

To c
cod

This
Epri

Any
adm

cite this
de. In: Sé

s is an
ints ID: 4

y corresp
ministrato

docume
éminaire

author-d
4733

pondence
or: staff-o

ent: HUG
e DTIM -

deposited

e concer
oatao@in

GUES Jé
- ONERA

d version

rning thi
np-toulo

érôme. A
A, 01 Ma

n publis

is servic
use.fr

AADL, d
arch 201

shed in:

ce should

de l'anal
10, Toulo

http://oa

d be sen

yse à la
ouse, Fr

atao.univ

nt to the

générati
rance.

v-toulous

e reposito

ion de

se.fr/

ory

Generating high-integrity systems

with AADL and Ocarina

Jérôme Hugues, ISAE/DMIA

jerome.hugues@isae.fr

Outline

•! AADL crash course

•! The Ocarina project

•! AADL to Ada: experiments in IST-ASSERT

•! AADL to C: experiments in ANR Flex-eWare

•! Some other features

page 2!

AADL components

•! AADL model : hierarchy/tree of components

•! AADL component:

!!Component definition : model of a software or hardware element,

notion of type/interface, one or several implementations organized in

package. A component implementation may have subcomponents.

!!Component interactions : features (part of the interface) +

connections (access to data, to subprograms, ports, …)

!!Component properties: valued attributes to model non-functional
property (priority, WCET, memory consumption, …)

 page 3

Component type/implementation

•! AADLv2 distinguishes type and implementation

 page 4

<category> foo!
features!
 -- list of features !
 -- interface!
properties!
 -- list of properties!
 -- e.g. priority!
end foo; !

<category> foo.i [extends <bar>]!
subcomponents!
 -- …!
calls!
 -- subprogram subcomponents !
 -- called!
connections!
properties!
 -- list of properties!
 -- e.g. priority!
end foo.i; !

A full AADL system

•! Component types and

implementations only define a

library of entities

•! System must be instantiated

through a hierarchy of

subcomponents, from top-most

(system) to top-down

(subprograms, ..)

•! Level N use entities at level N-1

as subcomponents, connect

them

 page 5

Root System!

Sub System! Process! Processor!

Thread! Data!…!

…!

 page 6

Radar case study

•! Hardware/Software breakdown: components

Antenna

Monitor

Radar

LEON2

Radar_sw

Motor
RAM

VME

PACKAGE radar

PUBLIC

PROCESS processing

-- …

END processing;

DEVICE antenna

-- …
END antenna;

END RADAR;

 page 7

Radar case study

•! Hardware/Software breakdown: features

Antenna

Monitor

Radar

LEON2

Radar_sw

Motor
RAM

VME

in/out ports

bus access

PROCESS processing

FEATURES

 to_screen : OUT EVENT PORT;
 send_pulse : OUT EVENT PORT;

 receive_pulse : IN DATA PORT;

 get_angle : IN DATA PORT;

END processing;

DEVICE antenna

FEATURES

 antenna_in : IN EVENT PORT;

 VME : REQUIRES BUS ACCESS VME;

END antenna;

Radar case study

•! Hardware/Software breakdown: connections

 page 8

Antenna

Monitor

Radar

LEON2

Radar_sw

Motor
RAM

VME

Radar case study

•! Hardware/Software breakdown: connections

 page 9

SYSTEM IMPLEMENTATION radar.simple

SUBCOMPONENTS

 aerial : DEVICE antenna;
 rotor : DEVICE motor;

 monitor : DEVICE screen;

 main : PROCESS processing.others;

 cpu : PROCESSOR leon2;

 VME : BUS VME;
 RAM : MEMORY RAM;

CONNECTIONS

 Cnx : PORT aerial.antenna_out -> main.receive_pulse;

 PORT rotor.motor_out -> main.get_angle;

 PORT main.send_pulse -> aerial.antenna_in;
 PORT main.to_screen -> monitor.screen_in;

 BUS ACCESS VME -> aerial.VME;

 BUS ACCESS VME -> rotor.VME;

 BUS ACCESS VME -> monitor.VME;

 BUS ACCESS VME -> cpu.VME;
 BUS ACCESS VME -> RAM.VME;

Radar case study

•! Hardware/Software breakdown: bindings

 page 10

Antenna

Monitor

Radar

LEON2

Radar_sw

Motor
RAM

VME

bindings

PROPERTIES

 Actual_Memory_Binding => reference (ram) applies to main;

 Actual_Processor_Binding => reference (cpu) applies to main;
 Actual_Connection_Binding => reference (VME) applies to cnx;

END radar.simple;

Radar case study

•! Software elements

 page 11

Radar_sw

Transmit!

