinÞ

2
"Tij : ð9Þ

This equation is obtained by considering the virtual movement of an interface in the
forward and backward directions. The forces defined by these virtual movements are
averaged to give the above expression. The reason for the use of (9) is as follows:
(i) Equation (9) gives the causes of the force directly: �ij is the action to cause the
force on the boundary of a domain which is characterized by "Tij . Together, these two
factors indicate why the force exists. (ii) Equation (9) is similar to the Peach–Koehler
force for a dislocation segment. The Peach–Koehler force contains the stress, the
Burgers vector and tangential vector of the segment. (iii) If we are only concerned
about the force due to the channel deformation, it is sufficient to use the stress of this
origin in (9). The equivalence between (7) and (9) is demonstrated in the appendix.

Equation (9) is confidently applied with the condition that a �-� 0 interface is
sharp. The analysis for the stress due to plastic deformation assumes that a deformed
channel contacts an interface. Force is also evaluated by assuming the existence of a
sharp interface, as seen later. Figure 2 provides support for this condition for all
practical purposes. Figure 2 is a reconstructed high resolution (HREM) image of
a Ni superalloy, containing a �-� 0 interface. With this condition, the � 0 particles are
quasi-coherent with the � matrix and cuboidal. The � 0 phase can be distinguished by
the characteristic contrast arising from the chemical difference of the (200) planes in



the L12 unit cell. The disordered � phase lacks such a contrast variation. A �-� 0

interface is clearly seen in Figure 2. The contrast between the two phases changes
sharply across the interface, indicating that the interface is sharp. Using the
algorithm in TrueImage (REI) [16], and several images taken under different
microscope settings, the true positions of the atomic columns can be obtained from
the so-called exit wave reconstruction procedure. This makes possible an accurate
measurement of the lattice spacings both perpendicular and parallel to the interface
in Figure 2. When the spacings of the lattice planes parallel to the interface was
measured across the interface, it was found that the spacing changed from the � 0 to
the � phase within two unit cells [17]. The image in Figure 2 and this spacing
measurement are believed to be convincing evidence for the sharpness of the �-� 0

interface.

2.3. Force to initiate rafting due to plastic deformation in a (001) channel

Only the difference in the force between the (001) and (100)/(010) interfaces plays
a role in the rafting, as mentioned before. Thus, the average stress (6) can be omitted
in discussing the onset of the rafting. Only (4) and (5) are required to calculate the
force on a (001) �-� 0 interface. Using (9), (4) and (5), the force on a (001) interface of
a � 0 particle adjacent to a plastically deformed (001) channel is calculated as

f ð001Þ ¼
ðC11 þ 2C12ÞðC11 � C12Þ

2C11
"P"0: ð10Þ

Figure 2. A high resolution reconstructed electron microscopy image of a Ni-12at%Al alloy
containing a �-� 0 interface.



Since

C11 4 0, C11 þ 2C12 4 0, C11 � C12 4 0, ð11Þ

for thermodynamical reasons [18] and

"P"0 5 0 ð12Þ

under the present condition,

f ð001Þ5 0: ð13Þ

This means that an originally cuboidal � 0 particle tends to becomes thinner along
[001], so that its eventual shape becomes flat parallel to (001). This is the correct
rafting geometry observed [19].

2.4. Role and effect of (100) or (010) channel deformation after initial straining in
(001) channels

After some straining in the (001) channels, (100)/(010) channels also start to deform
plastically. This is because the internal stress of (6) with (4) promotes the lateral
contraction of plastic strain in these channels. In other words, the interaction energy
between (6) and the plastic strain in the (100)/(010) channels, the elongation of which
occurs along [001], is negative.

The quantitative argument for this is as follows: After the strain of "P in the (001)
channels, the elastic energy, per unit volume, is given as

Eð001Þ ¼ ESð001Þ þ EIð001Þ: ð14Þ

Here, ES(001) is the elastic self-energy due solely to the plastic strain in the (001)
channels and EI(001) is the interaction energy between this plastic strain and the
precipitate misfit. Using a standard method, these are calculated as [10]

ESð001Þ ¼ �ð1=2ÞF3ð1� F3Þ�
1
ij "

P
ij ¼ F3ð1� F3Þ

ðC11 þ 2C12ÞðC11 � C12Þ

4C11
"2P ð15Þ

and

EIð001Þ ¼ �f ð�F3�
1
ij Þ"

T
ij ¼ fF3

ðC11 þ 2C12ÞðC11 � C12Þ

C11
"0"P, ð16Þ

where f is the volume fraction of the � 0 particles.
Suppose that the (100) and (010) channels start to deform plastically after the

above deformation. The plastic strain in the (100) channels is assumed to be

"P
0

33 ¼ "
0
P, "