Analyzer!
5ms!

5ms!

T_Spg!

A_Spg!

Periodic thread!

Sporadic thread!

Modeling with AADL, what else ?

•! AADL is an interesting framework to model and validate

complex systems: clear syntax, semantics, low overhead

!! “only” 300 pages for the core document

!! Increasing number of supporting tools for validation

!!MARTE standard to provide guidelines to model AADL patterns

•! Scheduling analysis, resource dimensioning, behavior

analysis, mapping for formal methods, fault analysis, …

!!Cheddar, Colored/Timed/Stochastic Petri Nets (CPN AMI,

GreatSPN, TINA), FIACRE, BIP, Signal, Lustre, Alloy, TLA,

UPPALL, Timed Automata, LOTOS

•! AADL requirement document (ARD 5296)

!!Validate and Generate complex systems
page 12!

Outline

•! AADL crash course

•! The Ocarina project

•! AADL to Ada: experiments in IST-ASSERT

•! AADL to C: experiments in ANR Flex-eWare

•! Some other features

page 13!

Ocarina: an AADL code generator
http://aadl.telecom-paristech.fr

•! Ocarina is a stand-alone tool for processing AADL models

!!Command-line tool, a-la gcc

!!Can be integrated with third-party tools

"!OSATE (SEI), TASTE (ESA), Cheddar (UBO), MyCCM-HI (Thales)

"!Also emacs and vim modes

!! Joint work: Telecom ParisTech (leader), contributors ENIS, ISAE

•! Fully supports both AADLv1 and AADLv2

•! Code generation facilities target AADL runtimes

!!Ada HI integrity profiles, with Ada native and bare board runtimes

!!C POSIX or RTEMS, for RTOS & Embedded

!!C/ARINC653 and partitioned kernel POK

!!User code can be Ada, C, C++, Esterel, Simulink , Lustre, SCADE
page 14!

Ocarina, other relevant features

•! Model to model transformations

•! WCET analysis of AADL runtime + user code: Bound-T

!! Take advantage on code generation patterns to “teach” how to

measure WCET

•! Constraint language to validate AADL model

!!Check static aspects of a system (see next presentation)

•! Model checking models using Colored or Timed Petri Nets

!! Test for specific behavior scenarios

•! Automatic evaluation of code coverage running scenarios

!!Based on the Couverture project

!! http://libre.adacore.com/libre/tools/coverage/

page 15!

Ocarina distributions

•! http://aadl.telecom-paristech.fr/

•! Ocarina 2.0 wavefront, daily snapshots

!!Binaries of Ocarina (release 1.2 and nightly builds)

"!For GNU/Linux, Windows, Solaris, Mac OS X, FreeBSD

!!Documentation and examples (30+ available)

!!Scientific papers on the use of AADL

!! Teaching materials for Master degree

•! PolyORB-HI AADL runtimes

!! Two versions: Ada 2005 and C/RT-POSIX

•! POK AADL runtime

!! For MILS and IMA-like systems, using time and space partitioning

page 16!

AADL and code generation

•! AADL has a full execution semantics

!!Allow for full analysis

"!Scheduling, security, error, behavior

•! Issue: what about the implementation ?

!!How to go to code

!!Preserve both the semantics and non functional properties ?

•! Solution: enrich AADL with annexes documents

!! To describe application data

!! To detail how to bind code to AADL models

 page 17

AADL: modeling data types

•! Issue: how to model data types: an integer, a struct?

•! Solution: Data Modeling annex document

!!Property set and design patterns for modeling data type

!!Closer to source code

 page 18

subprogram Receiver_Spg

features

 receiver_out : out parameter Target_Distance;

 receiver_in : in parameter Target_Distance;

end Receiver_Spg;

data Target_Distance

properties

 Data_Model::Data_Representation => integer;

end Target_Distance;

AADL and subprograms

•! Issue: how to bind user code ?

•! Solution: default AADLv2 properties / AADL runtime

 page 19

subprogram Receiver_Spg

features

 receiver_out : out parameter Target_Distance;

 receiver_in : in parameter Target_Distance;

properties

 Source_Language => Ada95; -- defined in AADL_Project

 Source_Name => "radar.receiver";

end Receiver_Spg;

AADL runtime

•! Issue: how to interact with message queues ?