P 0

11 ¼ �ð1=2� �Þ"
0
P, "P

0

22 ¼ �ð1=2þ �Þ"
0
P, ð"

0
P 4 0Þ: ð17Þ

Here, the parameter � is introduced to account for the large difference between the
dimension along the [100] direction and that along the [010] direction of a (100)
channel. However, this parameter must observe the condition

�1=2 � � � 1=2: ð18Þ



The stress due to (17) in a (100) channel is calculated as [10]

�1
0

11 ¼ 0, �1
0

22 ¼
C11 � C12

C11
fðC11 þ C12Þð1=2þ �Þ � C12g"

0
P,

�1
0

33 ¼ �
C11 � C12

C11
f�C12ð1=2þ �Þ þ C11 þ C12g"

0
P:

ð19Þ

Of course the corresponding stress outside one channel vanishes. The average

stresses due to all the (100) channels are calculated similarly to (6), by replacing F3

with the volume fraction of the (100) channels, F1(¼F3).
The (010) channels also deform plastically with the plastic strain of

"P
00

33 ¼ "
0
P, "

P 00

11 ¼ �ð1=2þ �Þ"
0
P, "P

00

22 ¼ �ð1=2� �Þ"
0
P, ð"

0
P 4 0Þ ð20Þ

from symmetry with (17). This strain results in the stress in one (010) channel being

�1
00

22 ¼ 0, �1
00

11 ¼
C11 � C12

C11
fðC11 þ C12Þð1=2þ �Þ � C12g"

0
P,

�1
00

33 ¼ �
C11 � C12

C11
f�C12ð1=2þ �Þ þ C11 þ C12g"

0
P:

ð21Þ

The average stresses as due to the (010) channels are similarly written to the case of

the (100) channels, using the volume fraction of these channels F2(¼F3¼F1).
The elastic energy change due to the deformation of the (100) and (010) channels is

Eð100=010Þ ¼ ESð100=010Þ þ EIð100=010Þ þ EP
I ð001=100=010Þ, ð22Þ

where ES(100/010) is the elastic self-energy due solely to the plastic deformation in

the (100)/(010) channels, EI(100/010) is the interaction energy between the plastic

strain in the (100)/(010) channels and the precipitate misfit and EP
I ð001=100=010Þ is

the interaction energy between all the channels. The first term, ES(100/010), is

quadratic with respect to "0P

ESð100=010Þ ¼ B"02P , ð23Þ

where B is written in terms of F1, F2, C11, C12 and �. Similar to EI(001), (16),

the second and third terms in (22) are written as

EIð100=010Þ ¼ �f ð�F1�
10

ij � F2�
100

ij Þ"
T
ij

¼ 2f F1
ðC11 þ 2C12ÞðC11 � C12Þ

C11
ð�� 1=2Þ"0"

0
P ð24Þ

and

EP
I ð001=100=010Þ ¼ �F1ð�F3�

1
ij "

P 0

ij � F3�
1
ij "

P 00

ij Þ

¼ �F3F1
ðC11 þ 2C12ÞðC11 � C12Þ

C11
"P"
0
P: ð25Þ

Since �� 1/2 and "050, (24) is positive and thus the (100)/(010) channels do not

plastically deform initially (i.e. when "P is small). However, (25) is negative and its

magnitude exceeds (24) when "P becomes large. That is, the prior activity of the (001)

channels promotes the occurrence of the plastic deformation in the (100)/(010)

channels.



We can determine the plastic strain, "P, above which the (100)/(010) channels also
participate in plastic deformation [11]. Instead, we just evaluate the force due to the
plastic strains in the (100)/(010) channels in the following manner.

Using (9) and (19), the force due to a (100) channel deformation on a (100)
interface is written as

f ð100Þ ¼
ðC11 þ 2C12ÞðC11 � C12Þ

2C11
ð�� 1=2Þ"0P"0: ð26Þ

The parameter � can be qualitatively estimated below. When "0P is small, ES(100/010)
can be ignored compared to EI(100/010). E

P
I ð001=100=010Þ does not depend on �.