•! Solution: use the AADL runtime (A.9) that define 10

services to interact with queues, …

•! Unfortunately, it remains implementation-defined

!!Mostly to allow for different designs, and enhance performances

 page 20

subprogram Send_Output

features

 OutputPorts: in parameter <implementation-dependent>;

 -- List of ports whose output is transferred

 SendException: out event data;

 -- exception if send fails to complete

end Send_Output;

AADL and programming languages

•! Issue: how to map source code ?

•! Solution: guidelines provided in the programming language

annex document

!!Define mapping rules between AADL and the target language

 procedure Receiver

 (Receiver_Out : out Target_Distance;

 Receiver_In : Target_Distance);

subprogram Receiver_Spg

features

 receiver_out : out parameter Target_Distance;

 receiver_in : in parameter Target_Distance;

end Receiver_Spg;

 page 21

 void receiver

 (target_distance *receiver_out,

 target_distance Receiver_in);

AADL and code generation

•! Issue: How much code should we write ? Tasks ?

Queues ?

•! Answer: the architecture says all

!!One can define a full framework and use it

"!Limited value, a-la CORBA

!!Generate as much as possible

•! Ocarina: massive code generation

!! Take advantage of global knowledge to optimize code, and generate

only what is required

!!Rely on a restricted runtime to support basic constructs

 page 22

Building process for HI-DRE systems

page 23!

Ocarina and code generated

•! Strong emphasis on code quality

!!Generate code compatible with coding standards for HI systems

•! Ada code: “easy”, checked by the compiler

!!Ravenscar profile for deterministic concurrency

!!HI restrictions: no dynamicity (OO, memory, …)

!!Also, simplifies the runtime, approx. 2200 SLOC

•! C code: more tricky

!!Stringent coding guildelines for now

!!Consistent with ECSS-E-40A (ESA) and Thales practice

!!Even with POSIX: 2400 SLOC

page 24!

Outline

•! AADL crash course

•! The Ocarina project

•! AADL to Ada: experiments in IST-ASSERT

•! AADL to C: experiments in ANR Flex-eWare

•! Some other features

page 25!

Ocarina’s AADL runtime #1: Ada

•! PolyORB-HI/Ada

!! Target Ada Ravenscar and High-Integrity runtimes

!!Supports AADL semantics, v1 and v2

!!Based on the Ravenscar & HI Ada profiles

"!Meets stringent requirements for High-Integrity systems, e.g. ESA

"!Checked at compile-time by Ada compiler, GNAT

"!On-going work to support SPARK/Ada

!!Supports native, RTEMS, and LEON2, ERC32 bare-board targets

•! Validated in the context of the IST-ASSERT and TASTE

projects with ESA

!! Increasing user base

page 26!

The ASSERT MPC V2 demonstrator (2007)

page 27!

1s

Send

Data_Source : out

event data port

Data_Sink : in

event data port

AADL Process

as Partition

AADL Thread as

Ada Task object
AADL Data as

Ada Protected object

Receiver

Local

Object update

500

ms

100

ms

Update Read
Watch

Receiver_Thread Watcher_Thread

SpaceWireSpaceWire

LEON TSIM
LEON TSIM

LEON TSIM

SpaceW
ire

SpaceW
ire

Sender_Thread

read

Data_Sink : in

event data port

SC_2

SC_1

Concurrency view

Physical view

Receiver

Local

Object update

500

ms

100

ms

Update Read
Watch

Receiver_Thread Watcher_Thread

read

SC_3

< 1MB/node,!
Including RTOS!
And drivers (60%)!

The ASSERT ESA demonstrator (2008)
http://www.assert-project.net/

•! Seamless integration of SDL, SCADE, Simulink, C, Ada, ASN.1, AADL

•! Follow-up activities in TASTE: add VHDL, formal verifications

page 28!

AADL vs. manual coding (2008)

•! Example from the “Guide for

the use of the Ada Ravenscar

Profile in high integrity
systems »

!! Typical example of RT system

patterns

!!AADL generated code vs. Ada

hand-coded

•! Same functional model

!!Both are analyzable with RMA

and RTA

!!Shares same code quality

enforced by Ada compiler page 29!

!!For LEON2 targets!

•! Penalty of 6% in memory
size, equivalent WCET

!!Big improvement in analysis

Outline

•! AADL crash course

•! The Ocarina project

•! AADL to Ada: experiments in IST-ASSERT

•! AADL to C: experiments in ANR Flex-eWare

•! Some other features

page 30!