Thus, the smallest increase in elastic energy, (22), due solely to the plastic strains in
the (100)/(010) channels is attained when

� ¼ 1=2: ð27Þ

Accordingly, when the plastic strain "0P in the (100)/(010) channels is small

f ð100Þ ¼ 0, ð28Þ

so that there is no effect of the (100)/(010) channel deformation on the force, f (100),
on a (100) interface. By examining (19), (28) is found to be due to the fact that the
force caused by �1

0

33 and that caused by �1
0

22 cancel out. There is a simple reason for
�¼ 1/2 and the cancelling result in f (100)¼ 0, as shown later in the Discussion.
We can give the identical result for the force on (010), f (010), using the stress �1

00

ij .
It should be noted, however, that as the deformation progresses in the (100)/(010)

channels, the elastic energy term of ES(100/010) increases. In this case � decreases so
that the sum of ES(100/010) and EI(100/010) is minimized [10]. When this occurs,
f (100), for example, becomes positive. That is, in this stage, the (100)/(010) channel
deformation promotes the shape change of the � 0 particles in the same direction of
rafting as was produced by the original (001) channel deformation. In other words,
it accentuates the observed rafting.

2.5. Cases of "040 or compression loading along [001]

As seen above, the interaction energy determines whether (001) or (100)/(001)
channels operate first when uniaxial loading is applied to [001]. The interaction
energy is proportional to "0� the plastic strain (elongation or compression).
Depending on the sign of this product, we can easily determine the first acting
channels. Also, the force on a particular interface is proportional to this factor.
In this way, we can easily determine the rafting geometry without conducting
detailed calculations.

We can also see the effect of the factor � easily. In the very beginning of the
(100)/(010) channel deformation, EI(100/010) is more dominant over ES(100/010).
Whether the (001) or (100)/(010) channels operate first, EP

I ð001=100=010Þ does not
depend on �. EI(100/010) is also proportional to the above factor. The proportional
constant depends on �. Thus, we chose � which makes EI(100/010) smallest in the
range of (18). It is noted that EI(100/010) has the same form as (24) for any
combination of the precipitate misfit and plastic strain. Thus, when "0"

0
P40,

we choose �¼�1/2 to examine the case at the very beginning of the (100)/(010)
channel deformation.



3. Discussion

The result of the present study agrees, in terms of force on a �-� 0 interface, with that
given by Socrate and Parks in an overall sense [6]. However, some differences should
be recognized between the two studies. While Socrate and Parks predict the force
numerically using finite elements, the present study gives the analytical expression of
a force on an interface. It is believed that this analytical expression is more easily
grasped and exploited. In addition, the present study has also examined the roles of
(100)/(010) channels which becomes active after the prior activity of (001) channels.
Our study is, in a sense, more realistic since our analysis is for 3D deformation, while
Socrate and Parks employed a 2D analysis.

The FEM calculation employs a mesh producing procedure to describe a plastic
channel. Thus, one might think that a FEM analysis is more detailed than the
present study which assumes uniform plastic deformation in the channel. However,
we have to recognize that an elementary process of plastic deformation in a channel
is a dislocation movement. This movement leaves the trail of the dislocation on the
�-� 0 interface. Its moving segment is curved. The radius of the curvature determines
the stress to move it. This radius is half the width of the channel width in a simplified
model. Once a stress exceeds a critical value determined by the width, the plastic
deformation can occur throughout the channel. Thus, as long as an external stress is
sufficiently large, we can envisage that a channel can deform relatively uniformly.
Even if this argument is too strong, one must accept that the plastic strain is uniform
along the width of a channel. Moreover, the present study offers the basic idea, with
which the force on a �-� 0 can be examined under any combination of tensile or
compressive loading and sign of the precipitate misfit without complex and time
consuming recalculation. This is an advantage over a numerical method.

The force on a �-� 0 interface and the selection of plastic channels can be readily
visualized when we take a dislocation view. The precipitate misfit induces the
continuously distributed (surface) virtual dislocations on � 0-� interfaces [21], as
schematically shown by the dotted lines in Figure 1(b). On interface A, there are two
types of these surface dislocations. One is due to "T11 and the other due to "T22. Each
type of dislocations results from the recombination at the interface of a/2h110i
gliding dislocations. The total Burgers vector of these dislocations, per unit area, are
given as

B1 ¼ ð"0, 0, 0Þ for dislocations parallel to ½010�,

B2 ¼ ð0, "0, 0Þ for dislocations parallel to ½100�:
ð29Þ

These are of edge type. The dotted lines for A in Figure 1(b) is for B1.
The plastic deformation (3) in a (001) channel leaves dislocations shown

schematically by the solid lines in Figure 1(b). These dislocations are due to the
component of "P11. Even though the actual plastic deformation of this multiple slip (3)
occurs by the movement of glide dislocations having many types of the Burgers
vectors, the resultant product of these dislocations on a �-� 0 interface can be
simplified as depicted in Figure 1(b). Using the Peach–Koehler expression of a force
on a dislocation, the force on the surface dislocations A can be calculated as

fdisl ¼
ðC11 þ 2C12ÞðC11 � C12Þ

2C11
"0"P, ð30Þ



which directs along [001]. This agrees with f (001), (10). Here, (4) and (5) are used to
calculate the principal values of the stresses. The stresses due to (3) jump across
interface A. In such a case, the stresses to be used for the Peach–Koehler expression
are the principal value, as shown by Brown [22] and used to examine thermal stress
relief from a second phase particle [23].

Figure 1(b) also shows why the plastic strain (3) in a (001) channel occurs first
when "050. The dislocations generated by this strain cancel out the stress due to the
dislocations representing the precipitate misfit. The Burgers vectors of the two types
of dislocations, solid lines and dotted lines, on a (001) interface have opposite signs.

It is also noted that the force on the virtual dislocations (dotted lines) on interface
A is not caused by those dislocations (solid lines) on the same interface. This is
because the principal values of the stress of the glide (latter) dislocations vanish on
the interface. There is another way to see this point. Let interface A in Figure 1(b)
move downwards virtually. Since the Burgers vectors of the dotted line and solid line
dislocations have different signs, the solid line dislocations exert an attractive force
on the dotted line dislocations on the displaced �-� 0 interface. This force tends to
restore the interface into its original position. The same result is obtained when the
interface virtually moves upwards. In brief, the solid line dislocations exert no net
force on the dotted line dislocations on the same interface A. On the contrary, the
solid line dislocations on interface B have the same sign in the Burgers vector as the
dotted line dislocations on interface A. Thus the force between these two arrays of
dislocations is always repulsive. In this way we can understand that the force for the
movement of interface A is caused by the dislocations (solid lines) on interface B.

As discussed in Section 2.4, the plastic deformation also occurs, for example, in
a (100) channel after some strain in the (001) channels. The (100) channel strain "P

0

33

leaves dislocations on the (100) interfaces as shown by the solid line dislocations in
Figure 3(a), where the dislocations due to prior plastic deformation in a (001)
channel are also shown. These are the same as those shown in Figure 1(b). The solid
dislocations in array C have a Burgers vector of the same sign as the virtual
dislocations due to the precipitate misfit (dotted line). Thus, the virtual dislocations
representing the �-� 0 misfit repel those due to plastic deformation. This is the basic
reason why (100)/(010) channels are not active at the beginning. To activate these
channels, the internal stress due to the plastic deformation in (001) channels must
increase.

When a (100) channel is viewed from the top along [001], we can draw Figure 3(b).
The solid dislocations due to plastic deformation are caused by "P

0

22. As seen in
Figure 3(b), the stress field of the solid dislocations cancel that due to the dotted
dislocations. This effect is most effective when the magnitude of "P

0

22 is largest, equal to
�"P

0

33. This is the case of �¼ 1/2 as analytically found in Section 2.4. See (17).
Figure 3(a) also shows that the (100) force due to the solid dislocations in array

C and D is positive, while that due to the solid dislocations in arrays E and F in
Figure 3(b) is negative when �¼ 1/2; these forces cancel out exactly. This is why
f (100)¼ 0 at the beginning of the operation of the (100) channels (the case of �¼ 1/2).

Lastly, we will discuss what occurs after the inward movement of (001) interfaces,
the movement which leads to rafting. To simplify the discussion, we consider the case
that only the (001) channels operate. When the (001) interfaces move inwards, the
lattice glide dislocations follow this movement and the width (volume fraction) of the



(001) channels increases, as long as "P is below a certain magnitude. An energy

decrease occurs in this process. Suppose that the volume fraction of the (001)

channels increases by �F3. This causes the energy change �ES(001) given by

�ESð001Þ ¼
ðC11 þ 2C12ÞðC11 � C12Þ

4C11
fð1� 2F3Þ"P þ 4f"0g"P�F3: ð31Þ

Here, (14), (15) and (16) are used. If

ð1� 2F3Þ"P 5 � 4f"0, ð32Þ

�E(001) is negative for an increase (�F3) in F3. That is, the expansion of the (001)

channel width occurs. The above certain value of "P is

"P ¼ �
4f

1� 2F3
"0: ð33Þ

As this process occurs, F3 increases and eventually reaches the maximum value of

1� f. When f¼ 0.7, the above strain is �7"0. In the above, we ignored a change in the

elastic energy attributed solely to the precipitate misfit. When the volume fraction of

the (001) channels becomes maximum (0.3), the � 0 precipitates take a flat shape

parallel to (001). As shown before [10], this shape of the � 0 precipitates makes the

elastic energy due to the precipitate misfit lowest. Thus, the discussion for a change

due to the volume increase of the (001) channels still holds.
The inward movement of the (001) interfaces is due to the diffusion of the

constituent atoms, which can generate additional plastic deformation associated with

cross-diffusion [9]. The expansion of the plastic channels is due to the movement of

lattice glide dislocations. This movement does not require diffusion. It can occur by

glide motion, as in the case of the formation of the arrays of the solid dislocations in

Figures 1 and 3 due to original plastic deformation. Taking the contribution of

diffusional processes into account would require significant additional numerical

calculations, which are avoided in the present approach.