Ocarina’s AADL runtime #2: C/RT-POSIX

•! PolyORB-HI/C

!! Targets C/RT-POSIX and C/RTEMS

"!Set of macros to support other RTOS

!! Tested on multiple operating systems

"!Native, GNU/Linux

"!Restricted libc: GNU/Linux on Nintendo DS and Nokia 770

"!POSIX RTOS: RTEMS

!! Tests demonstrated a limited subsystem of RT-POSIX & libc is

enough to support AADL

!!Performance comparable to the Ada version

•! Used in the ANR Flex-eWare project by Thales

page 31!

Flex-eWare project (2009)

Merging CCM and AADL

•! Using ASSERT

philosophy: combining

notations

•! LwCCM is interesting for

system designers

!!Comfortable with the OMG

•! Map onto AADL for

consolidation

•! Generate code using

Ocarina

•! Uses AADLv2
page 32!

OMG

IDL3

Thales

COAL
+!

MyCCM!
tools!

SAE

AADL

MyCCM

skel

User

code CIF

AADL

runtime

Ocarina!

AADL

runtime
compilation!coc

MyCCM

skel

User

code CIF
cc

Outline

•! AADL crash course

•! The Ocarina project

•! AADL to Ada: experiments in IST-ASSERT

•! AADL to C: experiments in ANR Flex-eWare

•! Some other features

page 33!

Ocarina’s AADL runtime #3: IMA-like

•! POK (http://pok.gunnm.org)

!!A bare board AADL runtime: both an AADL runtime and a kernel

!! Finely tuned using AADL properties

!! Follow ARINC philosophy for time and space partitioning

•! Separate services as more as possible

!!Restrict functionalities of each service

!! Fine-grain configuration

!!Ex: include static scheduler, not RMS

•! Configures resources of each layer

•! Main goal : use ONLY needed functionalities

!!Help the certification process (cf. DO178B)

!! Low memory footprint page 34!

Petri nets and AADL

•! Colored PN

!!CPN-AMI

•! Time PN

!! TINA

•! Adapt patterns to

the property to be
checked

(observers, or

reduced patterns)

 page 35!

 bus!

Priority!

Period!
Compute_Execution_Time!
Compute_Deadline!

Optimizing AADL models

•! Take advantage of full MBD chain to generate code and

then evaluate system

model-level evaluation: some user-defined metrics
binary-level evaluation: WCET, binutils, …

Optimizing AADL models

•! Drive Optimisation process using REAL as a DSL to

express relevant criteria

As many criteria as projects

theorem minimum_distance_to_deadline

 foreach th in Thread_Set do

 var distance := if exists(th, "Transformations::Fusion_Occurred")
 then compute distance_to_deadline_optimized (th)

 else compute distance_to_deadline_regular (th);

 return (Mmin (distance));

end minimum_distance_to_deadline;

Optimizing AADL models

•! Then perform the transformation

Optimizing AADL models

•! And reiterate, up to your selected end point, or global

minimum for your criteria

Optimizing AADL models: ex Merge

•! Two periodic threads of periods 10 and 15 ms

!!Connected through a data connection (asynchronous)

•! Merge : a periodic thread of period 5 ms

!! The tasks are connected through local connection

page 40!

To conclude

•! Ocarina provides tools to generate part of your system, and

to relieve you from misconfiguration of the runtime

•! Not presented

!!REAL: a constraint language to check properties on system

"!E.g. Bell-LaPadula, Biba, ARINC consistency, …

!!Bound-T integration: compute WCET of AADL runtime

!!Behavioral annex

!!Automatic execution of model: integrate compilation and run on

simulator or real hardware in one click, to ease rapid prototyping

!!Code coverage of the model’s generated code

!!…

page 41!

Credits

•! Ocarina is the result of more than 5 years of research

!! Lead work: Laurent Pautet (ENST) + Jérôme Hugues

!!Members of AS-2C since 2005

•! PhD students involved

!! Thomas Vergnaud: initial architecture of Ocarina + code generation

to PolyORB

!!Bechir Zalila: code generation to and design of PolyORB-HI/Ada

!! Julien Delange: PolyORB-HI/C + POK + ARINC 653

!!Xavier Renault: mapping to Petri Nets

!!Olivier Gilles : optimization of AADL models

!!Gilles Lasnier: integration of the Behavioral annex

page 42!