Figure 3. (a) Arrays C and D of dislocations (solid lines) are introduced by plastic
deformation of "P

0

33 in a (100) channel following prior plastic deformation in a (001) channel
(shown in Figure 1b). (b) The top view along [001] of the (100) channel. Arrays E and F of
solid dislocations are due to "P

0

22.



4. Summary

The start of rafting of � 0 particles, as would occur at elevated temperature after room
temperature plastic straining along [001], is due to internal stress caused by matrix
plastic deformation. First, a simple expression for the surface force acting on a
precipitate/matrix interface due to the precipitate misfit and the stress on the
interface is presented. The type of � matrix channels which undergo plastic
deformation is determined by the sign of the precipitate misfit, from which the
internal stress can be calculated. Using this stress, the force on a �-� 0 interface is
expressed analytically and is found to change the shape of a � 0 particle as described
by rafting. The role of the subsequent activity of other types of channels after the
deformation in the first type of channels is also evaluated. It is shown that the
activity of the secondary channels either has no effect on the interface force for
rafting or promotes the rafting. The surface force is generalized for any combination
of the precipitate misfit and mode of loading to induce plastic deformation. The
selection of active plastic deformation channels and the origin of the interface force
are visualized by a dislocation analysis for the precipitate misfit and plastic
deformation.
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Appendix

Here, the general case that the eigenstrain "�ij exists only inside a domain V is discussed.
The equivalence between

f ¼ ð1=2Þð�ijðoutÞ"ijðoutÞ � �ijðinÞ"ijðinÞÞ � �ijðui, jðoutÞ � ui, jðinÞÞ ð34Þ

and

f ¼
�ijðoutÞ þ �ijðinÞ

2
"�ij ð35Þ

is shown. Since �ij in (34) can be either �ij (out) or �ij (in), the second term in (34) is rewritten as

��ijðui, jðoutÞ � ui, jðinÞÞ ¼ �ð1=2Þð�ijðoutÞ þ �ijðinÞÞðui, jðoutÞ � ui, jðinÞÞ: ð36Þ

Noting that �ij (ui, jþ uj,i)/2¼ �ijui, j and

ðui, jðinÞ þ uj,iðinÞÞ=2 ¼ "ijðinÞ þ "
�
ij, ð37Þ

(36) is changed to

��ijðui, jðoutÞ � ui, jðinÞÞ ¼ �ð1=2Þð�ijðoutÞ"ijðoutÞ � �ijðinÞ"ijðinÞÞ

þ ð1=2Þ�ijðoutÞ"ijðinÞ � ð1=2Þ�ijðinÞ"ijðoutÞ

þ ð1=2Þð�ijðinÞ þ �ijðoutÞÞ"
�
ij: ð38Þ

Inserting this into (34), we have

f ¼ ð1=2Þ�ijðoutÞ"ijðinÞ � ð1=2Þ�ijðinÞ"ijðoutÞ þ ð1=2Þð�ijðinÞ þ �ijðoutÞÞ"
�
ij: ð39Þ

Since

�ijðoutÞ"ijðinÞ ¼ �ijðinÞ"ijðoutÞ, ð40Þ

the first two terms in (39) cancel. Thus, we have

f ¼ ð1=2Þð�ijðinÞ þ �ijðoutÞÞ"
�
ij, ð41Þ

which is identical to (35).
It is noted that (�ij (in))þ �ij (out)))/2 is the principal value of the stress which, in general,

jumps across the interface of V. In the present analysis, the stress used to calculate the force on
a �-� 0 interface is that due to plastic deformation occurring only in the gamma matrix. Due to
the plastic deformation geometry considered, this stress is discontinuous across the interface.
That is, �ij (in) is not equal to �ij (out). Thus, the average of these terms is crucial to evaluate
the force on the interface. It is recalled that for a curved dislocation segment a similar averaged
value of stresses is used [22] when the Peach–Koehler force due to the self stress is calculated.
The self-stress of a curved dislocation is also discontinuous across the core of the segment.




